अवशिष्ट प्रमेय: Difference between revisions
m (7 revisions imported from alpha:अवशिष्ट_प्रमेय) |
No edit summary |
||
Line 142: | Line 142: | ||
* {{springer|title=Cauchy integral theorem|id=p/c020900}} | * {{springer|title=Cauchy integral theorem|id=p/c020900}} | ||
* [http://mathworld.wolfram.com/ResidueTheorem.html Residue theorem] in [[MathWorld]] | * [http://mathworld.wolfram.com/ResidueTheorem.html Residue theorem] in [[MathWorld]] | ||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category: | |||
[[Category:Created On 17/03/2023]] | [[Category:Created On 17/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:जटिल विश्लेषण में प्रमेय]] | |||
[[Category:विश्लेषणात्मक कार्य]] |
Latest revision as of 21:02, 17 April 2023
जटिल विश्लेषण में, अवशिष्ट प्रमेय, जिसे कभी-कभी कौशी का अवशिष्ट प्रमेय भी कहा जाता है, बंद वक्रों पर विश्लेषणात्मक कार्यों के रेखा अभिन्न का मूल्यांकन करने के लिए एक शक्तिशाली उपकरण है; इसका उपयोग प्रायः वास्तविक अभिन्न और अनंत श्रृंखला की गणना करने के लिए भी किया जा सकता है। यह कॉशी पूर्णांकी प्रमेय और कॉची अभिन्न प्रमेय का सामान्यीकरण करता है। एक ज्यामितीय परिप्रेक्ष्य से, इसे सामान्यीकृत स्टोक्स प्रमेय की विशेष स्तिथि के रूप में देखा जा सकता है।
कथन
बयान इस प्रकार है:
मान लीजिये U a1, ..., an बिंदुओं की एक परिमित सूची वाले जटिल तल का एक सरल रूप से जुड़ा हुआ खुला उपसमुच्चय है ,
U0 = U \ {a1, …, an},
और एक फलन f U0 पर परिभाषित और पूर्णसममितिक फलन है। मान लीजिये γ में एक बंद संशोधनीय वक्र U0 है, और γ की घुमावदार संख्या को ak के आस-पास I(γ, ak) से निरूपित करें। γ के चारों ओर f का लाइन इंटीग्रल बिंदुओं पर f के अवशेषों के योग के 2πi गुणा के बराबर है, हर किसी को उतने बार गिना जाता है जितने बार γ निम्न बिंदु पर घुमाव लेता है:
अवशिष्ट प्रमेय का स्टोक्स प्रमेय से संबंध जॉर्डन वक्र प्रमेय द्वारा दिया गया है। सामान्य समतल वक्र γ को पहले सरल बंद वक्रों {γi} के एक सम्मुच्चय में कम किया जाना चाहिए जिसका योग γ एकीकरण उद्देश्यों के लिए बराबर है; यह आंतरिक V के साथ जॉर्डन वक्र γi के साथ f dz का समाकलन ज्ञात करने की समस्या को कम करता है। f U0 = U \ {ak}पर पूर्णसममितिक होने की आवश्यकता इस कथन के बराबर है कि बाह्य व्युत्पन्न d(f dz) = 0 पर U0 है। इस प्रकार यदि U के दो तलीय क्षेत्र V और W, {ak} के समान उपसमुच्चय {aj} को घेरते हैं, तो क्षेत्र V \ W और W \ V पूरी तरह से U0 में स्थित होते हैं, और इसलिए
वास्तविक समाकलों का मूल्यांकन करने के लिए, अवशिष्ट प्रमेय का उपयोग निम्नलिखित तरीके से किया जाता है: समाकलन को जटिल तल तक विस्तारित किया जाता है और इसके अवशेषों की गणना की जाती है (जो सामान्यतः आसान होता है), और वास्तविक अक्ष का एक हिस्सा ऊपरी या निचले अर्ध समतल में एक अर्ध-चक्र संलग्न करके एक अर्धवृत्त बनाकर एक बंद वक्र तक बढ़ाया जाता है। इस वक्र पर समाकलन की गणना अवशिष्ट प्रमेय का उपयोग करके की जा सकती है। प्रायः, समाकल का अर्ध-वृत्त भाग शून्य की ओर झुक जाता है, क्योंकि अर्ध-वृत्त की त्रिज्या बढ़ती है, केवल समाकल का वास्तविक-अक्ष भाग छोड़ता है, जिसमें हम मूल रूप से रुचि रखते थे।
उदाहरण
वास्तविक अक्ष के साथ एक अभिन्न
अभिन्न
कॉची वितरण के विशिष्ट कार्य (संभावना सिद्धांत) की गणना करते समय संभाव्यता सिद्धांत में उत्पन्न होता है। यह प्रारंभिक कलन की तकनीकों का विरोध करता है लेकिन इसे समोच्च समाकलों की सीमा के रूप में व्यक्त करके मूल्यांकन किया जा सकता है।
मान लीजिए t > 0 और समोच्च C को परिभाषित करें जो वास्तविक रेखा के साथ -a से a तक जाता है और फिर 0 से -a पर केंद्रित अर्धवृत्त के साथ वामावर्त। a को 1 से a को 1 से बड़ा लें, जिससे कि काल्पनिक इकाई i वक्र के भीतर बंद हो लें, जिससे कि काल्पनिक इकाई i वक्र के भीतर बंद हो। अब समोच्च अभिन्न पर विचार करें
एक अनंत राशि
यह तथ्य कि π cot(πz) में प्रत्येक पूर्णांक पर अवशेष 1 के साथ साधारण ध्रुव होते हैं जिनका उपयोग योग की गणना के लिए किया जा सकता है
आइज़ेंस्टीन श्रृंखला का योग स्थापित करने के लिए एक ही चाल का उपयोग किया जा सकता है:
यह भी देखें
- कॉची का अभिन्न सूत्र
- ग्लासर का मास्टर प्रमेय
- जॉर्डन की लेम्मा
- समोच्च एकीकरण के तरीके
- मोरेरा की प्रमेय
- नाचबिन का प्रमेय
- अवशेष अनंत पर
- लघुगणक रूप
टिप्पणियाँ
- ↑ Whittaker & Watson 1920, p. 112, §6.1.
- ↑ Whittaker & Watson 1920, p. 125, §7.2. Note that the Bernoulli number is denoted by in Whittaker & Watson's book.
संदर्भ
- Ahlfors, Lars (1979). Complex Analysis. McGraw Hill. ISBN 0-07-085008-9.
- Lindelöf, Ernst L. (1905). Le calcul des résidus et ses applications à la théorie des fonctions (in français). Editions Jacques Gabay (published 1989). ISBN 2-87647-060-8.
- Mitrinović, Dragoslav; Kečkić, Jovan (1984). The Cauchy method of residues: Theory and applications. D. Reidel Publishing Company. ISBN 90-277-1623-4.
- Whittaker, E. T.; Watson, G. N. (1920). A Course of Modern Analysis (3rd ed.). Cambridge University Press.
बाहरी संबंध
- "Cauchy integral theorem", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Residue theorem in MathWorld