ब्लॉक आव्यूह: Difference between revisions
m (Abhishek moved page ब्लॉक मैट्रिक्स to ब्लॉक आव्यूह without leaving a redirect) |
No edit summary |
||
(15 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Matrix defined using smaller matrices called blocks}} | {{Short description|Matrix defined using smaller matrices called blocks}} | ||
गणित में, खंड मैट्रिक्स या विभाजित मैट्रिक्स एक ऐसा मैट्रिक्स होता है जिसे खंड या उपमैट्रिक्स नामक खंडों में विभाजित किया जाता है। खंड मैट्रिक्स के रूप में व्याख्या किए गए मैट्रिक्स को क्षैतिज और लंबवत रेखाओं के संग्रह के साथ मूल मैट्रिक्स के रूप में देखा जा सकता है, जो इसे छोटे मैट्रिक्स के संग्रह में विभाजित करता है, या इसे विभाजित करता है। किसी भी मैट्रिक्स को खंड मैट्रिक्स के रूप में एक या अधिक विधियों से व्याख्या किया जा सकता है, जिसमें प्रत्येक व्याख्या को परिभाषित किया जाता है कि इसकी पंक्तियों और स्तंभों को कैसे विभाजित किया जाता है। | |||
गणित में, | |||
इस धारणा | इस धारणा में मैट्रिक्स <math>M</math> को <math>n</math> द्वारा <math>m</math> के लिए <math>n</math> को एक संग्रह पंक्ति समूह मे विभाजित करके और पुनः <math>m</math><math>n</math> को एक संग्रह स्तंभसमूह द्वारा विभाजन करके सटीक बनाया जा सकता है मूल मैट्रिक्स को तब इन समूहों के स्तंभ के रूप में माना जाता है, इस अर्थ में कि मूल मैट्रिक्स <math>(i, j)</math> प्रविष्टि 1-से -1 विधि से कुछ <math>(s, t)</math>[[ ऑफसेट (कंप्यूटर विज्ञान) | ऑफसेट प्रविष्टि <math>(x,y)</math> के समान है]], जहाँ पंक्ति समूह और खंड मैट्रिक्स सामान्य रूप से मैट्रिक्स की [[श्रेणी (गणित)|श्रेणी]] में [[ द्विउत्पाद |द्विउत्पाद]] से उत्पन्न होता है।<ref>{{cite journal | last1 = Macedo | first1 = H.D. | last2 = Oliveira | first2 = J.N. | year = 2013 | title = Typing linear algebra: A biproduct-oriented approach | doi = 10.1016/j.scico.2012.07.012 | journal = Science of Computer Programming | volume = 78 | issue = 11| pages = 2160–2191 | arxiv = 1312.4818 }}</ref> | ||
* | |||
== उदाहरण == | == उदाहरण == | ||
[[File:BlockMatrix168square.png|thumb|12×12, 12×24, 24×12, और 24×24 सब- | [[File:BlockMatrix168square.png|thumb|12×12, 12×24, 24×12, और 24×24 सब-मैट्रिक्स ो के साथ एक 168×168 एलिमेंट खंड मैट्रिक्सगैर-शून्य तत्व नीले रंग में हैं, शून्य तत्व भूरा हैं।]]मैट्रिक्स | ||
:<math>\mathbf{P} = \begin{bmatrix} | :<math>\mathbf{P} = \begin{bmatrix} | ||
Line 17: | Line 15: | ||
3 & 3 & 6 & 7 | 3 & 3 & 6 & 7 | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
चार 2×2 | को चार 2×2 खंडों में विभाजित किया जा सकता है | ||
:<math> | :<math> | ||
Line 37: | Line 35: | ||
\end{bmatrix}. | \end{bmatrix}. | ||
</math> | </math> | ||
विभाजित मैट्रिक्स | तब इसे विभाजित मैट्रिक्स के रूप में लिखा जा सकता है | ||
:<math>\mathbf{P} = \begin{bmatrix} | :<math>\mathbf{P} = \begin{bmatrix} | ||
Line 45: | Line 43: | ||
== | == खंड मैट्रिक्स गुणन == | ||
एक | एक खंड विभाजित मैट्रिक्स उत्पाद का उपयोग करना संभव है जिसमें कारकों के उपमैट्रिक्स पर मात्र बीजगणित सम्मिलित है। यद्यपि कारकों का विभाजन यादृच्छिक नहीं है, और इसके लिए अनुकूल मैट्रिक्स विभाजन की आवश्यकता होती है<ref>{{cite book |last=Eves |first=Howard |author-link=Howard Eves |title=प्राथमिक मैट्रिक्स सिद्धांत|year=1980 |publisher=Dover |location=New York |isbn=0-486-63946-0 |page=[https://archive.org/details/elementarymatrix0000eves_r2m2/page/37 37] |url=https://archive.org/details/elementarymatrix0000eves_r2m2 |url-access=registration |edition=reprint |access-date=24 April 2013 |quote=A partitioning as in Theorem 1.9.4 is called a ''conformable partition'' of ''A'' and ''B''.}}</ref> जैसे कि दो मैट्रिक्स <math>A</math> और <math>B</math> के मध्य उपयोग किए जाने वाले सभी उप मैट्रिक्स उत्पादों को परिभाषित किया गया है।<ref>{{cite book |last=Anton |first=Howard |title=प्राथमिक रैखिक बीजगणित|year=1994 |publisher=John Wiley |location=New York |isbn=0-471-58742-7 |page=36 |edition=7th |quote=...provided the sizes of the submatrices of A and B are such that the indicated operations can be performed.}}</ref> | ||
:<math>\mathbf{A} = \begin{bmatrix} | :<math>\mathbf{A} = \begin{bmatrix} | ||
Line 54: | Line 52: | ||
\mathbf{A}_{q1} & \mathbf{A}_{q2} & \cdots & \mathbf{A}_{qs} | \mathbf{A}_{q1} & \mathbf{A}_{q2} & \cdots & \mathbf{A}_{qs} | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
और | और <math>\mathbf{A}</math> <math>(p \times n)</math> मैट्रिक्स <math>\mathbf{B}</math> साथ <math>s</math> पंक्ति विभाजन और <math>r</math> स्तंभ विभाजन | ||
:<math>\mathbf{B} = \begin{bmatrix} | :<math>\mathbf{B} = \begin{bmatrix} | ||
Line 62: | Line 60: | ||
\mathbf{B}_{s1} & \mathbf{B}_{s2} & \cdots &\mathbf{B}_{sr} | \mathbf{B}_{s1} & \mathbf{B}_{s2} & \cdots &\mathbf{B}_{sr} | ||
\end{bmatrix},</math> | \end{bmatrix},</math> | ||
जो | जो विभाजन के साथ संगत हैं, <math>A</math> मैट्रिक्स उत्पाद | ||
:<math> | :<math> | ||
\mathbf{C}=\mathbf{A}\mathbf{B} | \mathbf{C}=\mathbf{A}\mathbf{B} | ||
</math> | </math> | ||
उपज, | उपज, खंडवार किया जा सकता है <math>\mathbf{C}</math> के रूप में <math>(m \times n)</math> साथ मैट्रिक्स <math>q</math> पंक्ति विभाजन और <math>r</math> स्तंभ विभाजन मैट्रिक्स परिणामी में मैट्रिक्स <math>\mathbf{C}</math> गुणा करके गणना की जाती है: | ||
:<math> | :<math> | ||
\mathbf{C}_{q r} = \sum^s_{i=1}\mathbf{A}_{q i}\mathbf{B}_{i r}. | \mathbf{C}_{q r} = \sum^s_{i=1}\mathbf{A}_{q i}\mathbf{B}_{i r}. | ||
</math> | </math> | ||
या, [[ आइंस्टीन संकेतन ]] का उपयोग करते हुए, जो | या,[[ आइंस्टीन संकेतन | आइंस्टीन संकेतन]] का उपयोग करते हुए, जो पुनरावर्तित किए गए सूचकांकों पर स्पष्ट रूप से योग करता है: | ||
:<math> | :<math> | ||
Line 79: | Line 77: | ||
== | == विपरीत खंड मैट्रिक्स == | ||
{{see also|हेल्मर्ट-वुल्फ ब्लॉकिंग}} | |||
{{see also| | |||
यदि एक मैट्रिक्स को चार | यदि एक मैट्रिक्स को चार खंडों में विभाजित किया गया है, तो यह मैट्रिक्स विपरीत हो सकता है, विपरीत खंड वार इस प्रकार है: | ||
:<math>\mathbf{P} = \begin{bmatrix} | :<math>\mathbf{P} = \begin{bmatrix} | ||
Line 95: | Line 92: | ||
\end{bmatrix}, | \end{bmatrix}, | ||
</math> | </math> | ||
जहां ए और डी | जहां ए और डी यादृच्छिक आकार के वर्ग खंड हैं, और बी और सी विभाजन के लिए उनके अनुरूप हैं। | ||
इसके अतिरिक्त, A और P में A का शूर पूरक: P/A = D − CA−1B उलटा होना चाहिए। [6 समतुल्य रूप से, खंड ों को अनुमति देकर: | |||
:<math>\mathbf{P} = \begin{bmatrix} | :<math>\mathbf{P} = \begin{bmatrix} | ||
\mathbf{A} & \mathbf{B} \\ | \mathbf{A} & \mathbf{B} \\ | ||
Line 117: | Line 105: | ||
\end{bmatrix}. | \end{bmatrix}. | ||
</math> | </math> | ||
यहाँ, P में D का D और शूर पूरक: P/D = A − BD−1C विपरीत होना चाहिए | |||
यदि A और D दोनों व्युत्क्रमणीय हैं, तो: | यदि A और D दोनों व्युत्क्रमणीय हैं, तो: | ||
Line 133: | Line 121: | ||
\end{bmatrix}. | \end{bmatrix}. | ||
</math> | </math> | ||
वेनस्टाइन-एरोन्ज़जन पहचान के अनुसार, | वेनस्टाइन-एरोन्ज़जन पहचान के अनुसार,खंड -विकर्ण मैट्रिक्स में दो मैट्रिक्स में से एक वास्तव में विपरीत होता है। | ||
== | == खंड मैट्रिक्स निर्धारक== | ||
A के निर्धारक के लिए सूत्र 2 × 2 उपरोक्त 2\बार 2-मैट्रिक्स, चार सबमैट्रिसेस से बने मैट्रिक्स के लिए, उचित आगे की धारणाओं के अंतर्गत अवधारित है <math>A, B, C, D</math>. सबसे सरल ऐसा सूत्र है, जिसे लाइबनिज सूत्र या [[शूर पूरक]] से जुड़े गुणनखंड का उपयोग करके सिद्ध किया जा सकता है, | |||
:<math>\det\begin{pmatrix}A& 0\\ C& D\end{pmatrix} = \det(A) \det(D) = \det\begin{pmatrix}A& B\\ 0& D\end{pmatrix}.</math> | :<math>\det\begin{pmatrix}A& 0\\ C& D\end{pmatrix} = \det(A) \det(D) = \det\begin{pmatrix}A& B\\ 0& D\end{pmatrix}.</math> | ||
यदि <math>A</math> [[उलटा मैट्रिक्स|विपरीत]] है और इसी तरह यदि <math>D</math> विपरीत है<ref>Taboga, Marco (2021). "Determinant of a block matrix", Lectures on matrix algebra.</ref>), किसी के पास | |||
:<math>\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} = \det(A) \det\left(D - C A^{-1} B\right) .</math> | :<math>\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} = \det(A) \det\left(D - C A^{-1} B\right) .</math> | ||
यदि <math>D</math> एक है <math>1 \times 1</math> मैट्रिक्स यह सरल करता है <math>\det (A) (D - CA^{-1}B)</math>. | |||
यदिखंड समान आकार के वर्ग मैट्रिक्स हैं तो आगे के सूत्र मान्य हैं। उदाहरण के लिए, यदि <math>C</math> और <math>D</math> [[क्रमविनिमेयता]] (अर्थात , <math>CD=DC</math>), तब | |||
:<math>\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} = \det(AD - BC).</math><ref>{{Cite journal|first= J. R.|last= Silvester|title= ब्लॉक मेट्रिसेस के निर्धारक|journal= Math. Gazette|volume= 84|issue= 501|year= 2000|pages= 460–467|jstor= 3620776|url= http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/blocks.pdf|doi= 10.2307/3620776|access-date= 2021-06-25|archive-date= 2015-03-18|archive-url= https://web.archive.org/web/20150318222335/http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/blocks.pdf|url-status= dead}}</ref> | :<math>\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} = \det(AD - BC).</math><ref>{{Cite journal|first= J. R.|last= Silvester|title= ब्लॉक मेट्रिसेस के निर्धारक|journal= Math. Gazette|volume= 84|issue= 501|year= 2000|pages= 460–467|jstor= 3620776|url= http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/blocks.pdf|doi= 10.2307/3620776|access-date= 2021-06-25|archive-date= 2015-03-18|archive-url= https://web.archive.org/web/20150318222335/http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/blocks.pdf|url-status= dead}}</ref> | ||
से अधिक से बने | से अधिक से बने मैट्रिक्स के लिए इस सूत्र का सामान्यीकरण किया गया है <math>2 \times 2</math> खंड अलग-अलग खंडों के मध्य फिर से उपयुक्त क्रम विनिमेयता स्थितियों के अंतर्गत ।<ref>{{cite journal|last1=Sothanaphan|first1=Nat|title=नॉनकम्यूटिंग ब्लॉक वाले ब्लॉक मैट्रिसेस के निर्धारक|journal=Linear Algebra and Its Applications|date=January 2017|volume=512|pages=202–218|doi=10.1016/j.laa.2016.10.004|arxiv=1805.06027|s2cid=119272194}}</ref> <math>A = D </math> और <math>B=C</math>,के लिए निम्न सूत्र प्रस्तुत करता है (अतः <math>A</math> और <math>B</math> रूपान्तरित न करें) | ||
:<math>\det\begin{pmatrix}A& B\\ B& A\end{pmatrix} = \det(A - B) \det(A + B).</math> | :<math>\det\begin{pmatrix}A& B\\ B& A\end{pmatrix} = \det(A - B) \det(A + B).</math> | ||
== | == खंड विकर्ण मैट्रिक्स == | ||
खंड विकर्ण मैट्रिक्स एक खंड मैट्रिक्स है जो एक [[स्क्वायर मैट्रिक्स]] है जैसे कि मुख्य-विकर्ण खंड वर्ग मैट्रिक्स हैं और सभी बंद -विकर्ण खंड शून्य मैट्रिक्स हैं। अर्थात्, एक खंड विकर्ण मैट्रिक्स A का रूप है | |||
:<math>\mathbf{A} = \begin{bmatrix} | :<math>\mathbf{A} = \begin{bmatrix} | ||
Line 157: | Line 145: | ||
\vdots & \vdots & \ddots & \vdots \\ | \vdots & \vdots & \ddots & \vdots \\ | ||
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_n | \mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_n | ||
\end{bmatrix}</math> | \end{bmatrix}</math>जहाँ '''A'''<sub>''k''</sub> सभी k = 1, ..., n के लिए एक वर्ग मैट्रिक्स है। दूसरे शब्दों में, मैट्रिक्स A, A1, ..., An का प्रत्यक्ष योग है। इसे A1 ⊕ A2 ⊕ ... ⊕ An या (A1, A2, ..., An) के रूप में भी दर्शाया जा सकता है। किसी भी वर्ग मैट्रिक्स को मात्र एक खंड के साथ खंड विकर्ण मैट्रिक्स माना जा सकता है | ||
जहाँ | |||
निर्धारक और [[ट्रेस (रैखिक बीजगणित)]] के लिए, निम्नलिखित गुण धारण करते हैं | निर्धारक और [[ट्रेस (रैखिक बीजगणित)]] के लिए, निम्नलिखित गुण धारण करते हैं | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\det\mathbf{A} &= \det\mathbf{A}_1 \times \cdots \times \det\mathbf{A}_n, \\ | \det\mathbf{A} &= \det\mathbf{A}_1 \times \cdots \times \det\mathbf{A}_n, \\ | ||
\operatorname{tr}\mathbf{A} &= \operatorname{tr} \mathbf{A}_1 + \cdots + \operatorname{tr} \mathbf{A}_n.\end{align}</math> | \operatorname{tr}\mathbf{A} &= \operatorname{tr} \mathbf{A}_1 + \cdots + \operatorname{tr} \mathbf{A}_n.\end{align}</math> | ||
एक | एक खंड विकर्ण मैट्रिक्स व्युत्क्रमणीय है यदि इसके प्रत्येक मुख्य-विकर्ण खंड व्युत्क्रमणीय हैं, और इस विषयो में इसका व्युत्क्रम एक अन्य खंड विकर्ण मैट्रिक्स द्वारा दिया गया है | ||
:<math>\begin{bmatrix} | :<math>\begin{bmatrix} | ||
\mathbf{A}_{1} & \mathbf{0} & \cdots & \mathbf{0} \\ | \mathbf{A}_{1} & \mathbf{0} & \cdots & \mathbf{0} \\ | ||
Line 177: | Line 163: | ||
\end{bmatrix}. | \end{bmatrix}. | ||
</math> | </math> | ||
आइगेनवैल्यूज़ और आइगेनवेक्टर्स <math>\mathbf{A}</math> बस उन्हीं में से <math>\mathbf{A}_k</math>s के संयुक्त हैं। | |||
== | == त्रिविकर्णिक मैट्रिक्स का खंड करे == | ||
एक | एक खंड त्रिविकर्णिक मैट्रिक्स अन्य विशेष खंड मैट्रिक्स है, जो खंड विकर्ण मैट्रिक्स की तरह एक वर्ग मैट्रिक्स है, जिसमें निचले विकर्ण, [[मुख्य विकर्ण]] और ऊपरी विकर्ण में वर्ग मैट्रिक्स खंड होते हैं, अन्य सभी खंड शून्य मैट्रिक्स होते हैं। यह अनिवार्य रूप से एक [[त्रिकोणीय मैट्रिक्स]] है, परंतु स्केलर के स्थानों में उपमैट्रिक्स हैं। एक खंड त्रिविकर्णिक मैट्रिक्स A का रूप है | ||
:<math>\mathbf{A} = \begin{bmatrix} | :<math>\mathbf{A} = \begin{bmatrix} | ||
Line 191: | Line 177: | ||
\mathbf{0} & & \cdots & & & \mathbf{A}_{n} & \mathbf{B}_{n} | \mathbf{0} & & \cdots & & & \mathbf{A}_{n} & \mathbf{B}_{n} | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
जहाँ | जहाँ A<sub>''k''</sub>, B<sub>''k''</sub> और C<sub>''k''</sub> क्रमशः निचले, मुख्य और ऊपरी विकर्ण के वर्ग उप-मैट्रिक्स हैं। | ||
अभियांत्रिकी समस्याओं के संख्यात्मक समाधान में खंड त्रिविकर्णिक मैट्रिक्स का प्रायः सामना किया जाता है। LU गुणन के लिए अनुकूलित संख्यात्मक विधि उपलब्ध हैं और इसलिए गुणांक मैट्रिक्स के रूप में एक खंड त्रिविकर्णिक मैट्रिक्स के साथ समीकरण प्रणालियों के लिए कुशल समाधान [[थॉमस एल्गोरिथम|कलन विधि]] त्रिविकर्णिक मैट्रिक्स को सम्मिलित करने वाले समीकरण प्रणालियों के कुशल समाधान के लिए उपयोग किए जाने वाले [[थॉमस एल्गोरिथम|थॉमस कलन विधि]] को त्रिविकर्णिक मैट्रिक्स को खंड करने के लिए मैट्रिक्स संक्रियाओ का उपयोग करके भी लागू किया जा सकता है। | |||
== | == खंड [[टोप्लिट्ज मैट्रिक्स]] == | ||
एक | एक खंड [[टोप्लिट्ज मैट्रिक्स|टोप्लिट्ज]] मैट्रिक्स एक अन्य विशेषखंड मैट्रिक्स है, जिसमें ऐसे खंड होते हैं जो मैट्रिक्स के विकर्णों के नीचे पुनरावर्तित किए जाते हैं, क्योंकि [[टोप्लिट्ज मैट्रिक्स|टोप्लिट्ज]] मैट्रिक्स में विकर्ण के नीचे पुनरावर्तित किए गए तत्व होते हैं। | ||
एक | एक खंड [[टोप्लिट्ज मैट्रिक्स|टोप्लिट्ज]] मैट्रिक्स A का रूप है | ||
:<math>\mathbf{A} = \begin{bmatrix} | :<math>\mathbf{A} = \begin{bmatrix} | ||
Line 211: | Line 197: | ||
== | == खंड [[खिसकाना|स्थानान्तरण]] == | ||
खंड मैट्रिसेस के लिए मैट्रिक्स ट्रांज़ोज़ का एक विशेष रूप भी परिभाषित किया जा सकता है, जहां अलग-अलग खंडों को पुनः व्यवस्थित किया जाता है परंतु स्थानांतरित नहीं किया जाता है। <math>A=(B_{ij})</math> एक हो <math>k \times l</math> खंड मैट्रिक्स के साथ <math>m \times n</math> खंडों <math>B_{ij}</math>, का खंड स्थानान्तरण <math>A</math> है <math>l \times k</math> खंड मैट्रिक्स <math>A^\mathcal{B}</math> साथ <math>m \times n</math> खंडों <math>\left(A^\mathcal{B}\right)_{ij} = B_{ji}</math>.<ref>{{cite thesis |last=Mackey |first=D. Steven |date=2006 |title=मैट्रिक्स बहुपदों के लिए संरचित रैखिककरण|publisher=University of Manchester |issn=1749-9097 |oclc=930686781 |url=http://eprints.maths.manchester.ac.uk/314/1/mackey06.pdf}}</ref>पारंपरिक अनुरेख संचालक के साथ,खंड स्थानान्तरण एक रेखीय मानचित्रण है जैसे कि <math>(A + C)^\mathcal{B} = A^\mathcal{B} + C^\mathcal{B} </math>.सामान्यतः विभव <math>(A C)^\mathcal{B} = C^\mathcal{B} A^\mathcal{B} </math> के खंड जब तक <math>A</math> और <math>C</math> आवागमन के लिए नियन्त्रित नहीं है । | |||
पारंपरिक | |||
== प्रत्यक्ष योग == | == प्रत्यक्ष योग == | ||
किसी भी यादृच्छिक मैट्रिक्स A (आकार ''m'' ×''n'') और B (आकार ''p'' × ''q'') के लिए, हमारे पास A और B का प्रत्यक्ष योग है, जिसे इसके द्वारा दर्शाया गया है ए<math>\oplus</math>बी और के रूप में परिभाषित किया गया है | |||
किसी भी | |||
:<math> | :<math> | ||
Line 248: | Line 232: | ||
\end{bmatrix}. | \end{bmatrix}. | ||
</math> | </math> | ||
यह | यह संक्रिया स्वाभाविक रूप से यादृच्छिक आयामी सरणियों के लिए सामान्यीकृत करता है (बशर्ते ए और बी में समान संख्या में आयाम हों)। | ||
ध्यान दें कि मैट्रिक्स के दो वेक्टर रिक्त स्थान के वेक्टर रिक्त स्थान के प्रत्यक्ष योग में किसी भी तत्व को दो मैट्रिक्स के प्रत्यक्ष योग के रूप में दर्शाया जा सकता है। | ध्यान दें कि मैट्रिक्स के दो वेक्टर रिक्त स्थान के वेक्टर रिक्त स्थान के प्रत्यक्ष योग में किसी भी तत्व को दो मैट्रिक्स के प्रत्यक्ष योग के रूप में दर्शाया जा सकता है। | ||
== | == अनुप्रयोग == | ||
रेखीय बीजगणित के संदर्भ में, एक | रेखीय बीजगणित के संदर्भ में, एक खंड मैट्रिक्स का उपयोग आधार सदिशों के संबंधित 'बंच' के संदर्भ में एक रेखीय मानचित्रण के विचार से मेल खाता है। वह फिर से डोमेन और श्रेणी के विशिष्ट प्रत्यक्ष योग अपघटन के विचार से मेल खाता है। यदि खंड [[शून्य मैट्रिक्स]] है तो यह विशेष रूप से सदैव महत्वपूर्ण होता है; जो उस जानकारी को वहन करता है जो एक मानचित्र के उपयोग में करता है। | ||
रैखिक मानचित्रण और प्रत्यक्ष योग के माध्यम से व्याख्या को देखते हुए, एक विशेष प्रकार का खंड मैट्रिक्स होता है जो वर्ग मैट्रिसेस (स्थिति m = n) के लिए होता है। | |||
उन लोगों के लिए हम एक n-विमितीय स्थान V के अंतःरूपांतरण में एक व्याख्या मान सकते हैं; खंड संरचना जिसमें पंक्तियों और स्तंभों का बंचिंग समान है, महत्वपूर्ण है क्योंकि यह वी (दो के बजाय) पर एक प्रत्यक्ष योग अपघटन होने के अनुरूप है। उदाहरण के लिए, स्पष्ट अर्थों में सभी [[विकर्ण]] खंड वर्ग हैं। जॉर्डन के सामान्य रूप का वर्णन करने के लिए इस प्रकार की संरचना की आवश्यकता होती है। | |||
इस तकनीक का उपयोग [[वीएलएसआई]] चिप | इस तकनीक का उपयोग [[वीएलएसआई]] चिप प्रारूप सहित मैट्रिक्स कॉलम-पंक्ति विस्तार और कई [[कंप्यूटर विज्ञान]] अनुप्रयोग की गणना में कटौती करने के लिए किया जाता है। एक उदाहरण तेज [[मैट्रिक्स गुणन]] के लिए [[सड़क एल्गोरिथ्म|सड़क]] विधिकालन है, साथ ही डेटा प्रसारण में त्रुटि का पता लगाने और पुनर्प्राप्ति के लिए हैमिंग (7,4) संकेतन है। | ||
तकनीक का उपयोग वहां भी किया जा सकता है जहां | तकनीक का उपयोग वहां भी किया जा सकता है जहां A, B, C और D मैट्रिक्स के तत्वों के लिए समान क्षेत्र की आवश्यकता नहीं होती है। उदाहरण के लिए, मैट्रिक्स A जटिल संख्याओं के क्षेत्र में हो सकता है, जबकि मैट्रिक्स D वास्तविक संख्याओं के क्षेत्र में हो सकता है। यह एक मेट्रिसेस के अंदर संचालन को सरल करते हुए, मैट्रिसेस से जुड़े वैध संचालन को जन्म दे सकता है। उदाहरण के लिए, यदि D में एक मात्र वास्तविक तत्व हैं, तो इसके व्युत्क्रम को खोजने में जटिल तत्वों पर विचार करने के सापेक्ष में कम गणना होती है। लेकिन वास्तविक जटिल संख्याओं का एक उपक्षेत्र है (आगे इसे एक प्रक्षेपण माना जा सकता है), इसलिए मेट्रिसेस संचालन को अच्छी तरह से परिभाषित किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[क्रोनकर उत्पाद]] | * [[क्रोनकर उत्पाद]] मैट्रिक्स प्रत्यक्ष उत्पाद जिसके परिणाम स्वरूप खंड मैट्रिक्स होता है | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 273: | Line 259: | ||
{{Linear algebra}} | {{Linear algebra}} | ||
{{Matrix classes}} | {{Matrix classes}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Collapse templates]] | |||
[[Category:Created On 17/03/2023]] | [[Category:Created On 17/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:मैट्रिसेस]] | |||
[[Category:विरल मेट्रिसेस]] |
Latest revision as of 21:21, 17 April 2023
गणित में, खंड मैट्रिक्स या विभाजित मैट्रिक्स एक ऐसा मैट्रिक्स होता है जिसे खंड या उपमैट्रिक्स नामक खंडों में विभाजित किया जाता है। खंड मैट्रिक्स के रूप में व्याख्या किए गए मैट्रिक्स को क्षैतिज और लंबवत रेखाओं के संग्रह के साथ मूल मैट्रिक्स के रूप में देखा जा सकता है, जो इसे छोटे मैट्रिक्स के संग्रह में विभाजित करता है, या इसे विभाजित करता है। किसी भी मैट्रिक्स को खंड मैट्रिक्स के रूप में एक या अधिक विधियों से व्याख्या किया जा सकता है, जिसमें प्रत्येक व्याख्या को परिभाषित किया जाता है कि इसकी पंक्तियों और स्तंभों को कैसे विभाजित किया जाता है।
इस धारणा में मैट्रिक्स को द्वारा के लिए को एक संग्रह पंक्ति समूह मे विभाजित करके और पुनः को एक संग्रह स्तंभसमूह द्वारा विभाजन करके सटीक बनाया जा सकता है मूल मैट्रिक्स को तब इन समूहों के स्तंभ के रूप में माना जाता है, इस अर्थ में कि मूल मैट्रिक्स प्रविष्टि 1-से -1 विधि से कुछ ऑफसेट प्रविष्टि के समान है, जहाँ पंक्ति समूह और खंड मैट्रिक्स सामान्य रूप से मैट्रिक्स की श्रेणी में द्विउत्पाद से उत्पन्न होता है।[1]
उदाहरण
मैट्रिक्स
को चार 2×2 खंडों में विभाजित किया जा सकता है
तब इसे विभाजित मैट्रिक्स के रूप में लिखा जा सकता है
खंड मैट्रिक्स गुणन
एक खंड विभाजित मैट्रिक्स उत्पाद का उपयोग करना संभव है जिसमें कारकों के उपमैट्रिक्स पर मात्र बीजगणित सम्मिलित है। यद्यपि कारकों का विभाजन यादृच्छिक नहीं है, और इसके लिए अनुकूल मैट्रिक्स विभाजन की आवश्यकता होती है[2] जैसे कि दो मैट्रिक्स और के मध्य उपयोग किए जाने वाले सभी उप मैट्रिक्स उत्पादों को परिभाषित किया गया है।[3]
और मैट्रिक्स साथ पंक्ति विभाजन और स्तंभ विभाजन
जो विभाजन के साथ संगत हैं, मैट्रिक्स उत्पाद
उपज, खंडवार किया जा सकता है के रूप में साथ मैट्रिक्स पंक्ति विभाजन और स्तंभ विभाजन मैट्रिक्स परिणामी में मैट्रिक्स गुणा करके गणना की जाती है:
या, आइंस्टीन संकेतन का उपयोग करते हुए, जो पुनरावर्तित किए गए सूचकांकों पर स्पष्ट रूप से योग करता है:
विपरीत खंड मैट्रिक्स
यदि एक मैट्रिक्स को चार खंडों में विभाजित किया गया है, तो यह मैट्रिक्स विपरीत हो सकता है, विपरीत खंड वार इस प्रकार है:
जहां ए और डी यादृच्छिक आकार के वर्ग खंड हैं, और बी और सी विभाजन के लिए उनके अनुरूप हैं।
इसके अतिरिक्त, A और P में A का शूर पूरक: P/A = D − CA−1B उलटा होना चाहिए। [6 समतुल्य रूप से, खंड ों को अनुमति देकर:
यहाँ, P में D का D और शूर पूरक: P/D = A − BD−1C विपरीत होना चाहिए
यदि A और D दोनों व्युत्क्रमणीय हैं, तो:
वेनस्टाइन-एरोन्ज़जन पहचान के अनुसार,खंड -विकर्ण मैट्रिक्स में दो मैट्रिक्स में से एक वास्तव में विपरीत होता है।
खंड मैट्रिक्स निर्धारक
A के निर्धारक के लिए सूत्र 2 × 2 उपरोक्त 2\बार 2-मैट्रिक्स, चार सबमैट्रिसेस से बने मैट्रिक्स के लिए, उचित आगे की धारणाओं के अंतर्गत अवधारित है . सबसे सरल ऐसा सूत्र है, जिसे लाइबनिज सूत्र या शूर पूरक से जुड़े गुणनखंड का उपयोग करके सिद्ध किया जा सकता है,
यदि विपरीत है और इसी तरह यदि विपरीत है[4]), किसी के पास
यदि एक है मैट्रिक्स यह सरल करता है .
यदिखंड समान आकार के वर्ग मैट्रिक्स हैं तो आगे के सूत्र मान्य हैं। उदाहरण के लिए, यदि और क्रमविनिमेयता (अर्थात , ), तब
से अधिक से बने मैट्रिक्स के लिए इस सूत्र का सामान्यीकरण किया गया है खंड अलग-अलग खंडों के मध्य फिर से उपयुक्त क्रम विनिमेयता स्थितियों के अंतर्गत ।[6] और ,के लिए निम्न सूत्र प्रस्तुत करता है (अतः और रूपान्तरित न करें)
खंड विकर्ण मैट्रिक्स
खंड विकर्ण मैट्रिक्स एक खंड मैट्रिक्स है जो एक स्क्वायर मैट्रिक्स है जैसे कि मुख्य-विकर्ण खंड वर्ग मैट्रिक्स हैं और सभी बंद -विकर्ण खंड शून्य मैट्रिक्स हैं। अर्थात्, एक खंड विकर्ण मैट्रिक्स A का रूप है
- जहाँ Ak सभी k = 1, ..., n के लिए एक वर्ग मैट्रिक्स है। दूसरे शब्दों में, मैट्रिक्स A, A1, ..., An का प्रत्यक्ष योग है। इसे A1 ⊕ A2 ⊕ ... ⊕ An या (A1, A2, ..., An) के रूप में भी दर्शाया जा सकता है। किसी भी वर्ग मैट्रिक्स को मात्र एक खंड के साथ खंड विकर्ण मैट्रिक्स माना जा सकता है
निर्धारक और ट्रेस (रैखिक बीजगणित) के लिए, निम्नलिखित गुण धारण करते हैं
एक खंड विकर्ण मैट्रिक्स व्युत्क्रमणीय है यदि इसके प्रत्येक मुख्य-विकर्ण खंड व्युत्क्रमणीय हैं, और इस विषयो में इसका व्युत्क्रम एक अन्य खंड विकर्ण मैट्रिक्स द्वारा दिया गया है
आइगेनवैल्यूज़ और आइगेनवेक्टर्स बस उन्हीं में से s के संयुक्त हैं।
त्रिविकर्णिक मैट्रिक्स का खंड करे
एक खंड त्रिविकर्णिक मैट्रिक्स अन्य विशेष खंड मैट्रिक्स है, जो खंड विकर्ण मैट्रिक्स की तरह एक वर्ग मैट्रिक्स है, जिसमें निचले विकर्ण, मुख्य विकर्ण और ऊपरी विकर्ण में वर्ग मैट्रिक्स खंड होते हैं, अन्य सभी खंड शून्य मैट्रिक्स होते हैं। यह अनिवार्य रूप से एक त्रिकोणीय मैट्रिक्स है, परंतु स्केलर के स्थानों में उपमैट्रिक्स हैं। एक खंड त्रिविकर्णिक मैट्रिक्स A का रूप है
जहाँ Ak, Bk और Ck क्रमशः निचले, मुख्य और ऊपरी विकर्ण के वर्ग उप-मैट्रिक्स हैं।
अभियांत्रिकी समस्याओं के संख्यात्मक समाधान में खंड त्रिविकर्णिक मैट्रिक्स का प्रायः सामना किया जाता है। LU गुणन के लिए अनुकूलित संख्यात्मक विधि उपलब्ध हैं और इसलिए गुणांक मैट्रिक्स के रूप में एक खंड त्रिविकर्णिक मैट्रिक्स के साथ समीकरण प्रणालियों के लिए कुशल समाधान कलन विधि त्रिविकर्णिक मैट्रिक्स को सम्मिलित करने वाले समीकरण प्रणालियों के कुशल समाधान के लिए उपयोग किए जाने वाले थॉमस कलन विधि को त्रिविकर्णिक मैट्रिक्स को खंड करने के लिए मैट्रिक्स संक्रियाओ का उपयोग करके भी लागू किया जा सकता है।
खंड टोप्लिट्ज मैट्रिक्स
एक खंड टोप्लिट्ज मैट्रिक्स एक अन्य विशेषखंड मैट्रिक्स है, जिसमें ऐसे खंड होते हैं जो मैट्रिक्स के विकर्णों के नीचे पुनरावर्तित किए जाते हैं, क्योंकि टोप्लिट्ज मैट्रिक्स में विकर्ण के नीचे पुनरावर्तित किए गए तत्व होते हैं।
एक खंड टोप्लिट्ज मैट्रिक्स A का रूप है
खंड स्थानान्तरण
खंड मैट्रिसेस के लिए मैट्रिक्स ट्रांज़ोज़ का एक विशेष रूप भी परिभाषित किया जा सकता है, जहां अलग-अलग खंडों को पुनः व्यवस्थित किया जाता है परंतु स्थानांतरित नहीं किया जाता है। एक हो खंड मैट्रिक्स के साथ खंडों , का खंड स्थानान्तरण है खंड मैट्रिक्स साथ खंडों .[7]पारंपरिक अनुरेख संचालक के साथ,खंड स्थानान्तरण एक रेखीय मानचित्रण है जैसे कि .सामान्यतः विभव के खंड जब तक और आवागमन के लिए नियन्त्रित नहीं है ।
प्रत्यक्ष योग
किसी भी यादृच्छिक मैट्रिक्स A (आकार m ×n) और B (आकार p × q) के लिए, हमारे पास A और B का प्रत्यक्ष योग है, जिसे इसके द्वारा दर्शाया गया है एबी और के रूप में परिभाषित किया गया है
उदाहरण के लिए,
यह संक्रिया स्वाभाविक रूप से यादृच्छिक आयामी सरणियों के लिए सामान्यीकृत करता है (बशर्ते ए और बी में समान संख्या में आयाम हों)।
ध्यान दें कि मैट्रिक्स के दो वेक्टर रिक्त स्थान के वेक्टर रिक्त स्थान के प्रत्यक्ष योग में किसी भी तत्व को दो मैट्रिक्स के प्रत्यक्ष योग के रूप में दर्शाया जा सकता है।
अनुप्रयोग
रेखीय बीजगणित के संदर्भ में, एक खंड मैट्रिक्स का उपयोग आधार सदिशों के संबंधित 'बंच' के संदर्भ में एक रेखीय मानचित्रण के विचार से मेल खाता है। वह फिर से डोमेन और श्रेणी के विशिष्ट प्रत्यक्ष योग अपघटन के विचार से मेल खाता है। यदि खंड शून्य मैट्रिक्स है तो यह विशेष रूप से सदैव महत्वपूर्ण होता है; जो उस जानकारी को वहन करता है जो एक मानचित्र के उपयोग में करता है।
रैखिक मानचित्रण और प्रत्यक्ष योग के माध्यम से व्याख्या को देखते हुए, एक विशेष प्रकार का खंड मैट्रिक्स होता है जो वर्ग मैट्रिसेस (स्थिति m = n) के लिए होता है।
उन लोगों के लिए हम एक n-विमितीय स्थान V के अंतःरूपांतरण में एक व्याख्या मान सकते हैं; खंड संरचना जिसमें पंक्तियों और स्तंभों का बंचिंग समान है, महत्वपूर्ण है क्योंकि यह वी (दो के बजाय) पर एक प्रत्यक्ष योग अपघटन होने के अनुरूप है। उदाहरण के लिए, स्पष्ट अर्थों में सभी विकर्ण खंड वर्ग हैं। जॉर्डन के सामान्य रूप का वर्णन करने के लिए इस प्रकार की संरचना की आवश्यकता होती है।
इस तकनीक का उपयोग वीएलएसआई चिप प्रारूप सहित मैट्रिक्स कॉलम-पंक्ति विस्तार और कई कंप्यूटर विज्ञान अनुप्रयोग की गणना में कटौती करने के लिए किया जाता है। एक उदाहरण तेज मैट्रिक्स गुणन के लिए सड़क विधिकालन है, साथ ही डेटा प्रसारण में त्रुटि का पता लगाने और पुनर्प्राप्ति के लिए हैमिंग (7,4) संकेतन है।
तकनीक का उपयोग वहां भी किया जा सकता है जहां A, B, C और D मैट्रिक्स के तत्वों के लिए समान क्षेत्र की आवश्यकता नहीं होती है। उदाहरण के लिए, मैट्रिक्स A जटिल संख्याओं के क्षेत्र में हो सकता है, जबकि मैट्रिक्स D वास्तविक संख्याओं के क्षेत्र में हो सकता है। यह एक मेट्रिसेस के अंदर संचालन को सरल करते हुए, मैट्रिसेस से जुड़े वैध संचालन को जन्म दे सकता है। उदाहरण के लिए, यदि D में एक मात्र वास्तविक तत्व हैं, तो इसके व्युत्क्रम को खोजने में जटिल तत्वों पर विचार करने के सापेक्ष में कम गणना होती है। लेकिन वास्तविक जटिल संख्याओं का एक उपक्षेत्र है (आगे इसे एक प्रक्षेपण माना जा सकता है), इसलिए मेट्रिसेस संचालन को अच्छी तरह से परिभाषित किया जा सकता है।
यह भी देखें
- क्रोनकर उत्पाद मैट्रिक्स प्रत्यक्ष उत्पाद जिसके परिणाम स्वरूप खंड मैट्रिक्स होता है
टिप्पणियाँ
- ↑ Macedo, H.D.; Oliveira, J.N. (2013). "Typing linear algebra: A biproduct-oriented approach". Science of Computer Programming. 78 (11): 2160–2191. arXiv:1312.4818. doi:10.1016/j.scico.2012.07.012.
- ↑ Eves, Howard (1980). प्राथमिक मैट्रिक्स सिद्धांत (reprint ed.). New York: Dover. p. 37. ISBN 0-486-63946-0. Retrieved 24 April 2013.
A partitioning as in Theorem 1.9.4 is called a conformable partition of A and B.
- ↑ Anton, Howard (1994). प्राथमिक रैखिक बीजगणित (7th ed.). New York: John Wiley. p. 36. ISBN 0-471-58742-7.
...provided the sizes of the submatrices of A and B are such that the indicated operations can be performed.
- ↑ Taboga, Marco (2021). "Determinant of a block matrix", Lectures on matrix algebra.
- ↑ Silvester, J. R. (2000). "ब्लॉक मेट्रिसेस के निर्धारक" (PDF). Math. Gazette. 84 (501): 460–467. doi:10.2307/3620776. JSTOR 3620776. Archived from the original (PDF) on 2015-03-18. Retrieved 2021-06-25.
- ↑ Sothanaphan, Nat (January 2017). "नॉनकम्यूटिंग ब्लॉक वाले ब्लॉक मैट्रिसेस के निर्धारक". Linear Algebra and Its Applications. 512: 202–218. arXiv:1805.06027. doi:10.1016/j.laa.2016.10.004. S2CID 119272194.
- ↑ Mackey, D. Steven (2006). मैट्रिक्स बहुपदों के लिए संरचित रैखिककरण (PDF) (Thesis). University of Manchester. ISSN 1749-9097. OCLC 930686781.
संदर्भ
- Strang, Gilbert (1999). "Lecture 3: Multiplication and inverse matrices". MIT Open Course ware. 18:30–21:10.