परमाणु जांच: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Field ion microscope coupled with a mass spectrometer}}
{{Short description|Field ion microscope coupled with a mass spectrometer}}
[[Image:Atomprobe 00 as-prepared Cu-NiFe-W01.jpg|thumb|परमाणु जांच से प्राप्त आंकड़ों का दृश्य, प्रत्येक बिंदु पता लगाए गए वाष्पित आयनों से पुनर्निर्मित परमाणु स्थिति का प्रतिनिधित्व करता है।]]1967 में [http://www.fieldemission.org/article.php?id=proceeding 14वें क्षेत्र उत्सर्जन संगोष्ठी]  में इरविन विल्हेम मुलर और जे. ए. पैनिट्ज द्वारा परमाणु जांच की प्रारंभ की गई थी। इसने [[क्षेत्र आयन माइक्रोस्कोप]] को द्रव्यमान स्पेक्ट्रोमीटर के साथ जोड़ा जिसमें कण का पता लगाने की क्षमता थी और पहली बार, उपकरण "... धातु की सतह पर देखे गए एकल परमाणु की प्रकृति का निर्धारण कर सकता था और पर्यवेक्षक के विवेक पर पड़ोसी परमाणुओं से चुना गया था”।<ref>{{cite journal|last1=Müller|first1=Erwin W.|author-link1=Erwin Wilhelm Müller|author-link2=J. A. Panitz|last2=Panitz|first2=John A.|author-link3=S. Brooks McLane|last3=McLane|first3=S. Brooks|year=1968|title=एटम-प्रोब फील्ड आयन माइक्रोस्कोप|journal=Review of Scientific Instruments|volume=39|issue=1|pages=83–86|issn=0034-6748|doi=10.1063/1.1683116|bibcode = 1968RScI...39...83M }}</ref>
[[Image:Atomprobe 00 as-prepared Cu-NiFe-W01.jpg|thumb|परमाणु जांच से प्राप्त आंकड़ों का दृश्य, प्रत्येक बिंदु पता लगाए गए वाष्पित आयनों से पुनर्निर्मित परमाणु स्थिति का प्रतिनिधित्व करता है।]]1967 में [http://www.fieldemission.org/article.php?id=proceeding 14वें क्षेत्र उत्सर्जन संगोष्ठी]  में इरविन विल्हेम मुलर और जे. ए. पैनिट्ज द्वारा परमाणु जांच की प्रारंभ की गई थी। इसने [[क्षेत्र आयन माइक्रोस्कोप]] को द्रव्यमान स्पेक्ट्रोमीटर के साथ जोड़ा जिसमें कण का पता लगाने की क्षमता थी और पहली बार, उपकरण "... धातु की सतह पर देखे गए एकल परमाणु की प्रकृति का निर्धारण कर सकता था और पर्यवेक्षक के विवेक पर पड़ोसी परमाणुओं से चुना गया था”।<ref>{{cite journal|last1=Müller|first1=Erwin W.|author-link1=Erwin Wilhelm Müller|author-link2=J. A. Panitz|last2=Panitz|first2=John A.|author-link3=S. Brooks McLane|last3=McLane|first3=S. Brooks|year=1968|title=एटम-प्रोब फील्ड आयन माइक्रोस्कोप|journal=Review of Scientific Instruments|volume=39|issue=1|pages=83–86|issn=0034-6748|doi=10.1063/1.1683116|bibcode = 1968RScI...39...83M }}</ref>
परमाणु जांच पारंपरिक ऑप्टिकल या [[इलेक्ट्रॉन सूक्ष्मदर्शी]] के विपरीत होती है, जिसमें आवर्धन प्रभाव विकिरण पथों के हेरफेर के अतिरिक्त अत्यधिक घुमावदार विद्युत क्षेत्र द्वारा प्रदान किए गए आवर्धन से आता है। यह विधि एक मानक सतह से आयनों को निकालने के लिए प्रकृति में विनाशकारी है और उन्हें अलग-अलग परमाणुओं का निरीक्षण करने के लिए पर्याप्त आवर्धन उत्पन्न करने के लिए पहचानती है क्योंकि वे मानक सतह से हटा दिए जाते हैं। [[टाइम-ऑफ-फ्लाइट मास स्पेक्ट्रोमेट्री]] के साथ इस आवर्धन विधि के युग्मन के माध्यम से, विद्युत पल्स के अनुप्रयोग द्वारा वाष्पित आयनों के द्रव्यमान-से-आवेश अनुपात की गणना की जा सकती है।<ref name="Müller70">{{cite journal|author=Müller, E. W. |title=एटम-प्रोब फील्ड आयन माइक्रोस्कोप|series=Naturwissenschaften|year=1970|volume=5|pages=222–230}}</ref>
परमाणु जांच पारंपरिक ऑप्टिकल या [[इलेक्ट्रॉन सूक्ष्मदर्शी]] के विपरीत होती है, जिसमें आवर्धन प्रभाव विकिरण पथों के हेरफेर के अतिरिक्त अत्यधिक घुमावदार विद्युत क्षेत्र द्वारा प्रदान किए गए आवर्धन से आता है। यह विधि एक मानक सतह से आयनों को निकालने के लिए प्रकृति में विनाशकारी है और उन्हें भिन्न-भिन्न परमाणुओं का निरीक्षण करने के लिए पर्याप्त आवर्धन उत्पन्न करने के लिए पहचानती है क्योंकि वे मानक सतह से हटा दिए जाते हैं। [[टाइम-ऑफ-फ्लाइट मास स्पेक्ट्रोमेट्री]] के साथ इस आवर्धन विधि के युग्मन के माध्यम से, विद्युत पल्स के अनुप्रयोग द्वारा वाष्पित आयनों के द्रव्यमान-से-आवेश अनुपात की गणना की जा सकती है।<ref name="Müller70">{{cite journal|author=Müller, E. W. |title=एटम-प्रोब फील्ड आयन माइक्रोस्कोप|series=Naturwissenschaften|year=1970|volume=5|pages=222–230}}</ref>


सामग्री के क्रमिक वाष्पीकरण के माध्यम से, परमाणुओं की परतों को नमूने से हटा दिया जाता है, जिससे न केवल सतह की जांच की जा सकती है, किन्तु सामग्री के माध्यम से भी जांच की जा सकती है।
सामग्री के क्रमिक वाष्पीकरण के माध्यम से, परमाणुओं की परतों को नमूने से हटा दिया जाता है, जिससे न केवल सतह की जांच की जा सकती है, किन्तु सामग्री के माध्यम से भी जांच की जा सकती है।
 
<ref name="MillerSmith">{{cite book|title=Atom Probe Microanalysis: Principles and Applications to Materials Problems|year=1989|publisher=Materials Research Society|author=Miller, M |author2=Smith, G.|isbn=978-0-931837-99-9}}</ref> Computer methods are used to rebuild a three-dimensional view of the sample, prior to it being evaporated, providing atomic scale information on the structure of a sample, as well as providing the type atomic species information.<ref name=Miller>{{cite book|author=Miller, M.|title=Atom Probe Tomography: Analysis at the Atomic Level |publisher=Kluwer Academic/Plenum Publishers|year=2000|isbn=978-0-306-46415-7}}</ref>
== अवलोकन ==
== अवलोकन ==
[[चुंबकीय लेंस]] के माध्यम से लेंस के प्रत्यक्ष उपयोग के विपरीत परिणामी आवर्धन को प्रेरित करने के लिए परमाणु जांच के मानकों को अत्यधिक घुमावदार विद्युत क्षमता प्रदान करने के लिए आकार दिया गया है। इसके अतिरिक्त, सामान्य ऑपरेशन में (क्षेत्र आयनीकरण मोड के विपरीत) परमाणु जांच नमूने की जांच के लिए द्वितीयक स्रोत का उपयोग नहीं करती है। किन्तु, नमूने को नियंत्रित विधि से वाष्पित (क्षेत्र वाष्पीकरण) किया जाता है और वाष्पित आयनों को डिटेक्टर पर प्रभावित किया जाता है, जो सामान्यतः 10 से 100 सेमी दूर होता है।
[[चुंबकीय लेंस]] के माध्यम से लेंस के प्रत्यक्ष उपयोग के विपरीत परिणामी आवर्धन को प्रेरित करने के लिए परमाणु जांच के मानकों को अत्यधिक घुमावदार विद्युत क्षमता प्रदान करने के लिए आकार दिया गया है। इसके अतिरिक्त, सामान्य ऑपरेशन में (क्षेत्र आयनीकरण मोड के विपरीत) परमाणु जांच नमूने की जांच के लिए द्वितीयक स्रोत का उपयोग नहीं करती है। किन्तु, नमूने को नियंत्रित विधि से वाष्पित (क्षेत्र वाष्पीकरण) किया जाता है और वाष्पित आयनों को डिटेक्टर पर प्रभावित किया जाता है, जो सामान्यतः 10 से 100 सेमी दूर होता है।


नमूनों के लिए एक नीडल ज्यामिति की आवश्यकता होती है और वे TEM नमूना तैयारी इलेक्ट्रोपोलिसिंग, या केंद्रित आयन बीम विधियों के समान तकनीकों द्वारा निर्मित होते हैं। 2006 के बाद से, लेजर स्पंदन के साथ वाणिज्यिक प्रणालियां उपलब्ध हो गई हैं और इसने केवल धातु के नमूनों से सेमीकंडक्टिंग, सिरेमिक जैसे इन्सुलेटिंग और यहां तक ​​कि भूवैज्ञानिक सामग्री में अनुप्रयोगों का विस्तार किया है। 100 एनएम के आदेश पर त्रिज्या के साथ एक उच्च विद्युत क्षेत्र को प्रेरित करने के लिए पर्याप्त टिप त्रिज्या का निर्माण करने के लिए अक्सर तैयारी की जाती है।
मानकों के लिए एक नीडल ज्यामिति की आवश्यकता होती है और वे टीईएम मानक तैयारी [[Electropolishing|इलेक्ट्रोपोलिसिंग]], या [[केंद्रित आयन बीम]] विधियों के समान विधियों द्वारा निर्मित होते हैं। 2006 के बाद से, लेजर स्पंदन के साथ वाणिज्यिक प्रणालियां उपलब्ध हो गई हैं और इसने केवल धातु के मानकों से अर्द्धचालक, सिरेमिक जैसे इन्सुलेटिंग और यहां तक ​​​​कि भूवैज्ञानिक सामग्री में अनुप्रयोगों का विस्तार किया है।<ref>{{cite journal|first1=John W.|last1=Valley|first2=David A.|last2=Reinhard|first3=Aaron J.|last3=Cavosie|first4=Takayuki|last4=Ushikubo|title=Nano- and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: New tools for old minerals|url=http://ammin.geoscienceworld.org/content/gsammin/100/7/1355.full.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://ammin.geoscienceworld.org/content/gsammin/100/7/1355.full.pdf |archive-date=2022-10-09 |url-status=live|journal=American Mineralogist|date=2015-07-01|issn=0003-004X|pages=1355–1377|volume=100|issue=7|doi=10.2138/am-2015-5134|first5=Daniel F.|last5=Lawrence|first6=David J.|last6=Larson|first7=Thomas F.|last7=Kelly|first8=David R.|last8=Snoeyenbos|first9=Ariel|last9=Strickland|bibcode=2015AmMin.100.1355V|s2cid=51933115|doi-access=free}}</ref>


मानकों के लिए एक नीडल ज्यामिति की आवश्यकता होती है और वे टीईएम मानक तैयारी [[Electropolishing|इलेक्ट्रोपोलिसिंग]], या [[केंद्रित आयन बीम]] विधियों के समान तकनीकों द्वारा निर्मित होते हैं। 2006 के बाद से, लेजर स्पंदन के साथ वाणिज्यिक प्रणालियां उपलब्ध हो गई हैं और इसने केवल धातु के मानकों से सेमीकंडक्टिंग, सिरेमिक जैसे इन्सुलेटिंग और यहां तक ​​​​कि भूवैज्ञानिक सामग्री में अनुप्रयोगों का विस्तार किया है।<ref>{{cite journal|first1=John W.|last1=Valley|first2=David A.|last2=Reinhard|first3=Aaron J.|last3=Cavosie|first4=Takayuki|last4=Ushikubo|title=Nano- and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: New tools for old minerals|url=http://ammin.geoscienceworld.org/content/gsammin/100/7/1355.full.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://ammin.geoscienceworld.org/content/gsammin/100/7/1355.full.pdf |archive-date=2022-10-09 |url-status=live|journal=American Mineralogist|date=2015-07-01|issn=0003-004X|pages=1355–1377|volume=100|issue=7|doi=10.2138/am-2015-5134|first5=Daniel F.|last5=Lawrence|first6=David J.|last6=Larson|first7=Thomas F.|last7=Kelly|first8=David R.|last8=Snoeyenbos|first9=Ariel|last9=Strickland|bibcode=2015AmMin.100.1355V|s2cid=51933115|doi-access=free}}</ref>
100 नैनोमीटर के क्रम पर त्रिज्या के साथ, उच्च विद्युत क्षेत्र को प्रेरित करने के लिए पर्याप्त टिप त्रिज्या का निर्माण करने के लिए, अधिकांश हाथ से तैयारी की जाती है।
100 नैनोमीटर के क्रम पर त्रिज्या के साथ, उच्च विद्युत क्षेत्र को प्रेरित करने के लिए पर्याप्त टिप त्रिज्या का निर्माण करने के लिए, अक्सर हाथ से तैयारी की जाती है।


परमाणु जांच प्रयोग करने के लिए अति उच्च निर्वात कक्ष में बहुत तेज नीडल के आकार का मानक रखा जाता है। निर्वात प्रणाली में परिचय के बाद, मानक क्रायोजेनिक तापमान (सामान्यतः 20-100 के) तक कम हो जाता है और इस तरह हेरफेर किया जाता है कि नीडल का बिंदु आयन डिटेक्टर की ओर लक्षित होता है। नमूने पर उच्च वोल्टेज लागू किया जाता है, और या तो मानक पर लेजर पल्स लगाया जाता है या वोल्टेज पल्स (सामान्यतः 1-2 केवी) सैकड़ों किलोहर्ट्ज़ रेंज में पल्स पुनरावृत्ति दर के साथ काउंटर इलेक्ट्रोड पर लागू होता है। नमूने के लिए पल्स का अनुप्रयोग मानक सतह पर अलग-अलग परमाणुओं को ज्ञात समय पर मानक सतह से आयन के रूप में निकालने की अनुमति देता है। सामान्यतः स्पंद आयाम और नमूने पर उच्च वोल्टेज समय में केवल परमाणु को आयनित करने के लिए प्रोत्साहित करने के लिए कंप्यूटर नियंत्रित होते हैं, लेकिन कई आयनीकरण संभव हैं। स्पंद के अनुप्रयोग और डिटेक्टर पर आयन (एस) का पता लगाने के बीच देरी द्रव्यमान-से-आवेश अनुपात की गणना के लिए अनुमति देती है।
परमाणु जांच प्रयोग करने के लिए अति उच्च निर्वात कक्ष में बहुत तेज नीडल के आकार का मानक रखा जाता है। निर्वात प्रणाली में परिचय के बाद, मानक क्रायोजेनिक तापमान (सामान्यतः 20-100 के) तक कम हो जाता है और इस तरह हेरफेर किया जाता है कि नीडल का बिंदु आयन डिटेक्टर की ओर लक्षित होता है। नमूने पर उच्च वोल्टेज प्रायुक्त किया जाता है, और या तो मानक पर लेजर पल्स लगाया जाता है या वोल्टेज पल्स (सामान्यतः 1-2 केवी) सैकड़ों किलोहर्ट्ज़ रेंज में पल्स पुनरावृत्ति दर के साथ काउंटर इलेक्ट्रोड पर प्रायुक्त होता है। नमूने के लिए पल्स का अनुप्रयोग मानक सतह पर भिन्न-भिन्न परमाणुओं को ज्ञात समय पर मानक सतह से आयन के रूप में निकालने की अनुमति देता है। सामान्यतः स्पंद आयाम और नमूने पर उच्च वोल्टेज समय में केवल परमाणु को आयनित करने के लिए प्रोत्साहित करने के लिए कंप्यूटर नियंत्रित होते हैं, किन्तु कई आयनीकरण संभव हैं। स्पंद के अनुप्रयोग और डिटेक्टर पर आयन (एस) का पता लगाने के बीच देरी द्रव्यमान-से-आवेश अनुपात की गणना के लिए अनुमति देती है।


जबकि परमाणु जांच में टाइम-ऑफ-फ्लाइट विधियों द्वारा गणना किए गए परमाणु द्रव्यमान में अनिश्चितता सामग्री के भीतर अलग-अलग आइसोटोप का पता लगाने की अनुमति देने के लिए पर्याप्त रूप से छोटी है, यह अनिश्चितता अभी भी कुछ मामलों में, परमाणु प्रजातियों की निश्चित पहचान को भ्रमित कर सकती है। कई इलेक्ट्रॉनों को हटाने के साथ अलग-अलग आयनों के सुपरपोजिशन जैसे प्रभाव, या वाष्पीकरण के दौरान जटिल प्रजातियों के गठन की उपस्थिति के कारण निश्चित पहचान को असंभव बनाने के लिए दो या दो से अधिक प्रजातियों के पास पर्याप्त समय-समय पर उड़ानें हो सकती हैं।
जबकि परमाणु जांच में टाइम-ऑफ-फ्लाइट विधियों द्वारा गणना किए गए परमाणु द्रव्यमान में अनिश्चितता सामग्री के अंदर भिन्न-भिन्न आइसोटोप का पता लगाने की अनुमति देने के लिए पर्याप्त रूप से छोटी है, यह अनिश्चितता अभी भी कुछ स्थितियों में, परमाणु प्रजातियों की निश्चित पहचान को भ्रमित कर सकती है। कई इलेक्ट्रॉनों को हटाने के साथ भिन्न-भिन्न आयनों के सुपरपोजिशन जैसे प्रभाव, या वाष्पीकरण के समय जटिल प्रजातियों के गठन की उपस्थिति के कारण निश्चित पहचान को असंभव बनाने के लिए दो या दो से अधिक प्रजातियों के पास पर्याप्त समय-समय पर उड़ानें हो सकती हैं।


== इतिहास ==
== इतिहास ==


=== क्षेत्र आयन माइक्रोस्कोपी ===
=== क्षेत्र आयन माइक्रोस्कोपी ===
{{main|Field ion microscopy}}
{{main|क्षेत्र आयन माइक्रोस्कोपी}}
क्षेत्र आयन माइक्रोस्कोपी [[क्षेत्र उत्सर्जन माइक्रोस्कोपी]] का संशोधन है जहां पर्याप्त उच्च विद्युत क्षेत्र (~3-6 V/nm) के अधीन तेज नीडल की तरह टिप कैथोड के शीर्ष से टनलिंग इलेक्ट्रॉनों की धारा उत्सर्जित होती है।<ref name="Gomer">{{cite book|title=क्षेत्र उत्सर्जन और क्षेत्र आयनीकरण|author=Gomer, R|publisher=Harvard University Press|year=1961|isbn=978-1-56396-124-3}}</ref> टिप एपेक्स पर [[समारोह का कार्य]] की अनुमानित छवि बनाने के लिए नीडल फॉस्फोर स्क्रीन की ओर उन्मुख होती है। क्वांटम यांत्रिक प्रभावों और इलेक्ट्रॉन वेग में पार्श्व भिन्नताओं के कारण छवि रिज़ॉल्यूशन (2-2.5 एनएम) तक सीमित है।<ref name="Tsong">{{cite book|author=Tsong, T| title=Atom probe field Ion Microscopy: Field Ion emission and Surfaces and interfaces at atomic resolution|year=1990|publisher=Cambridge University Press|isbn=978-0-521-36379-2}}</ref>
क्षेत्र आयन माइक्रोस्कोपी [[क्षेत्र उत्सर्जन माइक्रोस्कोपी]] का एक संशोधन है जहां पर्याप्त उच्च विद्युत क्षेत्र (~3-6 वी/एनएम) के अधीन तेज नीडल की तरह टिप कैथोड के शीर्ष से टनलिंग इलेक्ट्रॉनों की धारा उत्सर्जित होती है।<ref name="Gomer">{{cite book|title=क्षेत्र उत्सर्जन और क्षेत्र आयनीकरण|author=Gomer, R|publisher=Harvard University Press|year=1961|isbn=978-1-56396-124-3}}</ref> टिप एपेक्स पर [[समारोह का कार्य|कार्य फ़ंक्शन]] की अनुमानित छवि बनाने के लिए नीडल फॉस्फोर स्क्रीन की ओर उन्मुख होती है। क्वांटम यांत्रिक प्रभावों और इलेक्ट्रॉन वेग में पार्श्व भिन्नताओं के कारण छवि रिज़ॉल्यूशन (2-2.5 एनएम) तक सीमित है।<ref name="Tsong">{{cite book|author=Tsong, T| title=Atom probe field Ion Microscopy: Field Ion emission and Surfaces and interfaces at atomic resolution|year=1990|publisher=Cambridge University Press|isbn=978-0-521-36379-2}}</ref>
क्षेत्र आयन माइक्रोस्कोपी में टिप को क्रायोजेन द्वारा ठंडा किया जाता है और इसकी ध्रुवीयता को उलट दिया जाता है। जब इमेजिंग गैस (सामान्यतः हाइड्रोजन या हीलियम) को कम दबाव (<0.1 पास्कल) पर पेश किया जाता है, तो टिप एपेक्स पर उच्च विद्युत क्षेत्र में गैस आयनों को आयनित किया जाता है और टिप एपेक्स पर उभरे हुए परमाणुओं की अनुमानित छवि उत्पन्न होती है। छवि संकल्प मुख्य रूप से टिप के तापमान से निर्धारित होता है लेकिन 78 केल्विन पर भी परमाणु संकल्प प्राप्त किया जाता है।<ref>{{cite journal|last1=Müller|first1=Erwin W.|first2=Kanwar|last2=Bahadur|year=1956|title= धातु की सतह पर गैसों का क्षेत्र आयनन और क्षेत्र आयन सूक्ष्मदर्शी का विभेदन|journal= Phys. Rev. |volume=102|issue=1|pages=624–631|bibcode = 1956PhRv..102..624M |doi = 10.1103/PhysRev.102.624 }}</ref>
 
क्षेत्र आयन माइक्रोस्कोपी में टिप को क्रायोजेन द्वारा ठंडा किया जाता है और इसकी ध्रुवीयता को विपरीत कर दिया जाता है। जब छवि गैस (सामान्यतः हाइड्रोजन या हीलियम) को कम दबाव (<0.1 पास्कल) पर प्रस्तुत किया जाता है, तो टिप एपेक्स पर उच्च विद्युत क्षेत्र में गैस आयनों को आयनित किया जाता है और टिप एपेक्स पर उभरे हुए परमाणुओं की अनुमानित छवि उत्पन्न होती है। छवि संकल्प मुख्य रूप से टिप के तापमान से निर्धारित होता है किन्तु 78 केल्विन पर भी परमाणु संकल्प प्राप्त किया जाता है।<ref>{{cite journal|last1=Müller|first1=Erwin W.|first2=Kanwar|last2=Bahadur|year=1956|title= धातु की सतह पर गैसों का क्षेत्र आयनन और क्षेत्र आयन सूक्ष्मदर्शी का विभेदन|journal= Phys. Rev. |volume=102|issue=1|pages=624–631|bibcode = 1956PhRv..102..624M |doi = 10.1103/PhysRev.102.624 }}</ref>
 




===10-सेमी परमाणु प्रोब===
===10-सेमी परमाणु जाँच===
1973 में जे. ए. पैनिट्ज द्वारा 10-सेमी परमाणु जांच का आविष्कार किया गया<ref>{{cite journal |last=Panitz |first=John A. |year=1973 |title=10 सेमी परमाणु जांच|journal=Review of Scientific Instruments |volume=44 |issue=8 |pages=1034–1038 |doi=10.1063/1.1686295 |bibcode=1973RScI...44.1034P }}</ref> "नई और सरल परमाणु जांच थी जो तेजी से, गहराई से प्रजातियों की पहचान या अपने पूर्ववर्तियों द्वारा प्रदान किए गए अधिक सामान्य परमाणु-परमाणु विश्लेषण की अनुमति देती है ... दो लीटर से कम मात्रा वाले उपकरण में जिसमें टिप आंदोलन अनावश्यक है और वाष्पीकरण नाड़ी स्थिरता और पिछले डिजाइनों के लिए आम संरेखण की समस्याओं को समाप्त कर दिया गया है। इसे टाइम-ऑफ़-फ़्लाइट मास स्पेक्ट्रोमेट्री|टाइम ऑफ़ फ़्लाइट (TOF) मास स्पेक्ट्रोमीटर को प्रॉक्सिमिटी फ़ोकस्ड, ड्यूल चैनल प्लेट डिटेक्टर, 11.8 सेमी बहाव क्षेत्र और 38° फ़ील्ड ऑफ़ व्यू के साथ जोड़कर पूरा किया गया। क्षेत्र उत्सर्जक टिप के शीर्ष से हटाए गए परमाणुओं की FIM छवि या desorption छवि प्राप्त की जा सकती है। 10-सेमी परमाणु प्रोब को वाणिज्यिक उपकरणों सहित बाद के परमाणु प्रोब का पूर्वज कहा गया है।<ref>{{cite journal |last=Seidman |first=David N. |year=2007 |title=Three-Dimensional Atom-Probe Tomography: Advances and Applications |journal=[[Annual Review of Materials Research]] |volume=37 |pages=127–158 |doi=10.1146/annurev.matsci.37.052506.084200 |bibcode=2007AnRMS..37..127S }}</ref>
1973 में जे.ए. पैनित्ज़<ref>{{cite journal |last=Panitz |first=John A. |year=1973 |title=10 सेमी परमाणु जांच|journal=Review of Scientific Instruments |volume=44 |issue=8 |pages=1034–1038 |doi=10.1063/1.1686295 |bibcode=1973RScI...44.1034P }}</ref> द्वारा आविष्कृत 10-सेमी परमाणु जांच एक "नई और सरल परमाणु जांच थी जो गहराई से प्रजातियों की पहचान करने या अपने पूर्ववर्तियों द्वारा प्रदान किए गए अधिक सामान्य परमाणु-द्वारा परमाणु विश्लेषण की अनुमति देती है ... एक उपकरण में दो लीटर से कम की मात्रा जिसमें टिप आंदोलन अनावश्यक है और वाष्पीकरण नाड़ी स्थिरता और पिछले डिजाइनों के संरेखण की समस्याओं को समाप्त कर दिया गया है। इसे टाइम ऑफ़ फ़्लाइट (टीओएफ) मास स्पेक्ट्रोमीटर को प्रॉक्सिमिटी फ़ोकस्ड, ड्यूल चैनल प्लेट डिटेक्टर, 11.8 सेमी बहाव क्षेत्र और 38° फ़ील्ड ऑफ़ व्यू के साथ जोड़कर पूरा किया गया। क्षेत्र उत्सर्जक टिप के शीर्ष से हटाए गए परमाणुओं की एफआईएम छवि या डेसॉर्प्शन छवि प्राप्त की जा सकती है। 10-सेमी परमाणु जाँच को वाणिज्यिक उपकरणों सहित बाद के परमाणु जाँच का पूर्वज कहा गया है।<ref>{{cite journal |last=Seidman |first=David N. |year=2007 |title=Three-Dimensional Atom-Probe Tomography: Advances and Applications |journal=[[Annual Review of Materials Research]] |volume=37 |pages=127–158 |doi=10.1146/annurev.matsci.37.052506.084200 |bibcode=2007AnRMS..37..127S }}</ref>




=== इमेजिंग परमाणु प्रोब ===
=== छवि परमाणु जाँच ===
इमेजिंग परमाणु-प्रोब (IAP) को 1974 में J. A. Panitz द्वारा पेश किया गया था। इसमें अभी तक 10-सेमी परमाणु-प्रोब की विशेषताओं को शामिल किया गया है "... [पिछले] परमाणु जांच दर्शन से पूरी तरह से अलग है। पूर्व-चयनित आयन-छवि स्थान बनाने वाली सतह प्रजातियों की पहचान निर्धारित करने के प्रयास के अतिरिक्त, हम पूर्व-चयनित द्रव्यमान-से-आवेश अनुपात की सतह प्रजातियों के पूर्ण क्रिस्टलोग्राफिक वितरण को निर्धारित करना चाहते हैं। अब मान लीजिए कि [डिटेक्टर] को लगातार संचालित करने के अतिरिक्त, इसे थोड़े समय के लिए चालू किया जाता है, संयोग से ''गेट पल्स'' लगाने से ब्याज की प्रजाति के आगमन के साथ वाष्पीकरण नाड़ी के नमूने तक पहुंचने के बाद समय टी लगाया जाता है। . यदि गेट पल्स की अवधि निकटवर्ती प्रजातियों के बीच यात्रा के समय से कम है, तो अद्वितीय यात्रा समय टी वाली केवल उस सतह प्रजाति का पता लगाया जाएगा और इसका पूरा क्रिस्टलोग्राफिक वितरण प्रदर्शित किया जाएगा। <ref>{{cite journal|last=Panitz|first=John A.|author-link=J. A. Panitz|year=1974|title=फील्ड-डिसोर्बेड प्रजातियों का क्रिस्टलोग्राफिक वितरण|journal=Journal of Vacuum Science and Technology|volume=11|issue=1|pages=207–210|issn=0022-5355|doi=10.1116/1.1318570|bibcode = 1974JVST...11..206P }}</ref> इसे 1975 में क्षेत्र डिसोर्शन स्पेक्ट्रोमीटर के रूप में पेटेंट कराया गया था।<ref>{{cite journal |last=Panitz |first=John A.|title=फील्ड डिसोर्शन स्पेक्ट्रोमीटर|journal=U.S. Patent 3,868,507 }}</ref> इमेजिंग परमाणु-प्रोब मोनिकर को 1978 में ए. जे. वॉ द्वारा गढ़ा गया था और उसी वर्ष जे. ए. पैनिट्ज द्वारा इस उपकरण का विस्तार से वर्णन किया गया था।<ref>{{cite journal |last=Waugh |first=A. J. |year=1978 |title=एकल टाइम-गेटेड चैनल प्लेट का उपयोग करके एक इमेजिंग परमाणु जांच|journal=J. Phys. E: Sci. Instrum. |volume=11|issue=1 |pages=49–52|bibcode = 1978JPhE...11...49W |doi = 10.1088/0022-3735/11/1/012 }}</ref><ref>{{cite journal|last=Panitz|first=John A.|author-link=J. A. Panitz|year=1978|title=इमेजिंग एटम-प्रोब मास स्पेक्ट्रोस्कोपी|journal=Progress in Surface Science|volume=8|issue=6|pages=219–263|issn=0079-6816|doi=10.1016/0079-6816(78)90002-3|bibcode = 1978PrSS....8..219P }}</ref>
छवि परमाणु-जाँच (आईएपी) को 1974 में जे ए पंजिट द्वारा प्रस्तुत किया गया था। इसमें अभी तक 10-सेमी परमाणु-जाँच की विशेषताओं को सम्मिलित किया गया है "... [पिछले] परमाणु जांच दर्शन से पूरी तरह से अलग है। पूर्व-चयनित आयन-छवि स्थान बनाने वाली सतह प्रजातियों की पहचान निर्धारित करने के प्रयास के अतिरिक्त, हम पूर्व-चयनित द्रव्यमान-से-आवेश अनुपात की सतह प्रजातियों के पूर्ण क्रिस्टलोग्राफिक वितरण को निर्धारित करना चाहते हैं। अब मान लीजिए कि डिटेक्टर को लगातार संचालित करने के अतिरिक्त, इसे थोड़े समय के लिए संयोग से चालू किया जाता है, जो वाष्पीकरण पल्स के नमूना तक पहुंचने के बाद गेट पल्स को एक समय टी लगाकर ब्याज की एक पूर्व-चयनित प्रजाति के आगमन के साथ होता है। यदि गेट पल्स की अवधि निकटवर्ती प्रजातियों के बीच यात्रा के समय से कम है, तो अद्वितीय यात्रा समय टी वाली केवल उस सतह प्रजाति का पता लगाया जाएगा और इसका पूरा क्रिस्टलोग्राफिक वितरण प्रदर्शित किया जाएगा।<ref>{{cite journal|last=Panitz|first=John A.|author-link=J. A. Panitz|year=1974|title=फील्ड-डिसोर्बेड प्रजातियों का क्रिस्टलोग्राफिक वितरण|journal=Journal of Vacuum Science and Technology|volume=11|issue=1|pages=207–210|issn=0022-5355|doi=10.1116/1.1318570|bibcode = 1974JVST...11..206P }}</ref> इसे 1975 में क्षेत्र डिसोर्शन स्पेक्ट्रोमीटर के रूप में पेटेंट कराया गया था।<ref>{{cite journal |last=Panitz |first=John A.|title=फील्ड डिसोर्शन स्पेक्ट्रोमीटर|journal=U.S. Patent 3,868,507 }}</ref> छवि परमाणु-जाँच मोनिकर को 1978 में ए. जे. वॉ द्वारा रखा गया था और उसी वर्ष जे. ए. पैनिट्ज द्वारा इस उपकरण का विस्तार से वर्णन किया गया था।<ref>{{cite journal |last=Waugh |first=A. J. |year=1978 |title=एकल टाइम-गेटेड चैनल प्लेट का उपयोग करके एक इमेजिंग परमाणु जांच|journal=J. Phys. E: Sci. Instrum. |volume=11|issue=1 |pages=49–52|bibcode = 1978JPhE...11...49W |doi = 10.1088/0022-3735/11/1/012 }}</ref><ref>{{cite journal|last=Panitz|first=John A.|author-link=J. A. Panitz|year=1978|title=इमेजिंग एटम-प्रोब मास स्पेक्ट्रोस्कोपी|journal=Progress in Surface Science|volume=8|issue=6|pages=219–263|issn=0079-6816|doi=10.1016/0079-6816(78)90002-3|bibcode = 1978PrSS....8..219P }}</ref>




=== परमाणु जांच टोमोग्राफी (एपीटी) ===
=== परमाणु जांच टोमोग्राफी (एपीटी) ===
आधुनिक दिन परमाणु जांच टोमोग्राफी परमाणुओं के पार्श्व स्थान को कम करने के लिए बॉक्स में स्थिति संवेदनशील डिटेक्टर उर्फ ​​​​एफआईएम का उपयोग करती है। APT का विचार, J. A. Panitz के क्षेत्र डिसोर्शन स्पेक्ट्रोमीटर पेटेंट से प्रेरित है, माइक मिलर द्वारा 1983 में शुरू किया गया था और 1986 में पहले प्रोटोटाइप के साथ समाप्त हुआ।<ref name="Miller"/>1988 में ऑक्सफोर्ड विश्वविद्यालय में अल्फ्रेड सेरेज़ो, टेरेंस गॉडफ्रे और जॉर्ज डी. डब्ल्यू. स्मिथ द्वारा तथाकथित स्थिति-संवेदनशील (पीओएस) डिटेक्टर के उपयोग सहित उपकरण में कई शोधन किए गए थे। टोमोग्राफिक परमाणु प्रोब (टीएपी), द्वारा विकसित 1993 में फ्रांस में रूएन विश्वविद्यालय के शोधकर्ताओं ने मल्टीचैनल टाइमिंग सिस्टम और मल्टीएनोड सरणी पेश की। दोनों उपकरणों (PoSAP और TAP) का क्रमशः [[ऑक्सफोर्ड इंस्ट्रूमेंट्स]] और CAMCA द्वारा व्यावसायीकरण किया गया था। तब से, देखने के क्षेत्र, द्रव्यमान और स्थिति संकल्प, और उपकरण के डेटा अधिग्रहण दर को बढ़ाने के लिए कई परिशोधन किए गए हैं। स्थानीय इलेक्ट्रोड परमाणु प्रोब को पहली बार 2003 में इमागो साइंटिफिक इंस्ट्रूमेंट्स द्वारा पेश किया गया था। 2005 में, स्पंदित लेजर परमाणु जांच (पीएलएपी) के व्यावसायीकरण ने अत्यधिक प्रवाहकीय सामग्री (धातु) से खराब कंडक्टर (सिलिकॉन जैसे अर्धचालक) और यहां तक ​​​​कि इन्सुलेट सामग्री तक अनुसंधान के रास्ते का विस्तार किया।<ref>{{cite journal|last1=Bunton|first1=J.|last2=Lenz|first2=D|last3=Olson|first3=J|last4=Thompson|first4=K|last5=Ulfig|first5=R|last6=Larson|first6=D|last7=Kelly|first7=T|title=Instrumentation Developments in Atom Probe Tomography: Applications in Semiconductor Research|journal=Microscopy and Microanalysis |year=2006|volume=12|issue=2|pages=1730–1731|issn=1431-9276|doi=10.1017/S1431927606065809|bibcode = 2006MiMic..12.1730B |doi-access=free}}</ref> [[AMETEK]] ने 2007 में CAMECA और 2010 में [[ इमागो वैज्ञानिक उपकरण ]]्स (मैडिसन, WI) का अधिग्रहण किया, जिससे कंपनी 2019 में दुनिया भर में स्थापित 110 से अधिक उपकरणों के साथ APTs की एकमात्र व्यावसायिक डेवलपर बन गई।
आधुनिक दिन परमाणु जांच टोमोग्राफी परमाणुओं के पार्श्व स्थान को कम करने के लिए बॉक्स में स्थिति संवेदनशील डिटेक्टर उर्फ ​​​​एफआईएम का उपयोग करती है। एपीटी का विचार, जे ए पंजिट के क्षेत्र डिसोर्शन स्पेक्ट्रोमीटर पेटेंट से प्रेरित है, माइक मिलर द्वारा 1983 में प्रारंभ किया गया था और 1986 में पहले प्रोटोटाइप के साथ समाप्त हुआ था।<ref name="Miller"/> 1988 में ऑक्सफोर्ड विश्वविद्यालय में अल्फ्रेड सेरेज़ो, टेरेंस गॉडफ्रे और जॉर्ज डी. डब्ल्यू. स्मिथ द्वारा तथाकथित स्थिति-संवेदनशील (पीओएस) डिटेक्टर के उपयोग सहित उपकरण में कई शोधन किए गए थे। टोमोग्राफिक परमाणु जाँच (टीएपी), द्वारा विकसित 1993 में फ्रांस में रूएन विश्वविद्यालय के शोधकर्ताओं ने मल्टीचैनल समय प्रणाली और मल्टीएनोड सरणी प्रस्तुत किया था। दोनों उपकरणों (पीओएसएपी और टीएपी) का क्रमशः [[ऑक्सफोर्ड इंस्ट्रूमेंट्स]] और सीएएमसीए द्वारा व्यावसायीकरण किया गया था। तब से, देखने के क्षेत्र, द्रव्यमान और स्थिति संकल्प, और उपकरण के डेटा अधिग्रहण दर को बढ़ाने के लिए कई परिशोधन किए गए हैं। स्थानीय इलेक्ट्रोड परमाणु जाँच को पहली बार 2003 में इमागो साइंटिफिक इंस्ट्रूमेंट्स द्वारा प्रस्तुत किया गया था। 2005 में, स्पंदित लेजर परमाणु जांच (पीएलएपी) के व्यावसायीकरण ने अत्यधिक प्रवाहकीय सामग्री (धातु) से खराब चालक (सिलिकॉन जैसे अर्धचालक) और यहां तक ​​​​कि इन्सुलेट सामग्री तक अनुसंधान के रास्ते का विस्तार किया था।<ref>{{cite journal|last1=Bunton|first1=J.|last2=Lenz|first2=D|last3=Olson|first3=J|last4=Thompson|first4=K|last5=Ulfig|first5=R|last6=Larson|first6=D|last7=Kelly|first7=T|title=Instrumentation Developments in Atom Probe Tomography: Applications in Semiconductor Research|journal=Microscopy and Microanalysis |year=2006|volume=12|issue=2|pages=1730–1731|issn=1431-9276|doi=10.1017/S1431927606065809|bibcode = 2006MiMic..12.1730B |doi-access=free}}</ref> [[AMETEK|अमेटेक]] ने 2007 में कैमका और 2010 में [[ इमागो वैज्ञानिक उपकरण | इमागो वैज्ञानिक उपकरण]] (मैडिसन, WI) का अधिग्रहण किया, जिससे कंपनी 2019 में संसार में स्थापित 110 से अधिक उपकरणों के साथ एपीटी की एकमात्र व्यावसायिक डेवलपर बन गई।


एपीटी के साथ काम के पहले कुछ दशक धातुओं पर केंद्रित थे। हालांकि, लेजर स्पंदित परमाणु जांच प्रणाली की शुरुआत के साथ बायोमटेरियल्स पर कुछ काम के साथ सेमीकंडक्टर्स, सिरेमिक और भूगर्भीय सामग्रियों तक अनुप्रयोगों का विस्तार हुआ है।<ref name=annrev>{{Cite journal  
एपीटी के साथ काम के पहले कुछ दशक धातुओं पर केंद्रित थे। चूंकि, लेजर स्पंदित परमाणु जांच प्रणाली की प्रारंभ के साथ बायोमटेरियल्स पर कुछ काम के साथ अर्द्धचालक, सिरेमिक और भूगर्भीय सामग्रियों तक अनुप्रयोगों का विस्तार हुआ है।<ref name=annrev>{{Cite journal  
| last1 = Kelly | first1 = T. F.  
| last1 = Kelly | first1 = T. F.  
| last2 = Larson | first2 = D. J.  
| last2 = Larson | first2 = D. J.  
Line 45: Line 46:
| pages = 1–31  
| pages = 1–31  
| year = 2012  
| year = 2012  
|bibcode = 2012AnRMS..42....1K }}</ref> APT का उपयोग करके जैविक सामग्री का अब तक का सबसे उन्नत अध्ययन<ref name=annrev/>चिटोन [[चैतोप्ल्यूरा अपिकुलता]] के [[रेडुला]] के दांतों की रासायनिक संरचना का विश्लेषण शामिल है।<ref name="Gordon 2011">{{cite journal | last1 = Gordon | first1 = L. M. | last2 = Joester | first2 = D. | year = 2011 | title = Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth | journal = [[Nature (journal)|Nature]] | volume = 469 | issue = 7329| pages = 194–197 | doi = 10.1038/nature09686 |bibcode = 2011Natur.469..194G | pmid=21228873| s2cid = 4430261 }}</ref> इस अध्ययन में, APT के उपयोग ने चिटोन दांतों में आसपास के नैनो-क्रिस्टलीय [[मैग्नेटाइट]] में कार्बनिक फाइबर के रासायनिक मानचित्र दिखाए, फाइबर जो अक्सर [[सोडियम]] या [[ मैगनीशियम ]] के साथ सह-स्थित होते थे।<ref name="Gordon 2011"/>इसे हाथी दांत, [[ दंतधातु ]] का अध्ययन करने के लिए आगे बढ़ाया गया है<ref>{{cite journal|author=Gordon, L.M. |author2=Tran, L. |author3=Joester, D. |title=एपेटाइट्स और हड्डी-प्रकार के खनिजयुक्त ऊतकों की एटम प्रोब टोमोग्राफी|journal=ACS Nano|volume=6 |issue=12 |date=2012|doi=10.1021/nn3049957|pmid=23176319 |pages=10667–10675}}</ref> और मानव [[दाँत तामचीनी]]<ref>{{Cite journal|last1=Fontaine|first1=Alexandre La|last2=Cairney|first2=Julie|date=July 2017|title=मानव टूथ इनेमल की एटम जांच टोमोग्राफी और मास स्पेक्ट्रम में मैग्नीशियम और कार्बन की सटीक पहचान|journal=Microscopy and Microanalysis|language=en|volume=23|issue=S1|pages=676–677|doi=10.1017/S1431927617004044|bibcode=2017MiMic..23S.676L|issn=1431-9276|doi-access=free}}</ref>
|bibcode = 2012AnRMS..42....1K }}</ref> एपीटी का उपयोग करके जैविक सामग्री का अब तक का सबसे उन्नत अध्ययन<ref name=annrev/> में चिटोन [[चैतोप्ल्यूरा अपिकुलता]] के [[रेडुला]] के दांतों की रासायनिक संरचना का विश्लेषण सम्मिलित है।<ref name="Gordon 2011">{{cite journal | last1 = Gordon | first1 = L. M. | last2 = Joester | first2 = D. | year = 2011 | title = Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth | journal = [[Nature (journal)|Nature]] | volume = 469 | issue = 7329| pages = 194–197 | doi = 10.1038/nature09686 |bibcode = 2011Natur.469..194G | pmid=21228873| s2cid = 4430261 }}</ref> इस अध्ययन में, एपीटी के उपयोग ने चिटोन दांतों में आसपास के नैनो-क्रिस्टलीय [[मैग्नेटाइट]] में कार्बनिक फाइबर के रासायनिक मानचित्र दिखाए, फाइबर जो अधिकांश [[सोडियम]] या [[ मैगनीशियम ]] के साथ सह-स्थित होते थे।<ref name="Gordon 2011"/> इसे हाथी दांत, [[ दंतधातु | डेंटिन]] और मानव [[दाँत तामचीनी|इनेमल]]<ref>{{Cite journal|last1=Fontaine|first1=Alexandre La|last2=Cairney|first2=Julie|date=July 2017|title=मानव टूथ इनेमल की एटम जांच टोमोग्राफी और मास स्पेक्ट्रम में मैग्नीशियम और कार्बन की सटीक पहचान|journal=Microscopy and Microanalysis|language=en|volume=23|issue=S1|pages=676–677|doi=10.1017/S1431927617004044|bibcode=2017MiMic..23S.676L|issn=1431-9276|doi-access=free}}</ref> का अध्ययन करने के लिए आगे बढ़ाया गया है<ref>{{cite journal|author=Gordon, L.M. |author2=Tran, L. |author3=Joester, D. |title=एपेटाइट्स और हड्डी-प्रकार के खनिजयुक्त ऊतकों की एटम प्रोब टोमोग्राफी|journal=ACS Nano|volume=6 |issue=12 |date=2012|doi=10.1021/nn3049957|pmid=23176319 |pages=10667–10675}}</ref>




== सिद्धांत ==
== सिद्धांत ==
=== क्षेत्र वाष्पीकरण ===
=== क्षेत्र वाष्पीकरण ===
क्षेत्र वाष्पीकरण प्रभाव है जो तब हो सकता है जब सामग्री की सतह पर बंधा हुआ परमाणु पर्याप्त रूप से उच्च और उचित रूप से निर्देशित विद्युत क्षेत्र की उपस्थिति में होता है, जहां विद्युत क्षेत्र दूरी के संबंध में विद्युत क्षमता (वोल्टेज) का अंतर होता है। बार जब यह स्थिति पूरी हो जाती है, तो यह पर्याप्त है कि मानक सतह पर स्थानीय बंधन क्षेत्र से दूर होने में सक्षम है, सतह से परमाणु के वाष्पीकरण की इजाजत देता है जिससे वह अन्यथा बंध जाता है।
क्षेत्र वाष्पीकरण प्रभाव है जो तब हो सकता है जब सामग्री की सतह पर बंधा हुआ परमाणु पर्याप्त रूप से उच्च और उचित रूप से निर्देशित विद्युत क्षेत्र की उपस्थिति में होता है, जहां विद्युत क्षेत्र दूरी के संबंध में विद्युत क्षमता (वोल्टेज) का अंतर होता है। बार जब यह स्थिति पूरी हो जाती है, तो यह पर्याप्त है कि मानक सतह पर स्थानीय बंधन क्षेत्र से दूर होने में सक्षम है, सतह से परमाणु के वाष्पीकरण की अनुमति देता है जिससे वह अन्यथा बंध जाता है।


=== आयन उड़ान ===
=== आयन उड़ान ===
चाहे सामग्री से ही वाष्पित हो, या गैस से आयनीकृत हो, वाष्पित होने वाले आयन इलेक्ट्रोस्टैटिक बल द्वारा त्वरित होते हैं, नमूने के कुछ टिप-रेडी के भीतर अपनी अधिकांश ऊर्जा प्राप्त करते हैं।<ref>{{Cite web |title=Field Ion Microscopy - an overview {{!}} ScienceDirect Topics |url=https://www.sciencedirect.com/topics/materials-science/field-ion-microscopy |access-date=2022-10-13 |website=www.sciencedirect.com}}</ref>
चाहे सामग्री से ही वाष्पित हो, या गैस से आयनीकृत हो, वाष्पित होने वाले आयन इलेक्ट्रोस्टैटिक बल द्वारा त्वरित होते हैं, नमूने के कुछ टिप-रेडी के अंदर अपनी अधिकांश ऊर्जा प्राप्त करते हैं।<ref>{{Cite web |title=Field Ion Microscopy - an overview {{!}} ScienceDirect Topics |url=https://www.sciencedirect.com/topics/materials-science/field-ion-microscopy |access-date=2022-10-13 |website=www.sciencedirect.com}}</ref>
 
इसके बाद, किसी दिए गए आयन पर त्वरण बल इलेक्ट्रोस्टैटिक समीकरण द्वारा नियंत्रित किया जाता है, जहां n आयन की आयनीकरण अवस्था है, और e मौलिक विद्युत आवेश है।
इसके बाद, किसी दिए गए आयन पर त्वरण बल इलेक्ट्रोस्टैटिक समीकरण द्वारा नियंत्रित किया जाता है, जहां n आयन की आयनीकरण अवस्था है, और e मौलिक विद्युत आवेश है।


Line 61: Line 64:
:<math> ma = q \nabla \phi</math>
:<math> ma = q \nabla \phi</math>
:<math> a = \frac{q}{m} \nabla \phi</math>
:<math> a = \frac{q}{m} \nabla \phi</math>
आयन उड़ान में सापेक्षवादी प्रभावों को सामान्यतः अनदेखा कर दिया जाता है, क्योंकि वसूली योग्य आयन गति प्रकाश की गति का केवल बहुत छोटा अंश है।
आयन उड़ान में सापेक्षवादी प्रभावों को सामान्यतः अनदेखा कर दिया जाता है, क्योंकि पुनः प्राप्ति योग्य आयन गति प्रकाश की गति का केवल बहुत छोटा अंश है।


यह मानते हुए कि आयन बहुत कम अंतराल के दौरान त्वरित होता है, आयन को निरंतर वेग से यात्रा करने वाला माना जा सकता है। चूंकि आयन टिप से वोल्टेज वी पर यात्रा करेगा<sub>1</sub> कुछ नाममात्र जमीन की क्षमता के लिए, जिस गति से आयन यात्रा कर रहा है, उसका अनुमान आयनीकरण (या निकट) आयनीकरण के दौरान आयन में स्थानांतरित ऊर्जा से लगाया जा सकता है। इसलिए, आयन की गति की गणना निम्नलिखित समीकरण से की जा सकती है, जो गतिज ऊर्जा को विद्युत क्षेत्र के कारण ऊर्जा लाभ से संबंधित करती है, इलेक्ट्रॉनों के नुकसान से उत्पन्न नकारात्मक शुद्ध सकारात्मक आवेश बनाता है।{{citation needed|date=April 2013}}<ref>{{Cite journal |title=Fundamentals of Electric Propulsion: Ion and Hall Thrusters |url=https://descanso.jpl.nasa.gov/SciTechBook/series1/Goebel__cmprsd_opt.pdf |journal=Jet Propulsion Laboratory California Institute of Technology}}</ref>
यह मानते हुए कि आयन बहुत कम अंतराल के समय त्वरित होता है, यह माना जा सकता है कि आयन निरंतर वेग से यात्रा कर रहा है। जैसा कि आयन टिप से वोल्टेज V<sub>1</sub> पर कुछ नाममात्र मैदान की क्षमता तक यात्रा करेगा, जिस गति से आयन यात्रा कर रहा है, उसका अनुमान आयनीकरण (या निकट) आयनीकरण के समय आयन में स्थानांतरित ऊर्जा से लगाया जा सकता है। इसलिए, आयन की गति की गणना निम्नलिखित समीकरण से की जा सकती है, जो गतिज ऊर्जा को विद्युत क्षेत्र के कारण ऊर्जा लाभ से संबंधित करती है, इलेक्ट्रॉनों के नुकसान से उत्पन्न ऋणात्मक शुद्ध धनात्मक आवेश बनाता है।<ref>{{Cite journal |title=Fundamentals of Electric Propulsion: Ion and Hall Thrusters |url=https://descanso.jpl.nasa.gov/SciTechBook/series1/Goebel__cmprsd_opt.pdf |journal=Jet Propulsion Laboratory California Institute of Technology}}</ref>
:<math>E = \frac{1}{2}mU_{\mathrm{ion}}^2 = -neV_1</math>
:<math>E = \frac{1}{2}mU_{\mathrm{ion}}^2 = -neV_1</math>
जहां यू आयन वेग है। U के लिए हल करने पर, निम्नलिखित संबंध पाया जाता है:
जहां यू आयन वेग है। U के लिए समाधान करने पर, निम्नलिखित संबंध पाया जाता है:


:<math> U =\sqrt{ \frac{ 2neV_1}{m}}</math>
:<math> U =\sqrt{ \frac{ 2neV_1}{m}}</math>
मान लीजिए कि निश्चित आयनीकरण वोल्टेज के लिए, एकल आवेशित [[हाइड्रोजन]] आयन 1.4x10^6 ms का परिणामी वेग प्राप्त करता है<sup>-1</sup> 10~kV पर। मानक शर्तों के तहत अकेले आवेश किए गए [[ड्यूटेरियम]] आयन ने मोटे तौर पर 1.4x10^6/1.41 एमएस हासिल किया होगा<sup>-1</sup>. अगर डिटेक्टर को 1 मीटर की दूरी पर रखा गया था, तो आयन की उड़ान का समय 1/1.4x10^6 और 1.41/1.4x10^6 से होगा। इस प्रकार, आयन आगमन का समय आयन प्रकार का अनुमान लगाने के लिए इस्तेमाल किया जा सकता है, अगर वाष्पीकरण का समय ज्ञात हो।
मान लीजिए कि निश्चित आयनीकरण वोल्टेज के लिए, एकल आवेशित [[हाइड्रोजन]] आयन 1.4x10^6 ms<sup>-1</sup> का परिणामी वेग 10~kV पर प्राप्त करता है। मानक शर्तों के तहत अकेले आवेश किए गए [[ड्यूटेरियम]] आयन ने सामान्यतः 1.4x10^6/1.41 ms<sup>-1</sup> प्राप्त किया होगा। यदि डिटेक्टर को 1 मीटर की दूरी पर रखा गया था, तो आयन की उड़ान का समय 1/1.4x10^6 और 1.41/1.4x10^6 सेकेंड होगा। इस प्रकार, आयन आगमन का समय आयन प्रकार का अनुमान लगाने के लिए उपयोग किया जा सकता है, यदि वाष्पीकरण का समय ज्ञात हो।


उपरोक्त समीकरण से, यह दिखाने के लिए इसे फिर से व्यवस्थित किया जा सकता है
उपरोक्त समीकरण से, यह दिखाने के लिए इसे फिर से व्यवस्थित किया जा सकता है


:<math> \frac{m}{n} = -\frac{2eV_1}{U^2} </math>
:<math> \frac{m}{n} = -\frac{2eV_1}{U^2} </math>
ज्ञात उड़ान दूरी दी गई। एफ, आयन के लिए, और ज्ञात उड़ान समय, टी,
ज्ञात उड़ान दूरी दी गई। एफ, आयन के लिए, और ज्ञात उड़ान समय, t,


:<math> U = \frac{f}{t}</math>
:<math> U = \frac{f}{t}</math>
Line 79: Line 82:


:<math> \frac{m}{n} = -2eV_1 \left(\frac{t}{f}\right)^2 </math>
:<math> \frac{m}{n} = -2eV_1 \left(\frac{t}{f}\right)^2 </math>
इस प्रकार आयन के लिए जो 2000 ns के समय में 1 मीटर उड़ान पथ को पार करता है, 5000 V का प्रारंभिक त्वरण वोल्टेज दिया गया है (V in Si इकाइयों kg.m^2.s^-3.A^-1 है) और यह देखते हुए कि एमू 1×10 है<sup>-27</sup> किग्रा, द्रव्यमान-से-प्रभारी अनुपात (ज्यादा सटीक रूप से द्रव्यमान-से-आयनीकरण मान अनुपात) ~3.86 amu/आवेश हो जाता है। हटाए गए इलेक्ट्रॉनों की संख्या, और इस प्रकार आयन पर शुद्ध धनात्मक आवेश प्रत्यक्ष रूप से ज्ञात नहीं है, लेकिन अवलोकन किए गए आयनों के हिस्टोग्राम (स्पेक्ट्रम) से अनुमान लगाया जा सकता है।
इस प्रकार आयन के लिए जो 2000 ns के समय में 1 मीटर उड़ान पथ को पार करता है, 5000 V (V in Si इकाइयों kg.m^2.s^-3.A^-1 है) का प्रारंभिक त्वरण वोल्टेज दिया गया है और यह देखते हुए कि एमू 1×10<sup>-27</sup> किलोग्राम है, द्रव्यमान-से-आवेश अनुपात (अधिक त्रुटिहीन रूप से द्रव्यमान-से-आयनीकरण मान अनुपात) ~3.86 एएमयू/आवेश हो जाता है। हटाए गए इलेक्ट्रॉनों की संख्या, और इस प्रकार आयन पर शुद्ध धनात्मक आवेश प्रत्यक्ष रूप से ज्ञात नहीं है, किन्तु अवलोकन किए गए आयनों के हिस्टोग्राम (स्पेक्ट्रम) से अनुमान लगाया जा सकता है।


=== आवर्धन ===
=== आवर्धन ===
परमाणु में आवर्धन आयनों के छोटे, तीखे सिरे से रेडियल रूप से दूर प्रक्षेपण के कारण होता है। इसके बाद, सुदूर क्षेत्र में, आयनों को अत्यधिक आवर्धित किया जाएगा। यह आवर्धन व्यक्तिगत परमाणुओं के कारण क्षेत्र भिन्नताओं का निरीक्षण करने के लिए पर्याप्त है, इस प्रकार एकल परमाणुओं की इमेजिंग के लिए क्षेत्र आयन और क्षेत्र वाष्पीकरण मोड में अनुमति देता है।
परमाणु में आवर्धन आयनों के छोटे, शार्प सिरे से रेडियल रूप से दूर प्रक्षेपण के कारण होता है। इसके बाद, सुदूर क्षेत्र में, आयनों को अत्यधिक आवर्धित किया जाएगा। यह आवर्धन व्यक्तिगत परमाणुओं के कारण क्षेत्र भिन्नताओं का निरीक्षण करने के लिए पर्याप्त है, इस प्रकार एकल परमाणुओं की छवि के लिए क्षेत्र आयन और क्षेत्र वाष्पीकरण मोड में अनुमति देता है।


परमाणु जांच के लिए मानक प्रक्षेपण मॉडल उत्सर्जक ज्यामिति है जो [[शंकु खंड]] की क्रांति पर आधारित है, जैसे गोलाकार, [[ hyperboloid ]] या [[ठोस अनुवृत्त]] इन टिप मॉडलों के लिए, क्षेत्र के समाधान अनुमानित या विश्लेषणात्मक रूप से प्राप्त किए जा सकते हैं। गोलाकार उत्सर्जक के लिए आवर्धन टिप के त्रिज्या के व्युत्क्रमानुपाती होता है, गोलाकार स्क्रीन पर सीधे प्रक्षेपण दिया जाता है, निम्नलिखित समीकरण को ज्यामितीय रूप से प्राप्त किया जा सकता है।
परमाणु जांच के लिए मानक प्रक्षेपण मॉडल उत्सर्जक ज्यामिति है जो [[शंकु खंड]] की क्रांति पर आधारित है, जैसे गोलाकार, [[ hyperboloid | हाइपरबोलॉइड]] या [[ठोस अनुवृत्त]] इन टिप मॉडलों के लिए, क्षेत्र के समाधान अनुमानित या विश्लेषणात्मक रूप से प्राप्त किए जा सकते हैं। गोलाकार उत्सर्जक के लिए आवर्धन टिप के त्रिज्या के व्युत्क्रमानुपाती होता है, गोलाकार स्क्रीन पर सीधे प्रक्षेपण दिया जाता है, निम्नलिखित समीकरण को ज्यामितीय रूप से प्राप्त किया जा सकता है।


:<math>M = \frac{r_{screen}}{r_{tip}}. </math>
:<math>M = \frac{r_{screen}}{r_{tip}}. </math>
जहां आर<sub>screen</sub> टिप सेंटर से डिटेक्शन स्क्रीन की त्रिज्या है, और आर<sub>tip</sub> टिप त्रिज्या। स्क्रीन दूरी के लिए व्यावहारिक युक्ति कई सेंटीमीटर से लेकर कई मीटर तक हो सकती है, साथ ही देखने के समान क्षेत्र को कम करने के लिए बड़े डिटेक्टर क्षेत्र की आवश्यकता होती है।
जहां r<sub>screen</sub> टिप सेंटर से डिटेक्शन स्क्रीन की त्रिज्या है और टिप त्रिज्या को r<sub>tip</sub> करती है। स्क्रीन दूरी के लिए व्यावहारिक युक्ति कई सेंटीमीटर से लेकर कई मीटर तक हो सकती है, साथ ही देखने के समान क्षेत्र को कम करने के लिए बड़े डिटेक्टर क्षेत्र की आवश्यकता होती है।


व्यावहारिक रूप से बोलते हुए, प्रयोग करने योग्य आवर्धन कई प्रभावों से सीमित होगा, जैसे वाष्पीकरण से पहले परमाणुओं के पार्श्व कंपन।
व्यावहारिक रूप से बोलते हुए, प्रयोग करने योग्य आवर्धन वाष्पीकरण से पहले परमाणुओं के पार्श्व कंपन जैसे कई प्रभावों से सीमित होगा।


जबकि क्षेत्र आयन और परमाणु जांच सूक्ष्मदर्शी दोनों का आवर्धन बहुत अधिक है, सटीक आवर्धन जांच किए गए नमूने के लिए विशिष्ट स्थितियों पर निर्भर करता है, इसलिए पारंपरिक इलेक्ट्रॉन सूक्ष्मदर्शी के विपरीत, आवर्धन पर अक्सर बहुत कम प्रत्यक्ष नियंत्रण होता है, और इसके अतिरिक्त, प्राप्त छवियां सतह पर विद्युत क्षेत्र के आकार में उतार-चढ़ाव के कारण अत्यधिक परिवर्तनशील आवर्धन हो सकता है।
जबकि क्षेत्र आयन और परमाणु जांच सूक्ष्मदर्शी दोनों का आवर्धन बहुत अधिक है, सटीक आवर्धन जांच किए गए नमूने के लिए विशिष्ट स्थितियों पर निर्भर करता है, इसलिए पारंपरिक इलेक्ट्रॉन सूक्ष्मदर्शी के विपरीत, आवर्धन पर अधिकांश बहुत कम प्रत्यक्ष नियंत्रण होता है, और इसके अतिरिक्त, प्राप्त छवियां सतह पर विद्युत क्षेत्र के आकार में उतार-चढ़ाव के कारण अत्यधिक परिवर्तनशील आवर्धन हो सकता है।


=== पुनर्निर्माण ===
=== पुनर्निर्माण ===
आयन अनुक्रम डेटा का कम्प्यूटेशनल रूपांतरण, जैसा कि स्थिति-संवेदनशील डिटेक्टर से परमाणु प्रकार के त्रि-आयामी दृश्य के लिए प्राप्त किया जाता है, को पुनर्निर्माण कहा जाता है। पुनर्निर्माण एल्गोरिदम सामान्यतः ज्यामितीय रूप से आधारित होते हैं और इसमें कई साहित्य सूत्रीकरण होते हैं। पुनर्निर्माण के लिए अधिकांश मॉडल मानते हैं कि टिप गोलाकार वस्तु है, और डिटेक्टर की स्थिति को 3डी स्पेस, आर में एम्बेडेड 2डी सतह में बदलने के लिए [[त्रिविम प्रक्षेपण]] के लिए अनुभवजन्य सुधार का उपयोग करते हैं।<sup>3</उप>इस सतह को आर के माध्यम से स्वीप करके<sup>3</sup> आयन अनुक्रम इनपुट डेटा के कार्य के रूप में, जैसे आयन-ऑर्डरिंग के माध्यम से, वॉल्यूम उत्पन्न होता है, जिस पर 2डी डिटेक्टर की स्थिति की गणना की जा सकती है और त्रि-आयामी स्थान रखा जा सकता है।
आयन अनुक्रम डेटा का कम्प्यूटेशनल रूपांतरण, जैसा कि स्थिति-संवेदनशील डिटेक्टर से परमाणु प्रकारों के त्रि-आयामी दृश्य के लिए प्राप्त किया जाता है, को "पुनर्निर्माण" कहा जाता है। पुनर्निर्माण एल्गोरिदम सामान्यतः ज्यामितीय रूप से आधारित होते हैं और इसमें कई साहित्य सूत्रीकरण होते हैं। पुनर्निर्माण के लिए अधिकांश मॉडल मानते हैं कि टिप एक गोलाकार वस्तु है, और डिटेक्टर की स्थिति को 3डी स्पेस, R<sup>3</sup> में एम्बेडेड 2डी सतह में बदलने के लिए [[त्रिविम प्रक्षेपण|स्टीरियोग्राफिक प्रक्षेपण]] के लिए अनुभवजन्य सुधार का उपयोग करते हैं। आयन अनुक्रम इनपुट डेटा के एक फ़ंक्शन के रूप में R<sup>3</sup> के माध्यम से इस सतह को स्वीप करके, जैसे आयन-ऑर्डरिंग के माध्यम से, एक वॉल्यूम उत्पन्न होता है, जिस पर 2डी डिटेक्टर की स्थिति की गणना की जा सकती है और त्रि-आयामी स्थान रखा जा सकता है।


सामान्यतः स्वीप सतह की उन्नति का सरल रूप लेता है, जैसे कि सतह को इसकी उन्नति अक्ष के बारे में सममित तरीके से विस्तारित किया जाता है, जिसमें प्रत्येक आयन का पता लगाने और पहचाने जाने वाले वॉल्यूम द्वारा निर्धारित उन्नति दर होती है। यह बैडमिंटन [[शटलकॉक]] के समान गोल-शंक्वाकार आकार ग्रहण करने के लिए अंतिम पुनर्निर्मित मात्रा का कारण बनता है। इस प्रकार खोजी गई घटनाएँ प्रायोगिक रूप से मापे गए मानों के साथ बिंदु क्लाउड डेटा बन जाती हैं, जैसे कि उड़ान का आयन समय या प्रायोगिक रूप से व्युत्पन्न मात्राएँ, उदा। उड़ान या डिटेक्टर डेटा का समय।
सामान्यतः स्वीप सतह की उन्नति का सरल रूप लेता है, जैसे कि सतह को इसकी उन्नति अक्ष के बारे में सममित विधि से विस्तारित किया जाता है, जिसमें प्रत्येक आयन का पता लगाने और पहचाने जाने वाले आयतन द्वारा निर्धारित उन्नति दर होती है। यह बैडमिंटन [[शटलकॉक]] के समान गोल-शंक्वाकार आकार ग्रहण करने के लिए अंतिम पुनर्निर्मित मात्रा का कारण बनता है। इस प्रकार खोजी गई घटनाएँ प्रयोगात्मक रूप से मापे गए मानों जैसे उड़ान के आयन समय या प्रायोगिक रूप से व्युत्पन्न मात्राओं, जैसे उड़ान या डिटेक्टर डेटा के समय के साथ बिंदु क्लाउड डेटा बन जाती हैं।


डेटा हेरफेर का यह रूप तेजी से कंप्यूटर विज़ुअलाइज़ेशन और विश्लेषण की अनुमति देता है, अतिरिक्त जानकारी के साथ [[पॉइंट क्लाउड]] डेटा के रूप में प्रस्तुत डेटा के साथ, जैसे कि आवेश करने के लिए प्रत्येक आयन का द्रव्यमान (जैसा कि ऊपर वेग समीकरण से गणना की गई है), वोल्टेज या अन्य सहायक मापी गई मात्रा या उससे गणना .
डेटा हेरफेर का यह रूप तेजी से कंप्यूटर विज़ुअलाइज़ेशन और विश्लेषण के लिए [[पॉइंट क्लाउड]] डेटा के रूप में प्रस्तुत डेटा के साथ अतिरिक्त जानकारी, जैसे कि प्रत्येक आयन के द्रव्यमान को आवेशित (जैसा कि ऊपर वेग समीकरण से गणना की गई है), करने के लिए वोल्टेज या अन्य सहायक मापी गई मात्रा या गणना की अनुमति देता है।


=== डेटा सुविधाएँ ===
=== डेटा सुविधाएँ ===
परमाणु जांच डेटा की विहित विशेषता, सामग्री के माध्यम से दिशा में इसका उच्च स्थानिक संकल्प है, जिसे क्रमबद्ध वाष्पीकरण अनुक्रम के लिए जिम्मेदार ठहराया गया है। इसलिए यह डेटा संबंधित रासायनिक जानकारी के साथ परमाणु रूप से तेज दबे हुए इंटरफेस के पास छवि बना सकता है।
परमाणु जांच डेटा की विहित विशेषता, सामग्री के माध्यम से दिशा में इसका उच्च स्थानिक संकल्प है, जिसे क्रमबद्ध वाष्पीकरण अनुक्रम के लिए जिम्मेदार ठहराया गया है। इसलिए यह डेटा संबंधित रासायनिक जानकारी के साथ परमाणु रूप से तेज दबे हुए इंटरफेस के पास छवि बना सकता है।


बाष्पीकरणीय प्रक्रिया से प्राप्त डेटा हालांकि उन कलाकृतियों के बिना नहीं है जो भौतिक वाष्पीकरण या आयनीकरण प्रक्रिया का निर्माण करते हैं। वाष्पीकरण या क्षेत्र आयन छवियों की प्रमुख विशेषता यह है कि परमाणु पैमाने पर मानक सतह के गलियारे के कारण डेटा घनत्व अत्यधिक विषम है। यह गलियारा निकट-टिप क्षेत्र (परमाणु त्रिज्या या टिप से कम के क्रम में) में मजबूत विद्युत क्षेत्र प्रवणता को जन्म देता है, जो आयनीकरण के दौरान आयनों को विद्युत क्षेत्र सामान्य से दूर विक्षेपित करता है।
बाष्पीकरणीय प्रक्रिया से प्राप्त डेटा चूंकि उन कलाकृतियों के बिना नहीं है जो भौतिक वाष्पीकरण या आयनीकरण प्रक्रिया का निर्माण करते हैं। वाष्पीकरण या क्षेत्र आयन छवियों की प्रमुख विशेषता यह है कि परमाणु पैमाने पर मानक सतह के गलियारे के कारण डेटा घनत्व अत्यधिक विषम है। यह गलियारा निकट-टिप क्षेत्र (परमाणु त्रिज्या या टिप से कम के क्रम में) में मजबूत विद्युत क्षेत्र प्रवणता को जन्म देता है, जो आयनीकरण के समय आयनों को विद्युत क्षेत्र सामान्य से दूर विक्षेपित करता है।


परिणामी विक्षेपण का अर्थ है कि उच्च वक्रता के इन क्षेत्रों में, परमाणु छतों का पता लगाने के घनत्व में मजबूत अनिसोट्रॉपी द्वारा विश्वास किया जाता है। जहां यह सतह पर कुछ परमाणुओं के कारण होता है, सामान्यतः ध्रुव के रूप में संदर्भित किया जाता है, क्योंकि ये नमूने के क्रिस्टलोग्राफिक अक्षों ([[ घन क्रिस्टल प्रणाली ]], क्यूबिक क्रिस्टल सिस्टम, गोले के क्लोज-पैकिंग) आदि के साथ मेल खाते हैं। परमाणु छत के विक्षेपण का कारण बनता है, कम घनत्व वाली रेखा बनती है और इसे ज़ोन रेखा कहा जाता है।
परिणामी विक्षेपण का अर्थ है कि उच्च वक्रता के इन क्षेत्रों में, परमाणु छतों का पता लगाने के घनत्व में मजबूत अनिसोट्रॉपी द्वारा विश्वास किया जाता है। जहां यह सतह पर कुछ परमाणुओं के कारण होता है, सामान्यतः ध्रुव के रूप में संदर्भित किया जाता है, क्योंकि ये नमूने के क्रिस्टलोग्राफिक अक्षों ([[ घन क्रिस्टल प्रणाली ]], क्यूबिक क्रिस्टल प्रणाली, गोले के क्लोज-पैकिंग) आदि के साथ मेल खाते हैं। परमाणु छत के विक्षेपण का कारण बनता है, कम घनत्व वाली रेखा बनती है और इसे ज़ोन रेखा कहा जाता है।


ये खंभे और ज़ोन-लाइनें, पुनर्निर्मित डेटासेट में डेटा घनत्व में उतार-चढ़ाव को प्रेरित करते हुए, जो पोस्ट-विश्लेषण के दौरान समस्याग्रस्त साबित हो सकते हैं, कोणीय आवर्धन जैसी जानकारी निर्धारित करने के लिए महत्वपूर्ण हैं, क्योंकि सुविधाओं के बीच क्रिस्टलोग्राफिक संबंध सामान्यतः अच्छी तरह से ज्ञात हैं।
ये खंभे और ज़ोन-लाइनें, पुनर्निर्मित डेटासेट में डेटा घनत्व में उतार-चढ़ाव को प्रेरित करते हुए, जो पोस्ट-विश्लेषण के समय समस्याग्रस्त साबित हो सकते हैं, कोणीय आवर्धन जैसी जानकारी निर्धारित करने के लिए महत्वपूर्ण हैं, क्योंकि सुविधाओं के बीच क्रिस्टलोग्राफिक संबंध सामान्यतः अच्छी तरह से ज्ञात हैं।


डेटा का पुनर्निर्माण करते समय, नमूने से सामग्री की क्रमिक परतों के वाष्पीकरण के कारण, पार्श्व और गहराई से पुनर्निर्माण मूल्य अत्यधिक अनिसोट्रोपिक होते हैं। उपकरण के सटीक रिज़ॉल्यूशन का निर्धारण सीमित उपयोग का है, क्योंकि डिवाइस का रिज़ॉल्यूशन विश्लेषण के तहत सामग्री के भौतिक गुणों द्वारा निर्धारित किया जाता है।
डेटा का पुनर्निर्माण करते समय, नमूने से सामग्री की क्रमिक परतों के वाष्पीकरण के कारण, पार्श्व और गहराई से पुनर्निर्माण मूल्य अत्यधिक अनिसोट्रोपिक होते हैं। उपकरण के सटीक रिज़ॉल्यूशन का निर्धारण सीमित उपयोग का है, क्योंकि डिवाइस का रिज़ॉल्यूशन विश्लेषण के तहत सामग्री के भौतिक गुणों द्वारा निर्धारित किया जाता है।


== सिस्टम ==
== प्रणाली ==
विधि की स्थापना के बाद से कई डिजाइनों का निर्माण किया गया है। प्रारंभिक क्षेत्र आयन सूक्ष्मदर्शी, आधुनिक परमाणु जांच के अग्रदूत, सामान्यतः व्यक्तिगत अनुसंधान प्रयोगशालाओं द्वारा विकसित कांच के बने उपकरण थे।
विधि की स्थापना के बाद से कई डिजाइनों का निर्माण किया गया है। प्रारंभिक क्षेत्र आयन सूक्ष्मदर्शी, आधुनिक परमाणु जांच के अग्रदूत, सामान्यतः व्यक्तिगत अनुसंधान प्रयोगशालाओं द्वारा विकसित कांच के बने उपकरण थे।


=== सिस्टम लेआउट ===
=== प्रणाली लेआउट ===
कम से कम, परमाणु जांच में उपकरण के कई महत्वपूर्ण टुकड़े शामिल होंगे।
कम से कम, परमाणु जांच में उपकरण के कई महत्वपूर्ण टुकड़े सम्मिलित होंगे।
* कम दबाव बनाए रखने के लिए निर्वात प्रणाली (~10<sup>−8</sup> से 10 तक<sup>-10</sup> Pa) आवश्यक है, सामान्यतः क्लासिक 3 कक्ष वाला UHV डिज़ाइन।
* कम दबाव (~10<sup>−8</sup> से 10<sup>-10</sup> तक पीए) को बनाए रखने के लिए एक निर्वात प्रणाली के लिए, सामान्यतः एक पारंपरिक 3 कक्ष वाला यूएचवी डिज़ाइन की आवश्यकता होती है।
* मानक देखने की प्रणाली सहित वैक्यूम के अंदर मानकों के हेरफेर के लिए प्रणाली।
* मानक देखने की प्रणाली सहित वैक्यूम के अंदर मानकों के हेरफेर के लिए प्रणाली।
* परमाणु गति को कम करने के लिए शीतलन प्रणाली, जैसे हीलियम प्रशीतन सर्किट - 15K के रूप में कम मानक तापमान प्रदान करना।
* परमाणु गति को कम करने के लिए शीतलन प्रणाली, जैसे हीलियम प्रशीतन सर्किट - 15K के रूप में कम मानक तापमान प्रदान करना।
* क्षेत्र वाष्पीकरण के लिए दहलीज के पास मानक खड़े वोल्टेज को बढ़ाने के लिए उच्च वोल्टेज प्रणाली।
* क्षेत्र वाष्पीकरण के लिए दहलीज के पास मानक खड़े वोल्टेज को बढ़ाने के लिए उच्च वोल्टेज प्रणाली।
* उच्च वोल्टेज स्पंदन प्रणाली, समयबद्ध क्षेत्र वाष्पीकरण घटनाओं को बनाने के लिए उपयोग करें
* उच्च वोल्टेज स्पंदन प्रणाली, समयबद्ध क्षेत्र वाष्पीकरण घटनाओं को बनाने के लिए उपयोग करें
* काउंटर इलेक्ट्रोड जो साधारण डिस्क आकार (जैसे EIKOS™, या पहले की पीढ़ी के परमाणु जांच), या LEAP® सिस्टम की तरह शंकु के आकार का स्थानीय इलेक्ट्रोड हो सकता है। वोल्टेज पल्स (नकारात्मक) सामान्यतः काउंटर इलेक्ट्रोड पर लागू होता है।
* काउंटर इलेक्ट्रोड जो साधारण डिस्क आकार (जैसे ईकोस™, या पहले की पीढ़ी के परमाणु जांच), या लीप                                                                                                                                                                                ® प्रणाली की तरह शंकु के आकार का स्थानीय इलेक्ट्रोड हो सकता है। वोल्टेज पल्स (ऋणात्मक) सामान्यतः काउंटर इलेक्ट्रोड पर प्रायुक्त होता है।
* एकल ऊर्जावान आयनों के लिए पहचान प्रणाली जिसमें XY स्थिति और TOF जानकारी शामिल है।
* एकल ऊर्जावान आयनों के लिए पहचान प्रणाली जिसमें XY स्थिति और TOF जानकारी सम्मिलित है।


वैकल्पिक रूप से, लेजर-वाष्पीकरण विधियों का उपयोग करते हुए, परमाणु जांच में लेजर बीम लक्ष्यीकरण और स्पंदन के लिए लेजर-ऑप्टिकल सिस्टम भी शामिल हो सकते हैं। इन-सीटू रिएक्शन सिस्टम, हीटर, या प्लाज्मा उपचार भी कुछ अध्ययनों के साथ-साथ एफआईएम के लिए शुद्ध महान गैस परिचय के लिए नियोजित किया जा सकता है।
वैकल्पिक रूप से, लेजर-वाष्पीकरण विधियों का उपयोग करते हुए, परमाणु जांच में लेजर बीम लक्ष्यीकरण और स्पंदन के लिए लेजर-ऑप्टिकल प्रणाली भी सम्मिलित हो सकते हैं। इन-सीटू रिएक्शन प्रणाली, हीटर, या प्लाज्मा उपचार भी कुछ अध्ययनों के साथ-साथ एफआईएम के लिए शुद्ध नोबेल गैस परिचय के लिए नियोजित किया जा सकता है।


=== प्रदर्शन ===
=== प्रदर्शन ===
संग्रहणीय आयन की मात्रा पहले कई हज़ार या दसियों हज़ार आयनिक घटनाओं तक सीमित थी। इसके बाद के इलेक्ट्रॉनिक्स और इंस्ट्रूमेंटेशन विकास ने सैकड़ों मिलियन परमाणुओं के डेटासेट (10 के डेटासेट वॉल्यूम) के साथ डेटा संचय की दर में वृद्धि की है।<sup>7</sup> एनएम<sup>3</sup>). प्रायोगिक स्थितियों और एकत्र किए गए आयनों की संख्या के आधार पर डेटा संग्रह समय काफी भिन्न होता है। प्रयोगों को पूरा होने में कुछ मिनट से लेकर कई घंटे लगते हैं.
संग्रहणीय आयन की मात्रा पहले कई हज़ार या दसियों हज़ार आयनिक घटनाओं तक सीमित थी। इसके बाद के इलेक्ट्रॉनिक्स और इंस्ट्रूमेंटेशन विकास ने सैकड़ों मिलियन परमाणुओं के डेटासेट (10<sup>7</sup> nm<sup>3</sup> के डेटासेट वॉल्यूम) के साथ डेटा संचय की दर में वृद्धि की है। प्रायोगिक स्थितियों और एकत्र किए गए आयनों की संख्या के आधार पर डेटा संग्रह समय काफी भिन्न होता है। प्रयोगों को पूरा होने में कुछ मिनट से लेकर कई घंटे लगते हैं.


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 139: Line 142:


=== सेमीकंडक्टर ===
=== सेमीकंडक्टर ===
सेमी-कंडक्टर सामग्री अक्सर परमाणु जांच में विश्लेषण योग्य होती है, हालांकि मानक तैयार करना अधिक कठिन हो सकता है, और परिणामों की व्याख्या अधिक जटिल हो सकती है, खासकर अगर सेमी-कंडक्टर में ऐसे चरण होते हैं जो अलग-अलग विद्युत क्षेत्र की ताकत पर वाष्पित हो जाते हैं।
सेमी-चालक सामग्री अधिकांश परमाणु जांच में विश्लेषण योग्य होती है, चूंकि मानक तैयार करना अधिक कठिन हो सकता है, और परिणामों की व्याख्या अधिक जटिल हो सकती है, विशेष रूप से यदि सेमी-चालक में ऐसे चरण होते हैं जो भिन्न-भिन्न विद्युत क्षेत्र की ताकत पर वाष्पित हो जाते हैं।


अर्ध-संचालन सामग्री के अंदर डोपेंट के वितरण की पहचान करने के लिए आयन इम्प्लांटेशन जैसे अनुप्रयोगों का उपयोग किया जा सकता है, जो आधुनिक नैनोमीटर स्केल इलेक्ट्रॉनिक्स के सही डिजाइन में तेजी से महत्वपूर्ण है।
अर्ध-संचालन सामग्री के अंदर डोपेंट के वितरण की पहचान करने के लिए आयन इम्प्लांटेशन जैसे अनुप्रयोगों का उपयोग किया जा सकता है, जो आधुनिक नैनोमीटर स्केल इलेक्ट्रॉनिक्स के सही डिजाइन में तेजी से महत्वपूर्ण है।
Line 145: Line 148:
== सीमाएं ==
== सीमाएं ==
* सामग्री निहित रूप से प्राप्त करने योग्य स्थानिक संकल्प को नियंत्रित करती है।
* सामग्री निहित रूप से प्राप्त करने योग्य स्थानिक संकल्प को नियंत्रित करती है।
* विश्लेषण के दौरान मानक ज्यामिति अनियंत्रित है, फिर भी प्रक्षेपण व्यवहार को नियंत्रित करता है, इसलिए आवर्धन पर थोड़ा नियंत्रण होता है। यह कंप्यूटर जनित 3D डेटासेट में विकृतियाँ लाता है। ब्याज की विशेषताएं थोक नमूने के लिए शारीरिक रूप से भिन्न तरीके से वाष्पित हो सकती हैं, प्रक्षेपण ज्यामिति में परिवर्तन और पुनर्निर्मित मात्रा का आवर्धन। यह अंतिम छवि में मजबूत स्थानिक विकृतियां पैदा करता है।
* विश्लेषण के समय मानक ज्यामिति अनियंत्रित है, फिर भी प्रक्षेपण व्यवहार को नियंत्रित करता है, इसलिए आवर्धन पर थोड़ा नियंत्रण होता है। यह कंप्यूटर जनित 3D डेटासेट में विकृतियाँ लाता है। ब्याज की विशेषताएं थोक नमूने के लिए शारीरिक रूप से भिन्न विधियों से वाष्पित हो सकती हैं, प्रक्षेपण ज्यामिति में परिवर्तन और पुनर्निर्मित मात्रा का आवर्धन। यह अंतिम छवि में मजबूत स्थानिक विकृतियां पैदा करता है।
* वॉल्यूम चयन क्षमता सीमित हो सकती है। साइट विशिष्ट तैयारी के तरीके, उदा। [[फोकस्ड आयन बीम]] तैयारी का उपयोग करना, हालांकि अधिक समय लेने वाला, ऐसी सीमाओं को बायपास करने के लिए इस्तेमाल किया जा सकता है।
* आयतन चयन क्षमता सीमित हो सकती है। साइट विशिष्ट तैयारी के विधियों, उदाहरण के लिए [[फोकस्ड आयन बीम]] तैयारी का उपयोग करना, चूंकि अधिक समय लेने वाला, ऐसी सीमाओं को बायपास करने के लिए उपयोग किया जा सकता है।
* कुछ मानकों में आयन ओवरलैप (उदाहरण के लिए ऑक्सीजन और सल्फर के बीच) अस्पष्ट विश्लेषण वाली प्रजातियों के परिणामस्वरूप हुआ। आयनित समूहों के आयनीकरण संख्या (+, ++, 3+ आदि) को प्रभावित करने के लिए प्रयोग तापमान या लेजर इनपुट ऊर्जा के चयन से इसे कम किया जा सकता है। डेटा विश्लेषण का उपयोग कुछ मामलों में ओवरलैप को सांख्यिकीय रूप से पुनर्प्राप्त करने के लिए किया जा सकता है।
* कुछ मानकों में आयन ओवरलैप (उदाहरण के लिए ऑक्सीजन और सल्फर के बीच) अस्पष्ट विश्लेषण वाली प्रजातियों के परिणामस्वरूप हुआ। आयनित समूहों के आयनीकरण संख्या (+, ++, 3+ आदि) को प्रभावित करने के लिए प्रयोग तापमान या लेजर इनपुट ऊर्जा के चयन से इसे कम किया जा सकता है। डेटा विश्लेषण का उपयोग कुछ स्थितियों में ओवरलैप को सांख्यिकीय रूप से पुनर्प्राप्त करने के लिए किया जा सकता है।
* कम आणविक भार गैसों (हाइड्रोजन और [[हीलियम]]) को विश्लेषण कक्ष से निकालना मुश्किल हो सकता है, और मूल नमूने में मौजूद नहीं होने के बावजूद, मानक से अवशोषित और उत्सर्जित किया जा सकता है। यह कुछ मानकों में हाइड्रोजन की पहचान को भी सीमित कर सकता है। इस कारण से, सीमाओं को दूर करने के लिए [[ deuterated ]] मानकों का उपयोग किया गया है।{{citation needed|date=February 2014}}
* कम आणविक भार गैसों (हाइड्रोजन और [[हीलियम]]) को विश्लेषण कक्ष से निकालना मुश्किल हो सकता है, और मूल नमूने में उपस्थित नहीं होने के अतिरिक्त, मानक से अवशोषित और उत्सर्जित किया जा सकता है। यह कुछ मानकों में हाइड्रोजन की पहचान को भी सीमित कर सकता है। इस कारण से, सीमाओं को दूर करने के लिए [[ deuterated | ड्यूटेरेटेड]] मानकों का उपयोग किया गया है।{{citation needed|date=February 2014}}
* परिणाम 2डी खोजे गए डेटा को 3डी में बदलने के लिए उपयोग किए जाने वाले पैरामीटर पर निर्भर हो सकते हैं। अधिक समस्याग्रस्त सामग्रियों में, सही आवर्धन के सीमित ज्ञान के कारण, सही पुनर्निर्माण नहीं किया जा सकता है; खासकर अगर ज़ोन या पोल क्षेत्रों को नहीं देखा जा सकता है।
* परिणाम 2डी खोजे गए डेटा को 3डी में बदलने के लिए उपयोग किए जाने वाले पैरामीटर पर निर्भर हो सकते हैं। अधिक समस्याग्रस्त सामग्रियों में, सही आवर्धन के सीमित ज्ञान के कारण, सही पुनर्निर्माण नहीं किया जा सकता है; विशेष रूप से यदि ज़ोन या पोल क्षेत्रों को नहीं देखा जा सकता है।


== संदर्भ ==
== संदर्भ ==
Line 167: Line 170:
* [https://myscope.training/#/APTlevel_3_1 MyScope Atom Probe Tomography - An online learning environment for those who want to learn about atom probe provided by Microscopy Australia]
* [https://myscope.training/#/APTlevel_3_1 MyScope Atom Probe Tomography - An online learning environment for those who want to learn about atom probe provided by Microscopy Australia]


{{DEFAULTSORT:Atom Probe}}[[Category: वैज्ञानिक तकनीकें]] [[Category: माइक्रोस्कोप]] [[Category: नैनो]]
{{DEFAULTSORT:Atom Probe}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with dead external links|Atom Probe]]
[[Category:Created On 27/03/2023]]
[[Category:All articles with unsourced statements|Atom Probe]]
[[Category:Articles with dead external links from May 2021|Atom Probe]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Atom Probe]]
[[Category:Articles with invalid date parameter in template|Atom Probe]]
[[Category:Articles with permanently dead external links|Atom Probe]]
[[Category:Articles with unsourced statements from February 2014|Atom Probe]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors|Atom Probe]]
[[Category:Created On 27/03/2023|Atom Probe]]
[[Category:Lua-based templates|Atom Probe]]
[[Category:Machine Translated Page|Atom Probe]]
[[Category:Pages with script errors|Atom Probe]]
[[Category:Templates Vigyan Ready|Atom Probe]]
[[Category:Templates that add a tracking category|Atom Probe]]
[[Category:Templates that generate short descriptions|Atom Probe]]
[[Category:Templates using TemplateData|Atom Probe]]

Latest revision as of 11:02, 18 April 2023

परमाणु जांच से प्राप्त आंकड़ों का दृश्य, प्रत्येक बिंदु पता लगाए गए वाष्पित आयनों से पुनर्निर्मित परमाणु स्थिति का प्रतिनिधित्व करता है।

1967 में 14वें क्षेत्र उत्सर्जन संगोष्ठी में इरविन विल्हेम मुलर और जे. ए. पैनिट्ज द्वारा परमाणु जांच की प्रारंभ की गई थी। इसने क्षेत्र आयन माइक्रोस्कोप को द्रव्यमान स्पेक्ट्रोमीटर के साथ जोड़ा जिसमें कण का पता लगाने की क्षमता थी और पहली बार, उपकरण "... धातु की सतह पर देखे गए एकल परमाणु की प्रकृति का निर्धारण कर सकता था और पर्यवेक्षक के विवेक पर पड़ोसी परमाणुओं से चुना गया था”।[1]

परमाणु जांच पारंपरिक ऑप्टिकल या इलेक्ट्रॉन सूक्ष्मदर्शी के विपरीत होती है, जिसमें आवर्धन प्रभाव विकिरण पथों के हेरफेर के अतिरिक्त अत्यधिक घुमावदार विद्युत क्षेत्र द्वारा प्रदान किए गए आवर्धन से आता है। यह विधि एक मानक सतह से आयनों को निकालने के लिए प्रकृति में विनाशकारी है और उन्हें भिन्न-भिन्न परमाणुओं का निरीक्षण करने के लिए पर्याप्त आवर्धन उत्पन्न करने के लिए पहचानती है क्योंकि वे मानक सतह से हटा दिए जाते हैं। टाइम-ऑफ-फ्लाइट मास स्पेक्ट्रोमेट्री के साथ इस आवर्धन विधि के युग्मन के माध्यम से, विद्युत पल्स के अनुप्रयोग द्वारा वाष्पित आयनों के द्रव्यमान-से-आवेश अनुपात की गणना की जा सकती है।[2]

सामग्री के क्रमिक वाष्पीकरण के माध्यम से, परमाणुओं की परतों को नमूने से हटा दिया जाता है, जिससे न केवल सतह की जांच की जा सकती है, किन्तु सामग्री के माध्यम से भी जांच की जा सकती है। [3] Computer methods are used to rebuild a three-dimensional view of the sample, prior to it being evaporated, providing atomic scale information on the structure of a sample, as well as providing the type atomic species information.[4]

अवलोकन

चुंबकीय लेंस के माध्यम से लेंस के प्रत्यक्ष उपयोग के विपरीत परिणामी आवर्धन को प्रेरित करने के लिए परमाणु जांच के मानकों को अत्यधिक घुमावदार विद्युत क्षमता प्रदान करने के लिए आकार दिया गया है। इसके अतिरिक्त, सामान्य ऑपरेशन में (क्षेत्र आयनीकरण मोड के विपरीत) परमाणु जांच नमूने की जांच के लिए द्वितीयक स्रोत का उपयोग नहीं करती है। किन्तु, नमूने को नियंत्रित विधि से वाष्पित (क्षेत्र वाष्पीकरण) किया जाता है और वाष्पित आयनों को डिटेक्टर पर प्रभावित किया जाता है, जो सामान्यतः 10 से 100 सेमी दूर होता है।

मानकों के लिए एक नीडल ज्यामिति की आवश्यकता होती है और वे टीईएम मानक तैयारी इलेक्ट्रोपोलिसिंग, या केंद्रित आयन बीम विधियों के समान विधियों द्वारा निर्मित होते हैं। 2006 के बाद से, लेजर स्पंदन के साथ वाणिज्यिक प्रणालियां उपलब्ध हो गई हैं और इसने केवल धातु के मानकों से अर्द्धचालक, सिरेमिक जैसे इन्सुलेटिंग और यहां तक ​​​​कि भूवैज्ञानिक सामग्री में अनुप्रयोगों का विस्तार किया है।[5]

100 नैनोमीटर के क्रम पर त्रिज्या के साथ, उच्च विद्युत क्षेत्र को प्रेरित करने के लिए पर्याप्त टिप त्रिज्या का निर्माण करने के लिए, अधिकांश हाथ से तैयारी की जाती है।

परमाणु जांच प्रयोग करने के लिए अति उच्च निर्वात कक्ष में बहुत तेज नीडल के आकार का मानक रखा जाता है। निर्वात प्रणाली में परिचय के बाद, मानक क्रायोजेनिक तापमान (सामान्यतः 20-100 के) तक कम हो जाता है और इस तरह हेरफेर किया जाता है कि नीडल का बिंदु आयन डिटेक्टर की ओर लक्षित होता है। नमूने पर उच्च वोल्टेज प्रायुक्त किया जाता है, और या तो मानक पर लेजर पल्स लगाया जाता है या वोल्टेज पल्स (सामान्यतः 1-2 केवी) सैकड़ों किलोहर्ट्ज़ रेंज में पल्स पुनरावृत्ति दर के साथ काउंटर इलेक्ट्रोड पर प्रायुक्त होता है। नमूने के लिए पल्स का अनुप्रयोग मानक सतह पर भिन्न-भिन्न परमाणुओं को ज्ञात समय पर मानक सतह से आयन के रूप में निकालने की अनुमति देता है। सामान्यतः स्पंद आयाम और नमूने पर उच्च वोल्टेज समय में केवल परमाणु को आयनित करने के लिए प्रोत्साहित करने के लिए कंप्यूटर नियंत्रित होते हैं, किन्तु कई आयनीकरण संभव हैं। स्पंद के अनुप्रयोग और डिटेक्टर पर आयन (एस) का पता लगाने के बीच देरी द्रव्यमान-से-आवेश अनुपात की गणना के लिए अनुमति देती है।

जबकि परमाणु जांच में टाइम-ऑफ-फ्लाइट विधियों द्वारा गणना किए गए परमाणु द्रव्यमान में अनिश्चितता सामग्री के अंदर भिन्न-भिन्न आइसोटोप का पता लगाने की अनुमति देने के लिए पर्याप्त रूप से छोटी है, यह अनिश्चितता अभी भी कुछ स्थितियों में, परमाणु प्रजातियों की निश्चित पहचान को भ्रमित कर सकती है। कई इलेक्ट्रॉनों को हटाने के साथ भिन्न-भिन्न आयनों के सुपरपोजिशन जैसे प्रभाव, या वाष्पीकरण के समय जटिल प्रजातियों के गठन की उपस्थिति के कारण निश्चित पहचान को असंभव बनाने के लिए दो या दो से अधिक प्रजातियों के पास पर्याप्त समय-समय पर उड़ानें हो सकती हैं।

इतिहास

क्षेत्र आयन माइक्रोस्कोपी

क्षेत्र आयन माइक्रोस्कोपी क्षेत्र उत्सर्जन माइक्रोस्कोपी का एक संशोधन है जहां पर्याप्त उच्च विद्युत क्षेत्र (~3-6 वी/एनएम) के अधीन तेज नीडल की तरह टिप कैथोड के शीर्ष से टनलिंग इलेक्ट्रॉनों की धारा उत्सर्जित होती है।[6] टिप एपेक्स पर कार्य फ़ंक्शन की अनुमानित छवि बनाने के लिए नीडल फॉस्फोर स्क्रीन की ओर उन्मुख होती है। क्वांटम यांत्रिक प्रभावों और इलेक्ट्रॉन वेग में पार्श्व भिन्नताओं के कारण छवि रिज़ॉल्यूशन (2-2.5 एनएम) तक सीमित है।[7]

क्षेत्र आयन माइक्रोस्कोपी में टिप को क्रायोजेन द्वारा ठंडा किया जाता है और इसकी ध्रुवीयता को विपरीत कर दिया जाता है। जब छवि गैस (सामान्यतः हाइड्रोजन या हीलियम) को कम दबाव (<0.1 पास्कल) पर प्रस्तुत किया जाता है, तो टिप एपेक्स पर उच्च विद्युत क्षेत्र में गैस आयनों को आयनित किया जाता है और टिप एपेक्स पर उभरे हुए परमाणुओं की अनुमानित छवि उत्पन्न होती है। छवि संकल्प मुख्य रूप से टिप के तापमान से निर्धारित होता है किन्तु 78 केल्विन पर भी परमाणु संकल्प प्राप्त किया जाता है।[8]


10-सेमी परमाणु जाँच

1973 में जे.ए. पैनित्ज़[9] द्वारा आविष्कृत 10-सेमी परमाणु जांच एक "नई और सरल परमाणु जांच थी जो गहराई से प्रजातियों की पहचान करने या अपने पूर्ववर्तियों द्वारा प्रदान किए गए अधिक सामान्य परमाणु-द्वारा परमाणु विश्लेषण की अनुमति देती है ... एक उपकरण में दो लीटर से कम की मात्रा जिसमें टिप आंदोलन अनावश्यक है और वाष्पीकरण नाड़ी स्थिरता और पिछले डिजाइनों के संरेखण की समस्याओं को समाप्त कर दिया गया है। इसे टाइम ऑफ़ फ़्लाइट (टीओएफ) मास स्पेक्ट्रोमीटर को प्रॉक्सिमिटी फ़ोकस्ड, ड्यूल चैनल प्लेट डिटेक्टर, 11.8 सेमी बहाव क्षेत्र और 38° फ़ील्ड ऑफ़ व्यू के साथ जोड़कर पूरा किया गया। क्षेत्र उत्सर्जक टिप के शीर्ष से हटाए गए परमाणुओं की एफआईएम छवि या डेसॉर्प्शन छवि प्राप्त की जा सकती है। 10-सेमी परमाणु जाँच को वाणिज्यिक उपकरणों सहित बाद के परमाणु जाँच का पूर्वज कहा गया है।[10]


छवि परमाणु जाँच

छवि परमाणु-जाँच (आईएपी) को 1974 में जे ए पंजिट द्वारा प्रस्तुत किया गया था। इसमें अभी तक 10-सेमी परमाणु-जाँच की विशेषताओं को सम्मिलित किया गया है "... [पिछले] परमाणु जांच दर्शन से पूरी तरह से अलग है। पूर्व-चयनित आयन-छवि स्थान बनाने वाली सतह प्रजातियों की पहचान निर्धारित करने के प्रयास के अतिरिक्त, हम पूर्व-चयनित द्रव्यमान-से-आवेश अनुपात की सतह प्रजातियों के पूर्ण क्रिस्टलोग्राफिक वितरण को निर्धारित करना चाहते हैं। अब मान लीजिए कि डिटेक्टर को लगातार संचालित करने के अतिरिक्त, इसे थोड़े समय के लिए संयोग से चालू किया जाता है, जो वाष्पीकरण पल्स के नमूना तक पहुंचने के बाद गेट पल्स को एक समय टी लगाकर ब्याज की एक पूर्व-चयनित प्रजाति के आगमन के साथ होता है। यदि गेट पल्स की अवधि निकटवर्ती प्रजातियों के बीच यात्रा के समय से कम है, तो अद्वितीय यात्रा समय टी वाली केवल उस सतह प्रजाति का पता लगाया जाएगा और इसका पूरा क्रिस्टलोग्राफिक वितरण प्रदर्शित किया जाएगा।[11] इसे 1975 में क्षेत्र डिसोर्शन स्पेक्ट्रोमीटर के रूप में पेटेंट कराया गया था।[12] छवि परमाणु-जाँच मोनिकर को 1978 में ए. जे. वॉ द्वारा रखा गया था और उसी वर्ष जे. ए. पैनिट्ज द्वारा इस उपकरण का विस्तार से वर्णन किया गया था।[13][14]


परमाणु जांच टोमोग्राफी (एपीटी)

आधुनिक दिन परमाणु जांच टोमोग्राफी परमाणुओं के पार्श्व स्थान को कम करने के लिए बॉक्स में स्थिति संवेदनशील डिटेक्टर उर्फ ​​​​एफआईएम का उपयोग करती है। एपीटी का विचार, जे ए पंजिट के क्षेत्र डिसोर्शन स्पेक्ट्रोमीटर पेटेंट से प्रेरित है, माइक मिलर द्वारा 1983 में प्रारंभ किया गया था और 1986 में पहले प्रोटोटाइप के साथ समाप्त हुआ था।[4] 1988 में ऑक्सफोर्ड विश्वविद्यालय में अल्फ्रेड सेरेज़ो, टेरेंस गॉडफ्रे और जॉर्ज डी. डब्ल्यू. स्मिथ द्वारा तथाकथित स्थिति-संवेदनशील (पीओएस) डिटेक्टर के उपयोग सहित उपकरण में कई शोधन किए गए थे। टोमोग्राफिक परमाणु जाँच (टीएपी), द्वारा विकसित 1993 में फ्रांस में रूएन विश्वविद्यालय के शोधकर्ताओं ने मल्टीचैनल समय प्रणाली और मल्टीएनोड सरणी प्रस्तुत किया था। दोनों उपकरणों (पीओएसएपी और टीएपी) का क्रमशः ऑक्सफोर्ड इंस्ट्रूमेंट्स और सीएएमसीए द्वारा व्यावसायीकरण किया गया था। तब से, देखने के क्षेत्र, द्रव्यमान और स्थिति संकल्प, और उपकरण के डेटा अधिग्रहण दर को बढ़ाने के लिए कई परिशोधन किए गए हैं। स्थानीय इलेक्ट्रोड परमाणु जाँच को पहली बार 2003 में इमागो साइंटिफिक इंस्ट्रूमेंट्स द्वारा प्रस्तुत किया गया था। 2005 में, स्पंदित लेजर परमाणु जांच (पीएलएपी) के व्यावसायीकरण ने अत्यधिक प्रवाहकीय सामग्री (धातु) से खराब चालक (सिलिकॉन जैसे अर्धचालक) और यहां तक ​​​​कि इन्सुलेट सामग्री तक अनुसंधान के रास्ते का विस्तार किया था।[15] अमेटेक ने 2007 में कैमका और 2010 में इमागो वैज्ञानिक उपकरण (मैडिसन, WI) का अधिग्रहण किया, जिससे कंपनी 2019 में संसार में स्थापित 110 से अधिक उपकरणों के साथ एपीटी की एकमात्र व्यावसायिक डेवलपर बन गई।

एपीटी के साथ काम के पहले कुछ दशक धातुओं पर केंद्रित थे। चूंकि, लेजर स्पंदित परमाणु जांच प्रणाली की प्रारंभ के साथ बायोमटेरियल्स पर कुछ काम के साथ अर्द्धचालक, सिरेमिक और भूगर्भीय सामग्रियों तक अनुप्रयोगों का विस्तार हुआ है।[16] एपीटी का उपयोग करके जैविक सामग्री का अब तक का सबसे उन्नत अध्ययन[16] में चिटोन चैतोप्ल्यूरा अपिकुलता के रेडुला के दांतों की रासायनिक संरचना का विश्लेषण सम्मिलित है।[17] इस अध्ययन में, एपीटी के उपयोग ने चिटोन दांतों में आसपास के नैनो-क्रिस्टलीय मैग्नेटाइट में कार्बनिक फाइबर के रासायनिक मानचित्र दिखाए, फाइबर जो अधिकांश सोडियम या मैगनीशियम के साथ सह-स्थित होते थे।[17] इसे हाथी दांत, डेंटिन और मानव इनेमल[18] का अध्ययन करने के लिए आगे बढ़ाया गया है[19]


सिद्धांत

क्षेत्र वाष्पीकरण

क्षेत्र वाष्पीकरण प्रभाव है जो तब हो सकता है जब सामग्री की सतह पर बंधा हुआ परमाणु पर्याप्त रूप से उच्च और उचित रूप से निर्देशित विद्युत क्षेत्र की उपस्थिति में होता है, जहां विद्युत क्षेत्र दूरी के संबंध में विद्युत क्षमता (वोल्टेज) का अंतर होता है। बार जब यह स्थिति पूरी हो जाती है, तो यह पर्याप्त है कि मानक सतह पर स्थानीय बंधन क्षेत्र से दूर होने में सक्षम है, सतह से परमाणु के वाष्पीकरण की अनुमति देता है जिससे वह अन्यथा बंध जाता है।

आयन उड़ान

चाहे सामग्री से ही वाष्पित हो, या गैस से आयनीकृत हो, वाष्पित होने वाले आयन इलेक्ट्रोस्टैटिक बल द्वारा त्वरित होते हैं, नमूने के कुछ टिप-रेडी के अंदर अपनी अधिकांश ऊर्जा प्राप्त करते हैं।[20]

इसके बाद, किसी दिए गए आयन पर त्वरण बल इलेक्ट्रोस्टैटिक समीकरण द्वारा नियंत्रित किया जाता है, जहां n आयन की आयनीकरण अवस्था है, और e मौलिक विद्युत आवेश है।

इसे न्यूटन के नियम (F=ma) के माध्यम से आयन, m के द्रव्यमान के बराबर किया जा सकता है:

आयन उड़ान में सापेक्षवादी प्रभावों को सामान्यतः अनदेखा कर दिया जाता है, क्योंकि पुनः प्राप्ति योग्य आयन गति प्रकाश की गति का केवल बहुत छोटा अंश है।

यह मानते हुए कि आयन बहुत कम अंतराल के समय त्वरित होता है, यह माना जा सकता है कि आयन निरंतर वेग से यात्रा कर रहा है। जैसा कि आयन टिप से वोल्टेज V1 पर कुछ नाममात्र मैदान की क्षमता तक यात्रा करेगा, जिस गति से आयन यात्रा कर रहा है, उसका अनुमान आयनीकरण (या निकट) आयनीकरण के समय आयन में स्थानांतरित ऊर्जा से लगाया जा सकता है। इसलिए, आयन की गति की गणना निम्नलिखित समीकरण से की जा सकती है, जो गतिज ऊर्जा को विद्युत क्षेत्र के कारण ऊर्जा लाभ से संबंधित करती है, इलेक्ट्रॉनों के नुकसान से उत्पन्न ऋणात्मक शुद्ध धनात्मक आवेश बनाता है।[21]

जहां यू आयन वेग है। U के लिए समाधान करने पर, निम्नलिखित संबंध पाया जाता है:

मान लीजिए कि निश्चित आयनीकरण वोल्टेज के लिए, एकल आवेशित हाइड्रोजन आयन 1.4x10^6 ms-1 का परिणामी वेग 10~kV पर प्राप्त करता है। मानक शर्तों के तहत अकेले आवेश किए गए ड्यूटेरियम आयन ने सामान्यतः 1.4x10^6/1.41 ms-1 प्राप्त किया होगा। यदि डिटेक्टर को 1 मीटर की दूरी पर रखा गया था, तो आयन की उड़ान का समय 1/1.4x10^6 और 1.41/1.4x10^6 सेकेंड होगा। इस प्रकार, आयन आगमन का समय आयन प्रकार का अनुमान लगाने के लिए उपयोग किया जा सकता है, यदि वाष्पीकरण का समय ज्ञात हो।

उपरोक्त समीकरण से, यह दिखाने के लिए इसे फिर से व्यवस्थित किया जा सकता है

ज्ञात उड़ान दूरी दी गई। एफ, आयन के लिए, और ज्ञात उड़ान समय, t,

और इस प्रकार आयन के लिए द्रव्यमान-से-आवेश प्राप्त करने के लिए इन मानों को प्रतिस्थापित किया जा सकता है।

इस प्रकार आयन के लिए जो 2000 ns के समय में 1 मीटर उड़ान पथ को पार करता है, 5000 V (V in Si इकाइयों kg.m^2.s^-3.A^-1 है) का प्रारंभिक त्वरण वोल्टेज दिया गया है और यह देखते हुए कि एमू 1×10-27 किलोग्राम है, द्रव्यमान-से-आवेश अनुपात (अधिक त्रुटिहीन रूप से द्रव्यमान-से-आयनीकरण मान अनुपात) ~3.86 एएमयू/आवेश हो जाता है। हटाए गए इलेक्ट्रॉनों की संख्या, और इस प्रकार आयन पर शुद्ध धनात्मक आवेश प्रत्यक्ष रूप से ज्ञात नहीं है, किन्तु अवलोकन किए गए आयनों के हिस्टोग्राम (स्पेक्ट्रम) से अनुमान लगाया जा सकता है।

आवर्धन

परमाणु में आवर्धन आयनों के छोटे, शार्प सिरे से रेडियल रूप से दूर प्रक्षेपण के कारण होता है। इसके बाद, सुदूर क्षेत्र में, आयनों को अत्यधिक आवर्धित किया जाएगा। यह आवर्धन व्यक्तिगत परमाणुओं के कारण क्षेत्र भिन्नताओं का निरीक्षण करने के लिए पर्याप्त है, इस प्रकार एकल परमाणुओं की छवि के लिए क्षेत्र आयन और क्षेत्र वाष्पीकरण मोड में अनुमति देता है।

परमाणु जांच के लिए मानक प्रक्षेपण मॉडल उत्सर्जक ज्यामिति है जो शंकु खंड की क्रांति पर आधारित है, जैसे गोलाकार, हाइपरबोलॉइड या ठोस अनुवृत्त इन टिप मॉडलों के लिए, क्षेत्र के समाधान अनुमानित या विश्लेषणात्मक रूप से प्राप्त किए जा सकते हैं। गोलाकार उत्सर्जक के लिए आवर्धन टिप के त्रिज्या के व्युत्क्रमानुपाती होता है, गोलाकार स्क्रीन पर सीधे प्रक्षेपण दिया जाता है, निम्नलिखित समीकरण को ज्यामितीय रूप से प्राप्त किया जा सकता है।

जहां rscreen टिप सेंटर से डिटेक्शन स्क्रीन की त्रिज्या है और टिप त्रिज्या को rtip करती है। स्क्रीन दूरी के लिए व्यावहारिक युक्ति कई सेंटीमीटर से लेकर कई मीटर तक हो सकती है, साथ ही देखने के समान क्षेत्र को कम करने के लिए बड़े डिटेक्टर क्षेत्र की आवश्यकता होती है।

व्यावहारिक रूप से बोलते हुए, प्रयोग करने योग्य आवर्धन वाष्पीकरण से पहले परमाणुओं के पार्श्व कंपन जैसे कई प्रभावों से सीमित होगा।

जबकि क्षेत्र आयन और परमाणु जांच सूक्ष्मदर्शी दोनों का आवर्धन बहुत अधिक है, सटीक आवर्धन जांच किए गए नमूने के लिए विशिष्ट स्थितियों पर निर्भर करता है, इसलिए पारंपरिक इलेक्ट्रॉन सूक्ष्मदर्शी के विपरीत, आवर्धन पर अधिकांश बहुत कम प्रत्यक्ष नियंत्रण होता है, और इसके अतिरिक्त, प्राप्त छवियां सतह पर विद्युत क्षेत्र के आकार में उतार-चढ़ाव के कारण अत्यधिक परिवर्तनशील आवर्धन हो सकता है।

पुनर्निर्माण

आयन अनुक्रम डेटा का कम्प्यूटेशनल रूपांतरण, जैसा कि स्थिति-संवेदनशील डिटेक्टर से परमाणु प्रकारों के त्रि-आयामी दृश्य के लिए प्राप्त किया जाता है, को "पुनर्निर्माण" कहा जाता है। पुनर्निर्माण एल्गोरिदम सामान्यतः ज्यामितीय रूप से आधारित होते हैं और इसमें कई साहित्य सूत्रीकरण होते हैं। पुनर्निर्माण के लिए अधिकांश मॉडल मानते हैं कि टिप एक गोलाकार वस्तु है, और डिटेक्टर की स्थिति को 3डी स्पेस, R3 में एम्बेडेड 2डी सतह में बदलने के लिए स्टीरियोग्राफिक प्रक्षेपण के लिए अनुभवजन्य सुधार का उपयोग करते हैं। आयन अनुक्रम इनपुट डेटा के एक फ़ंक्शन के रूप में R3 के माध्यम से इस सतह को स्वीप करके, जैसे आयन-ऑर्डरिंग के माध्यम से, एक वॉल्यूम उत्पन्न होता है, जिस पर 2डी डिटेक्टर की स्थिति की गणना की जा सकती है और त्रि-आयामी स्थान रखा जा सकता है।

सामान्यतः स्वीप सतह की उन्नति का सरल रूप लेता है, जैसे कि सतह को इसकी उन्नति अक्ष के बारे में सममित विधि से विस्तारित किया जाता है, जिसमें प्रत्येक आयन का पता लगाने और पहचाने जाने वाले आयतन द्वारा निर्धारित उन्नति दर होती है। यह बैडमिंटन शटलकॉक के समान गोल-शंक्वाकार आकार ग्रहण करने के लिए अंतिम पुनर्निर्मित मात्रा का कारण बनता है। इस प्रकार खोजी गई घटनाएँ प्रयोगात्मक रूप से मापे गए मानों जैसे उड़ान के आयन समय या प्रायोगिक रूप से व्युत्पन्न मात्राओं, जैसे उड़ान या डिटेक्टर डेटा के समय के साथ बिंदु क्लाउड डेटा बन जाती हैं।

डेटा हेरफेर का यह रूप तेजी से कंप्यूटर विज़ुअलाइज़ेशन और विश्लेषण के लिए पॉइंट क्लाउड डेटा के रूप में प्रस्तुत डेटा के साथ अतिरिक्त जानकारी, जैसे कि प्रत्येक आयन के द्रव्यमान को आवेशित (जैसा कि ऊपर वेग समीकरण से गणना की गई है), करने के लिए वोल्टेज या अन्य सहायक मापी गई मात्रा या गणना की अनुमति देता है।

डेटा सुविधाएँ

परमाणु जांच डेटा की विहित विशेषता, सामग्री के माध्यम से दिशा में इसका उच्च स्थानिक संकल्प है, जिसे क्रमबद्ध वाष्पीकरण अनुक्रम के लिए जिम्मेदार ठहराया गया है। इसलिए यह डेटा संबंधित रासायनिक जानकारी के साथ परमाणु रूप से तेज दबे हुए इंटरफेस के पास छवि बना सकता है।

बाष्पीकरणीय प्रक्रिया से प्राप्त डेटा चूंकि उन कलाकृतियों के बिना नहीं है जो भौतिक वाष्पीकरण या आयनीकरण प्रक्रिया का निर्माण करते हैं। वाष्पीकरण या क्षेत्र आयन छवियों की प्रमुख विशेषता यह है कि परमाणु पैमाने पर मानक सतह के गलियारे के कारण डेटा घनत्व अत्यधिक विषम है। यह गलियारा निकट-टिप क्षेत्र (परमाणु त्रिज्या या टिप से कम के क्रम में) में मजबूत विद्युत क्षेत्र प्रवणता को जन्म देता है, जो आयनीकरण के समय आयनों को विद्युत क्षेत्र सामान्य से दूर विक्षेपित करता है।

परिणामी विक्षेपण का अर्थ है कि उच्च वक्रता के इन क्षेत्रों में, परमाणु छतों का पता लगाने के घनत्व में मजबूत अनिसोट्रॉपी द्वारा विश्वास किया जाता है। जहां यह सतह पर कुछ परमाणुओं के कारण होता है, सामान्यतः ध्रुव के रूप में संदर्भित किया जाता है, क्योंकि ये नमूने के क्रिस्टलोग्राफिक अक्षों (घन क्रिस्टल प्रणाली , क्यूबिक क्रिस्टल प्रणाली, गोले के क्लोज-पैकिंग) आदि के साथ मेल खाते हैं। परमाणु छत के विक्षेपण का कारण बनता है, कम घनत्व वाली रेखा बनती है और इसे ज़ोन रेखा कहा जाता है।

ये खंभे और ज़ोन-लाइनें, पुनर्निर्मित डेटासेट में डेटा घनत्व में उतार-चढ़ाव को प्रेरित करते हुए, जो पोस्ट-विश्लेषण के समय समस्याग्रस्त साबित हो सकते हैं, कोणीय आवर्धन जैसी जानकारी निर्धारित करने के लिए महत्वपूर्ण हैं, क्योंकि सुविधाओं के बीच क्रिस्टलोग्राफिक संबंध सामान्यतः अच्छी तरह से ज्ञात हैं।

डेटा का पुनर्निर्माण करते समय, नमूने से सामग्री की क्रमिक परतों के वाष्पीकरण के कारण, पार्श्व और गहराई से पुनर्निर्माण मूल्य अत्यधिक अनिसोट्रोपिक होते हैं। उपकरण के सटीक रिज़ॉल्यूशन का निर्धारण सीमित उपयोग का है, क्योंकि डिवाइस का रिज़ॉल्यूशन विश्लेषण के तहत सामग्री के भौतिक गुणों द्वारा निर्धारित किया जाता है।

प्रणाली

विधि की स्थापना के बाद से कई डिजाइनों का निर्माण किया गया है। प्रारंभिक क्षेत्र आयन सूक्ष्मदर्शी, आधुनिक परमाणु जांच के अग्रदूत, सामान्यतः व्यक्तिगत अनुसंधान प्रयोगशालाओं द्वारा विकसित कांच के बने उपकरण थे।

प्रणाली लेआउट

कम से कम, परमाणु जांच में उपकरण के कई महत्वपूर्ण टुकड़े सम्मिलित होंगे।

  • कम दबाव (~10−8 से 10-10 तक पीए) को बनाए रखने के लिए एक निर्वात प्रणाली के लिए, सामान्यतः एक पारंपरिक 3 कक्ष वाला यूएचवी डिज़ाइन की आवश्यकता होती है।
  • मानक देखने की प्रणाली सहित वैक्यूम के अंदर मानकों के हेरफेर के लिए प्रणाली।
  • परमाणु गति को कम करने के लिए शीतलन प्रणाली, जैसे हीलियम प्रशीतन सर्किट - 15K के रूप में कम मानक तापमान प्रदान करना।
  • क्षेत्र वाष्पीकरण के लिए दहलीज के पास मानक खड़े वोल्टेज को बढ़ाने के लिए उच्च वोल्टेज प्रणाली।
  • उच्च वोल्टेज स्पंदन प्रणाली, समयबद्ध क्षेत्र वाष्पीकरण घटनाओं को बनाने के लिए उपयोग करें
  • काउंटर इलेक्ट्रोड जो साधारण डिस्क आकार (जैसे ईकोस™, या पहले की पीढ़ी के परमाणु जांच), या लीप ® प्रणाली की तरह शंकु के आकार का स्थानीय इलेक्ट्रोड हो सकता है। वोल्टेज पल्स (ऋणात्मक) सामान्यतः काउंटर इलेक्ट्रोड पर प्रायुक्त होता है।
  • एकल ऊर्जावान आयनों के लिए पहचान प्रणाली जिसमें XY स्थिति और TOF जानकारी सम्मिलित है।

वैकल्पिक रूप से, लेजर-वाष्पीकरण विधियों का उपयोग करते हुए, परमाणु जांच में लेजर बीम लक्ष्यीकरण और स्पंदन के लिए लेजर-ऑप्टिकल प्रणाली भी सम्मिलित हो सकते हैं। इन-सीटू रिएक्शन प्रणाली, हीटर, या प्लाज्मा उपचार भी कुछ अध्ययनों के साथ-साथ एफआईएम के लिए शुद्ध नोबेल गैस परिचय के लिए नियोजित किया जा सकता है।

प्रदर्शन

संग्रहणीय आयन की मात्रा पहले कई हज़ार या दसियों हज़ार आयनिक घटनाओं तक सीमित थी। इसके बाद के इलेक्ट्रॉनिक्स और इंस्ट्रूमेंटेशन विकास ने सैकड़ों मिलियन परमाणुओं के डेटासेट (107 nm3 के डेटासेट वॉल्यूम) के साथ डेटा संचय की दर में वृद्धि की है। प्रायोगिक स्थितियों और एकत्र किए गए आयनों की संख्या के आधार पर डेटा संग्रह समय काफी भिन्न होता है। प्रयोगों को पूरा होने में कुछ मिनट से लेकर कई घंटे लगते हैं.

अनुप्रयोग

धातु विज्ञान

परमाणु स्तर पर मिश्र धातु प्रणालियों के रासायनिक विश्लेषण में परमाणु जांच को सामान्यतः नियोजित किया गया है। यह इन सामग्रियों में अच्छे रासायनिक और पर्याप्त स्थानिक जानकारी प्रदान करने वाले वोल्टेज स्पंदित परमाणु जांच के परिणामस्वरूप उत्पन्न हुआ है। बड़े दाने वाली मिश्र धातुओं से धातु के नमूने बनाना आसान हो सकता है, विशेष रूप से तार के मानकों से, हाथ से इलेक्ट्रोपोलिसिंग तकनीक अच्छे परिणाम देती है।

इसके बाद, मिश्र धातुओं की विस्तृत श्रृंखला की रासायनिक संरचना के विश्लेषण में परमाणु जांच का उपयोग किया गया है।

थोक सामग्री में मिश्र धातु घटकों के प्रभाव को निर्धारित करने में इस तरह के डेटा महत्वपूर्ण हैं, ठोस-राज्य प्रतिक्रिया सुविधाओं की पहचान, जैसे कि ठोस चरण अवक्षेपित। संरचना के साथ त्रि-आयामी डेटासेट उत्पन्न करने में कठिनाई के कारण ऐसी जानकारी अन्य माध्यमों (जैसे ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी) द्वारा विश्लेषण के लिए उत्तरदायी नहीं हो सकती है।

सेमीकंडक्टर

सेमी-चालक सामग्री अधिकांश परमाणु जांच में विश्लेषण योग्य होती है, चूंकि मानक तैयार करना अधिक कठिन हो सकता है, और परिणामों की व्याख्या अधिक जटिल हो सकती है, विशेष रूप से यदि सेमी-चालक में ऐसे चरण होते हैं जो भिन्न-भिन्न विद्युत क्षेत्र की ताकत पर वाष्पित हो जाते हैं।

अर्ध-संचालन सामग्री के अंदर डोपेंट के वितरण की पहचान करने के लिए आयन इम्प्लांटेशन जैसे अनुप्रयोगों का उपयोग किया जा सकता है, जो आधुनिक नैनोमीटर स्केल इलेक्ट्रॉनिक्स के सही डिजाइन में तेजी से महत्वपूर्ण है।

सीमाएं

  • सामग्री निहित रूप से प्राप्त करने योग्य स्थानिक संकल्प को नियंत्रित करती है।
  • विश्लेषण के समय मानक ज्यामिति अनियंत्रित है, फिर भी प्रक्षेपण व्यवहार को नियंत्रित करता है, इसलिए आवर्धन पर थोड़ा नियंत्रण होता है। यह कंप्यूटर जनित 3D डेटासेट में विकृतियाँ लाता है। ब्याज की विशेषताएं थोक नमूने के लिए शारीरिक रूप से भिन्न विधियों से वाष्पित हो सकती हैं, प्रक्षेपण ज्यामिति में परिवर्तन और पुनर्निर्मित मात्रा का आवर्धन। यह अंतिम छवि में मजबूत स्थानिक विकृतियां पैदा करता है।
  • आयतन चयन क्षमता सीमित हो सकती है। साइट विशिष्ट तैयारी के विधियों, उदाहरण के लिए फोकस्ड आयन बीम तैयारी का उपयोग करना, चूंकि अधिक समय लेने वाला, ऐसी सीमाओं को बायपास करने के लिए उपयोग किया जा सकता है।
  • कुछ मानकों में आयन ओवरलैप (उदाहरण के लिए ऑक्सीजन और सल्फर के बीच) अस्पष्ट विश्लेषण वाली प्रजातियों के परिणामस्वरूप हुआ। आयनित समूहों के आयनीकरण संख्या (+, ++, 3+ आदि) को प्रभावित करने के लिए प्रयोग तापमान या लेजर इनपुट ऊर्जा के चयन से इसे कम किया जा सकता है। डेटा विश्लेषण का उपयोग कुछ स्थितियों में ओवरलैप को सांख्यिकीय रूप से पुनर्प्राप्त करने के लिए किया जा सकता है।
  • कम आणविक भार गैसों (हाइड्रोजन और हीलियम) को विश्लेषण कक्ष से निकालना मुश्किल हो सकता है, और मूल नमूने में उपस्थित नहीं होने के अतिरिक्त, मानक से अवशोषित और उत्सर्जित किया जा सकता है। यह कुछ मानकों में हाइड्रोजन की पहचान को भी सीमित कर सकता है। इस कारण से, सीमाओं को दूर करने के लिए ड्यूटेरेटेड मानकों का उपयोग किया गया है।[citation needed]
  • परिणाम 2डी खोजे गए डेटा को 3डी में बदलने के लिए उपयोग किए जाने वाले पैरामीटर पर निर्भर हो सकते हैं। अधिक समस्याग्रस्त सामग्रियों में, सही आवर्धन के सीमित ज्ञान के कारण, सही पुनर्निर्माण नहीं किया जा सकता है; विशेष रूप से यदि ज़ोन या पोल क्षेत्रों को नहीं देखा जा सकता है।

संदर्भ

  1. Müller, Erwin W.; Panitz, John A.; McLane, S. Brooks (1968). "एटम-प्रोब फील्ड आयन माइक्रोस्कोप". Review of Scientific Instruments. 39 (1): 83–86. Bibcode:1968RScI...39...83M. doi:10.1063/1.1683116. ISSN 0034-6748.
  2. Müller, E. W. (1970). "एटम-प्रोब फील्ड आयन माइक्रोस्कोप". Naturwissenschaften. 5: 222–230. {{cite journal}}: Cite journal requires |journal= (help)
  3. Miller, M; Smith, G. (1989). Atom Probe Microanalysis: Principles and Applications to Materials Problems. Materials Research Society. ISBN 978-0-931837-99-9.
  4. 4.0 4.1 Miller, M. (2000). Atom Probe Tomography: Analysis at the Atomic Level. Kluwer Academic/Plenum Publishers. ISBN 978-0-306-46415-7.
  5. Valley, John W.; Reinhard, David A.; Cavosie, Aaron J.; Ushikubo, Takayuki; Lawrence, Daniel F.; Larson, David J.; Kelly, Thomas F.; Snoeyenbos, David R.; Strickland, Ariel (2015-07-01). "Nano- and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: New tools for old minerals" (PDF). American Mineralogist. 100 (7): 1355–1377. Bibcode:2015AmMin.100.1355V. doi:10.2138/am-2015-5134. ISSN 0003-004X. S2CID 51933115. Archived (PDF) from the original on 2022-10-09.
  6. Gomer, R (1961). क्षेत्र उत्सर्जन और क्षेत्र आयनीकरण. Harvard University Press. ISBN 978-1-56396-124-3.
  7. Tsong, T (1990). Atom probe field Ion Microscopy: Field Ion emission and Surfaces and interfaces at atomic resolution. Cambridge University Press. ISBN 978-0-521-36379-2.
  8. Müller, Erwin W.; Bahadur, Kanwar (1956). "धातु की सतह पर गैसों का क्षेत्र आयनन और क्षेत्र आयन सूक्ष्मदर्शी का विभेदन". Phys. Rev. 102 (1): 624–631. Bibcode:1956PhRv..102..624M. doi:10.1103/PhysRev.102.624.
  9. Panitz, John A. (1973). "10 सेमी परमाणु जांच". Review of Scientific Instruments. 44 (8): 1034–1038. Bibcode:1973RScI...44.1034P. doi:10.1063/1.1686295.
  10. Seidman, David N. (2007). "Three-Dimensional Atom-Probe Tomography: Advances and Applications". Annual Review of Materials Research. 37: 127–158. Bibcode:2007AnRMS..37..127S. doi:10.1146/annurev.matsci.37.052506.084200.
  11. Panitz, John A. (1974). "फील्ड-डिसोर्बेड प्रजातियों का क्रिस्टलोग्राफिक वितरण". Journal of Vacuum Science and Technology. 11 (1): 207–210. Bibcode:1974JVST...11..206P. doi:10.1116/1.1318570. ISSN 0022-5355.
  12. Panitz, John A. "फील्ड डिसोर्शन स्पेक्ट्रोमीटर". U.S. Patent 3,868,507.
  13. Waugh, A. J. (1978). "एकल टाइम-गेटेड चैनल प्लेट का उपयोग करके एक इमेजिंग परमाणु जांच". J. Phys. E: Sci. Instrum. 11 (1): 49–52. Bibcode:1978JPhE...11...49W. doi:10.1088/0022-3735/11/1/012.
  14. Panitz, John A. (1978). "इमेजिंग एटम-प्रोब मास स्पेक्ट्रोस्कोपी". Progress in Surface Science. 8 (6): 219–263. Bibcode:1978PrSS....8..219P. doi:10.1016/0079-6816(78)90002-3. ISSN 0079-6816.
  15. Bunton, J.; Lenz, D; Olson, J; Thompson, K; Ulfig, R; Larson, D; Kelly, T (2006). "Instrumentation Developments in Atom Probe Tomography: Applications in Semiconductor Research". Microscopy and Microanalysis. 12 (2): 1730–1731. Bibcode:2006MiMic..12.1730B. doi:10.1017/S1431927606065809. ISSN 1431-9276.
  16. 16.0 16.1 Kelly, T. F.; Larson, D. J. (2012). "Atom Probe Tomography 2012". Annual Review of Materials Research. 42: 1–31. Bibcode:2012AnRMS..42....1K. doi:10.1146/annurev-matsci-070511-155007.
  17. 17.0 17.1 Gordon, L. M.; Joester, D. (2011). "Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth". Nature. 469 (7329): 194–197. Bibcode:2011Natur.469..194G. doi:10.1038/nature09686. PMID 21228873. S2CID 4430261.
  18. Fontaine, Alexandre La; Cairney, Julie (July 2017). "मानव टूथ इनेमल की एटम जांच टोमोग्राफी और मास स्पेक्ट्रम में मैग्नीशियम और कार्बन की सटीक पहचान". Microscopy and Microanalysis (in English). 23 (S1): 676–677. Bibcode:2017MiMic..23S.676L. doi:10.1017/S1431927617004044. ISSN 1431-9276.
  19. Gordon, L.M.; Tran, L.; Joester, D. (2012). "एपेटाइट्स और हड्डी-प्रकार के खनिजयुक्त ऊतकों की एटम प्रोब टोमोग्राफी". ACS Nano. 6 (12): 10667–10675. doi:10.1021/nn3049957. PMID 23176319.
  20. "Field Ion Microscopy - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-10-13.
  21. "Fundamentals of Electric Propulsion: Ion and Hall Thrusters" (PDF). Jet Propulsion Laboratory California Institute of Technology.


अग्रिम पठन


बाहरी संबंध