रैखिक मॉडल: Difference between revisions
No edit summary |
|||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Distinguish|नवीनीकरण का रैखिक मॉडल}} | {{Distinguish|नवीनीकरण का रैखिक मॉडल}} | ||
सांख्यिकी में, रेखीय मॉडल शब्द का उपयोग संदर्भ के अनुसार भिन्न- भिन्न प्रकारों से किया जाता है। | सांख्यिकी में, रेखीय मॉडल शब्द का उपयोग संदर्भ के अनुसार भिन्न- भिन्न प्रकारों से किया जाता है। अधिक सामान्य घटना प्रतिगमन मॉडल के संबंध में है और इस शब्द को अधिकतर रैखिक प्रतिगमन मॉडल के पर्याय के रूप में लिया जाता है। हालाँकि इस शब्द का उपयोग [[समय श्रृंखला विश्लेषण]] में एक भिन्न अर्थ के साथ भी किया जाता है। प्रत्येक स्थिति में, पदनाम रैखिक का उपयोग मॉडल के एक उपवर्ग की पहचान करने के लिए किया जाता है जिसके लिए संबंधित [[सांख्यिकीय सिद्धांत]] की जटिलता में पर्याप्त कमी संभव है। | ||
== रेखीय प्रतिगमन मॉडल == | == रेखीय प्रतिगमन मॉडल == | ||
{{main| | {{main|रेखीय प्रतिगमन}} | ||
प्रतिगमन की स्थिति के लिए [[सांख्यिकीय मॉडल]] इस प्रकार है। एक (यादृच्छिक) नमूना <math> (Y_i, X_{i1}, \ldots, X_{ip}), \, i = 1, \ldots, n </math> दिए जाने पर प्रेक्षणों <math>Y_i</math> और स्वतंत्र चर <math>X_{ij}</math> के बीच संबंध को सूत्रबद्ध किया जाता है | प्रतिगमन की स्थिति के लिए [[सांख्यिकीय मॉडल]] इस प्रकार है। एक (यादृच्छिक) नमूना <math> (Y_i, X_{i1}, \ldots, X_{ip}), \, i = 1, \ldots, n </math> दिए जाने पर प्रेक्षणों <math>Y_i</math> और स्वतंत्र चर <math>X_{ij}</math> के बीच संबंध को सूत्रबद्ध किया जाता है | ||
Line 13: | Line 13: | ||
<math>\beta_j</math> के रैखिक कार्य हैं। | <math>\beta_j</math> के रैखिक कार्य हैं। | ||
यह देखते हुए कि अनुमान [[कम से कम वर्गों]] के विश्लेषण के आधार पर किया जाता है, अज्ञात मापदंडों के अनुमान <math>\beta_j</math> को वर्गों के योग को कम करके निर्धारित किया जाता है | |||
:<math>S = \sum_{i = 1}^n \left(Y_i - \beta_0 - \beta_1 \phi_1(X_{i1}) - \cdots - \beta_p \phi_p(X_{ip})\right)^2 .</math> | :<math>S = \sum_{i = 1}^n \left(Y_i - \beta_0 - \beta_1 \phi_1(X_{i1}) - \cdots - \beta_p \phi_p(X_{ip})\right)^2 .</math> | ||
इससे यह सरलता से देखा जा सकता है कि मॉडल के "रैखिक" स्वरुप का अर्थ निम्नलिखित है: | इससे यह सरलता से देखा जा सकता है कि मॉडल के "रैखिक" स्वरुप का अर्थ निम्नलिखित है: | ||
Line 26: | Line 26: | ||
:<math> X_t = c + \varepsilon_t + \sum_{i=1}^p \phi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}.\,</math> | :<math> X_t = c + \varepsilon_t + \sum_{i=1}^p \phi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}.\,</math> | ||
जहाँ फिर से मात्राएँ <math>\varepsilon_i</math> यादृच्छिक चर [[नवाचार (सिग्नल प्रोसेसिंग)]] का प्रतिनिधित्व करते हैं जो नए यादृच्छिक प्रभाव हैं तथा एक निश्चित समय पर दिखाई देते हैं लेकिन बाद के समय में <math>X</math> के मान को भी प्रभावित करते हैं। इस उदाहरण में "रैखिक मॉडल" शब्द का उपयोग उपरोक्त संबंध की संरचना को एक ही समय श्रृंखला के पिछले मूल्यों और नवाचारों के वर्तमान और पिछले मूल्यों के एक रैखिक कार्य के रूप में <math>X_t</math> का प्रतिनिधित्व करने के लिए संदर्भित करता है।<ref>Priestley, M.B. (1988) ''Non-linear and Non-stationary time series analysis'', Academic Press. {{ISBN|0-12-564911-8}}</ref> संरचना के इस विशेष स्वरुप का अर्थ है कि समय श्रृंखला के माध्य और [[सहप्रसरण]] गुणों के लिए संबंध प्राप्त करना अपेक्षाकृत सरल है। ध्यान दें कि | जहाँ फिर से मात्राएँ <math>\varepsilon_i</math> यादृच्छिक चर [[नवाचार (सिग्नल प्रोसेसिंग)]] का प्रतिनिधित्व करते हैं जो नए यादृच्छिक प्रभाव हैं तथा एक निश्चित समय पर दिखाई देते हैं लेकिन बाद के समय में <math>X</math> के मान को भी प्रभावित करते हैं। इस उदाहरण में "रैखिक मॉडल" शब्द का उपयोग उपरोक्त संबंध की संरचना को एक ही समय श्रृंखला के पिछले मूल्यों और नवाचारों के वर्तमान और पिछले मूल्यों के एक रैखिक कार्य के रूप में <math>X_t</math> का प्रतिनिधित्व करने के लिए संदर्भित करता है।<ref>Priestley, M.B. (1988) ''Non-linear and Non-stationary time series analysis'', Academic Press. {{ISBN|0-12-564911-8}}</ref> संरचना के इस विशेष स्वरुप का अर्थ है कि समय श्रृंखला के माध्य और [[सहप्रसरण]] गुणों के लिए संबंध प्राप्त करना अपेक्षाकृत सरल है। ध्यान दें कि यहां "रैखिक मॉडल" शब्द का "रैखिक" भाग गुणांक <math>\phi_i</math> और <math>\theta_i</math>, की बात नहीं कर रहा है क्योंकि यह एक प्रतिगमन मॉडल की स्थिति में होगा जो संरचनात्मक रूप से समान दिखता है। | ||
== सांख्यिकी में अन्य उपयोग == | == सांख्यिकी में अन्य उपयोग == | ||
Line 41: | Line 41: | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}}{{Authority control}} | ||
{{Authority control}} | |||
[[ar:نموذج الانحدار الخطي]] | [[ar:نموذج الانحدار الخطي]] | ||
[[fr:Modèle linéaire]] | [[fr:Modèle linéaire]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:प्रतिगमन मॉडल]] | |||
[[Category:वक्र फिटिंग]] |
Latest revision as of 12:20, 19 April 2023
सांख्यिकी में, रेखीय मॉडल शब्द का उपयोग संदर्भ के अनुसार भिन्न- भिन्न प्रकारों से किया जाता है। अधिक सामान्य घटना प्रतिगमन मॉडल के संबंध में है और इस शब्द को अधिकतर रैखिक प्रतिगमन मॉडल के पर्याय के रूप में लिया जाता है। हालाँकि इस शब्द का उपयोग समय श्रृंखला विश्लेषण में एक भिन्न अर्थ के साथ भी किया जाता है। प्रत्येक स्थिति में, पदनाम रैखिक का उपयोग मॉडल के एक उपवर्ग की पहचान करने के लिए किया जाता है जिसके लिए संबंधित सांख्यिकीय सिद्धांत की जटिलता में पर्याप्त कमी संभव है।
रेखीय प्रतिगमन मॉडल
प्रतिगमन की स्थिति के लिए सांख्यिकीय मॉडल इस प्रकार है। एक (यादृच्छिक) नमूना दिए जाने पर प्रेक्षणों और स्वतंत्र चर के बीच संबंध को सूत्रबद्ध किया जाता है
जहाँ अरैखिक फलन हो सकते हैं। उपरोक्त में, मात्राएँ संबंध में त्रुटियों का प्रतिनिधित्व करने वाले यादृच्छिक चर हैं। पदनाम का रैखिक भाग उपरोक्त संबंध में एक रैखिक तरीके से प्रतिगमन गुणांक की उपस्थिति से संबंधित है। वैकल्पिक रूप से कोई यह कह सकता है कि अनुमानित मान उपरोक्त मॉडल के अनुरूप हैं
के रैखिक कार्य हैं।
यह देखते हुए कि अनुमान कम से कम वर्गों के विश्लेषण के आधार पर किया जाता है, अज्ञात मापदंडों के अनुमान को वर्गों के योग को कम करके निर्धारित किया जाता है
इससे यह सरलता से देखा जा सकता है कि मॉडल के "रैखिक" स्वरुप का अर्थ निम्नलिखित है:
- न्यूनतम किया जाने वाला कार्य का द्विघात फलन है जिसके लिए न्यूनीकरण एक अपेक्षाकृत सरल समस्या है;
- फलन के अवकलज के रैखिक फलन हैं जो लघुतम मूल्यों को ढूंढना सरल बनाता है;
- न्यूनीकरण मान प्रेक्षणों के रैखिक फलन हैं;
- न्यूनतम मान यादृच्छिक त्रुटियों के रैखिक कार्य हैं जो के अनुमानित मूल्यों के सांख्यिकीय गुणों को निर्धारित करना अपेक्षाकृत सरल बनाता है
समय श्रृंखला मॉडल
एक रेखीय समय श्रृंखला मॉडल का एक उदाहरण एक ऑटोरेग्रेसिव मूविंग एवरेज मॉडल है। यहाँ मान के लिए मॉडल {} एक समय श्रृंखला के रूप में लिखा जा सकता है
जहाँ फिर से मात्राएँ यादृच्छिक चर नवाचार (सिग्नल प्रोसेसिंग) का प्रतिनिधित्व करते हैं जो नए यादृच्छिक प्रभाव हैं तथा एक निश्चित समय पर दिखाई देते हैं लेकिन बाद के समय में के मान को भी प्रभावित करते हैं। इस उदाहरण में "रैखिक मॉडल" शब्द का उपयोग उपरोक्त संबंध की संरचना को एक ही समय श्रृंखला के पिछले मूल्यों और नवाचारों के वर्तमान और पिछले मूल्यों के एक रैखिक कार्य के रूप में का प्रतिनिधित्व करने के लिए संदर्भित करता है।[1] संरचना के इस विशेष स्वरुप का अर्थ है कि समय श्रृंखला के माध्य और सहप्रसरण गुणों के लिए संबंध प्राप्त करना अपेक्षाकृत सरल है। ध्यान दें कि यहां "रैखिक मॉडल" शब्द का "रैखिक" भाग गुणांक और , की बात नहीं कर रहा है क्योंकि यह एक प्रतिगमन मॉडल की स्थिति में होगा जो संरचनात्मक रूप से समान दिखता है।
सांख्यिकी में अन्य उपयोग
ऐसे कुछ अन्य उदाहरण हैं जहां "अरैखिक मॉडल" का उपयोग रैखिक रूप से संरचित मॉडल के विपरीत करने के लिए किया जाता है, हालांकि "रैखिक मॉडल" शब्द सामान्यत:अनुप्रयुक्त नहीं होता है। इसका एक उदाहरण अरैखिक विमीयता में ह्रासीकरण है।
यह भी देखें
- सामान्य रैखिक मॉडल
- सामान्यीकृत रैखिक मॉडल
- रैखिक प्राग्सूचक फलन
- रैखिक प्रणाली
- रेखीय प्रतिगमन
- सांख्यिकीय मॉडल
संदर्भ
- ↑ Priestley, M.B. (1988) Non-linear and Non-stationary time series analysis, Academic Press. ISBN 0-12-564911-8