मैग्नेटोप्लाज्माडायनामिक थ्रस्टर: Difference between revisions

From Vigyanwiki
Line 16: Line 16:


== विकास ==
== विकास ==
[[Image:Self-field MPD thruster-CGI illustration.jpeg|thumb|प्रिंसटन यूनिवर्सिटी के लिथियम-फेड सेल्फ-फील्ड एमपीडी थ्रस्टर का सीजीआई प्रतिपादन (लोकप्रिय यांत्रिकी पत्रिका से)]]एमपीडी थ्रस्टर तकनीक को अकादमिक रूप से खोजा गया है लेकिन कई शेष समस्याओं के कारण व्यावसायिक रुचि कम रही है। एक छोटी सी समस्या यह है कि इष्टतम प्रदर्शन के लिए सैकड़ों किलोवाट के क्रम में बिजली की आवश्यकता होती है। वर्तमान इंटरप्लानेटरी अंतरिक्ष यान पावर सिस्टम (जैसे [[रेडियोआइसोटोप थर्मोइलेक्ट्रिक जनरेटर]] और सौर सरणी) इतनी अधिक शक्ति का उत्पादन करने में असमर्थ हैं। नासा के [[प्रोजेक्ट प्रोमेथियस|परियोजना प्रोमेथियस]] प्रतिघातक से सैकड़ों किलोवाट श्रेणी में बिजली उत्पन्न होने की उम्मीद थी लेकिन 2005 में इसे बंद कर दिया गया था।
[[Image:Self-field MPD thruster-CGI illustration.jpeg|thumb|प्रिंसटन विश्वविद्यालय के लिथियम-क्षीण स्व-क्षेत्र एमपीडी थ्रस्टर का सीजीआई प्रतिपादन (लोकप्रिय यांत्रिकी पत्रिका से)]]एमपीडी थ्रस्टर तकनीक को अकादमिक रूप से खोजा गया है लेकिन कई शेष समस्याओं के कारण व्यावसायिक रुचि कम रही है। एक छोटी सी समस्या यह है कि इष्टतम प्रदर्शन के लिए सैकड़ों किलोवाट के क्रम में बिजली की आवश्यकता होती है। वर्तमान इंटरप्लानेटरी अंतरिक्ष यान विद्युत प्रणाली (जैसे [[रेडियोआइसोटोप थर्मोइलेक्ट्रिक जनरेटर]] और सौर सरणी) इतनी अधिक शक्ति का उत्पादन करने में असमर्थ हैं। नासा के [[प्रोजेक्ट प्रोमेथियस|परियोजना प्रोमेथियस]] प्रतिघातक से सैकड़ों किलोवाट श्रेणी में बिजली उत्पन्न होने की उम्मीद थी लेकिन 2005 में इसे बंद कर दिया गया था।


600 किलोवाट विद्युत शक्ति उत्पन्न करने के लिए बनाये गए अंतरिक्ष में जाने वाले परमाणु प्रतिघातक के उत्पादन की परियोजना 1963 में प्रारंभ हुई और [[ सोवियत संघ ]] (यूएसएसआर) में 1960 के दशक के अधिकांश समय तक चली, यह एक संचार उपग्रह को शक्ति देने के लिए था जो अंत में स्वीकृत नहीं था।<ref>[http://www.astronautix.com/craft/glopower.htm Global Communications Satellite Using Nuclear Power] {{webarchive|url=https://web.archive.org/web/20080709001934/http://astronautix.com/craft/glopower.htm |date=2008-07-09 }}</ref> विद्युत शक्ति के किलोवाट की आपूर्ति करने वाले परमाणु प्रतिघातक (वर्तमान RTG बिजली आपूर्ति से दस गुना अधिक के क्रम में) USSR: [[RORSAT]] और TOPAZ द्वारा परिक्रमा की गई है। <ref>{{cite web| url = http://www.space4peace.org/ianus/npsm2.htm#2_2_1| title = The USSR/Russia – RORSAT, Topaz, And RTG}}</ref> <ref>{{cite web| url = http://www.space4peace.org/ianus/npsm2.htm#2_2_2| title = TOPAZ}}</ref>
600 किलोवाट विद्युत शक्ति उत्पन्न करने के लिए बनाये गए अंतरिक्ष में जाने वाले परमाणु प्रतिघातक के उत्पादन की परियोजना 1963 में प्रारंभ हुई और [[ सोवियत संघ ]] (यूएसएसआर) में 1960 के दशक के अधिकांश समय तक चली, यह एक संचार उपग्रह को शक्ति देने के लिए था जो अंत में स्वीकृत नहीं था।<ref>[http://www.astronautix.com/craft/glopower.htm Global Communications Satellite Using Nuclear Power] {{webarchive|url=https://web.archive.org/web/20080709001934/http://astronautix.com/craft/glopower.htm |date=2008-07-09 }}</ref> विद्युत शक्ति के किलोवाट की आपूर्ति करने वाले परमाणु प्रतिघातक (वर्तमान RTG बिजली आपूर्ति से दस गुना अधिक के क्रम में) USSR: [[RORSAT]] और TOPAZ द्वारा परिक्रमा की गई है। <ref>{{cite web| url = http://www.space4peace.org/ianus/npsm2.htm#2_2_1| title = The USSR/Russia – RORSAT, Topaz, And RTG}}</ref> <ref>{{cite web| url = http://www.space4peace.org/ianus/npsm2.htm#2_2_2| title = TOPAZ}}</ref>

Revision as of 22:39, 7 April 2023

टेस्ट फायरिंग के दौरान एक एमपीडी थ्रस्टर

मैग्नेटोप्लाज़्माडायनामिक (एमपीडी) थ्रस्टर (एमपीडीटी) विद्युत चालित अंतरिक्ष यान प्रणोदन का एक रूप है जो जोर उत्पन्न करने के लिए लोरेंत्ज़ बल (विद्युत चुम्बकीय क्षेत्र द्वारा आवेशित कण पर बल) का उपयोग करता है। इसे कभी-कभी लोरेन्ट्ज़ फोर्स एक्सेलेरेटर (एलएफए) या (ज्यादातर जापान में) एमपीडी आर्कजेट के रूप में जाना जाता है।

सामान्य तौर पर गैसीय सामग्री को आयनित किया जाता है और एक त्वरण कक्ष में डाला जाता है, जहां विद्युत स्रोत का उपयोग करके चुंबकीय और विद्युत क्षेत्र बनाए जाते हैं। कणों को तब लोरेंत्ज़ बल द्वारा प्रेरित किया जाता है, जिसके परिणामस्वरूप प्लाज्मा और चुंबकीय क्षेत्र (जो या तो बाहरी रूप से लागू होता है या वर्तमान द्वारा प्रेरित होता है) के माध्यम से निकास कक्ष में प्रवाहित होता है। रासायनिक प्रणोदन के विपरीत ईंधन का दहन नहीं होता है, अन्य विद्युत प्रणोदन विविधताओं के साथ विशिष्ट आवेग और जोर दोनों शक्ति निवेश के साथ बढ़ते हैं, जबकि जोर प्रति वाट कम होता है।

एमपीडी थ्रस्टर्स के दो मुख्य प्रकार हैं, लागू-क्षेत्र और स्व-क्षेत्र। लागू-क्षेत्र थ्रस्टर्स में चुंबकीय क्षेत्र उत्पन्न करने के लिए निकास कक्ष के चारों ओर चुंबकीय छल्ले होते हैं, जबकि स्व-क्षेत्र थ्रस्टर्स में कैथोड होता है जो कक्ष के मध्य तक फैला होता है। कम शक्ति स्तरों पर लागू क्षेत्र आवश्यक हैं जहां स्व-क्षेत्र विन्यास बहुत कमजोर होता हैं। क्सीनन, नियोन, आर्गन, हाइड्रोजन, हाइड्राज़ीन और लिथियम जैसे विभिन्न प्रणोदकों का उपयोग किया गया है, लिथियम सामान्यतौर पर सबसे अच्छा प्रदर्शन करने वाला होता है।[1]

एडगर चौएरी मैग्नेटोप्लाज्माडायनामिक थ्रस्टर्स के अनुसार निवेश शक्ति (भौतिकी) 100-500 किलोवाट, निकास वेग 15-60 किलोमीटर प्रति सेकंड, थ्रस्ट 2.5-25 न्यूटन (यूनिट) और दक्षता 40-60 प्रतिशत होता हैं हालांकि, अतिरिक्त शोध से पता चला है कि निकास वेग 100 किलोमीटर प्रति सेकंड से अधिक हो सकता है।[2][3] मैग्नेटोप्लाज्माडायनामिक थ्रस्टर्स का एक संभावित अनुप्रयोग भारी कार्गो और प्रायोगिक अंतरिक्ष वाहनों के लिए मुख्य प्रणोदन इंजन है (उदाहरण इंजन मंगल ग्रह पर मानव मिशन के लिए।[2][3]


लाभ

सिद्धांत रूप में, एमपीडी थ्रस्टर्स 110000 मी/एस तक और उससे अधिक के निकास वेग के साथ अत्यधिक उच्च विशिष्ट आवेगों (आईsp) का उत्पादन कर सकते हैं, वर्तमान क्सीनन-आधारित आयन थ्रस्टर्स के मूल्य को तिगुना कर सकते हैं और तरल रॉकेटों की तुलना में लगभग 25 गुना बेहतर है। एमपीडी तकनीक में 200 न्यूटन (एन) (45 lbF ) तक के थ्रस्ट स्तर की क्षमता भी है, जो किसी भी प्रकार के विद्युत प्रणोदन के लिए उच्चतम है और लगभग उतने ही उच्च हैं जितने इंटरप्लेनेटरी केमिकल रॉकेट हैं।[citation needed] यह मिशनों पर विद्युत प्रणोदन के उपयोग की अनुमति देगा जिसके लिए त्वरित डेल्टा-वि युद्धाभ्यास की आवश्यकता होती है (जैसे कि किसी अन्य ग्रह के चारों ओर कक्षा में कब्जा करना) लेकिन कई गुना अधिक ईंधन दक्षता के साथ।[4]


विकास

प्रिंसटन विश्वविद्यालय के लिथियम-क्षीण स्व-क्षेत्र एमपीडी थ्रस्टर का सीजीआई प्रतिपादन (लोकप्रिय यांत्रिकी पत्रिका से)

एमपीडी थ्रस्टर तकनीक को अकादमिक रूप से खोजा गया है लेकिन कई शेष समस्याओं के कारण व्यावसायिक रुचि कम रही है। एक छोटी सी समस्या यह है कि इष्टतम प्रदर्शन के लिए सैकड़ों किलोवाट के क्रम में बिजली की आवश्यकता होती है। वर्तमान इंटरप्लानेटरी अंतरिक्ष यान विद्युत प्रणाली (जैसे रेडियोआइसोटोप थर्मोइलेक्ट्रिक जनरेटर और सौर सरणी) इतनी अधिक शक्ति का उत्पादन करने में असमर्थ हैं। नासा के परियोजना प्रोमेथियस प्रतिघातक से सैकड़ों किलोवाट श्रेणी में बिजली उत्पन्न होने की उम्मीद थी लेकिन 2005 में इसे बंद कर दिया गया था।

600 किलोवाट विद्युत शक्ति उत्पन्न करने के लिए बनाये गए अंतरिक्ष में जाने वाले परमाणु प्रतिघातक के उत्पादन की परियोजना 1963 में प्रारंभ हुई और सोवियत संघ (यूएसएसआर) में 1960 के दशक के अधिकांश समय तक चली, यह एक संचार उपग्रह को शक्ति देने के लिए था जो अंत में स्वीकृत नहीं था।[5] विद्युत शक्ति के किलोवाट की आपूर्ति करने वाले परमाणु प्रतिघातक (वर्तमान RTG बिजली आपूर्ति से दस गुना अधिक के क्रम में) USSR: RORSAT और TOPAZ द्वारा परिक्रमा की गई है। [6] [7]

2009 में रूसी परमाणु कुर्चटोव संस्थान, राष्ट्रीय अंतरिक्ष एजेंसी रोसकोस्मोस द्वारा चालक दल के अंतरिक्ष यान पर उपयोग के लिए मेगावाट-स्केल परमाणु प्रतिघातक विकसित करने की योजना की घोषणा की गई थी [8] [9] और रूसी राष्ट्रपति दिमित्री मेदवेदेव ने नवंबर 2009 में संघीय सभा (रूस) में अपने संबोधन की इसकी पुष्टि की।[10]

ब्रैडली सी. एडवर्ड्स द्वारा प्रस्तावित एक अन्य योजना जमीन से बिजली को बीम करने की है। यह योजना एमपीडी-संचालित अंतरिक्ष यान को बीम पावर के लिए जमीन पर अनुकूली प्रकाशिकी के साथ 0.84 माइक्रोमीटर पर 5 200 किलोवाट मुक्त इलेक्ट्रॉन लेसरों का उपयोग करती है, जहां इसे GaAs फ़ोटोवोल्टिक पैनलों द्वारा बिजली में परिवर्तित किया जाता है। 0.840 माइक्रोमीटर (1.48 eV प्रति फोटॉन) की लेजर तरंग दैर्ध्य की ट्यूनिंग और एक दूसरे के लिए 1.43 eV के PV पैनल बैंडगैप से 59% की अनुमानित रूपांतरण दक्षता और 540 kW/m2तक की अनुमानित शक्ति घनत्व उत्पन्न होता है। यह एमपीडी के ऊपरी चरण को शक्ति प्रदान करने के लिए पर्याप्त होगा, शायद उपग्रहों को LEO से GEO तक ले जाने के लिए।[11]

एमपीडी प्रौद्योगिकी के साथ एक और समस्या उच्च वर्तमान घनत्व (100 ए/सेमी2 से अधिक) द्वारा संचालित वाष्पीकरण के कारण कैथोड का क्षरण हैं। प्रयोगशाला में लिथियम और बेरियम प्रणोदक मिश्रण और बहु-चैनल खोखले कैथोड का उपयोग कैथोड क्षरण समस्या के लिए एक आशाजनक समाधान के रूप में दिखाया गया है।[12]


अनुसंधान

एमपीडी थ्रस्टर्स पर शोध अमेरिका, पूर्व सोवियत संघ, जापान, जर्मनी और इटली में किया गया है। प्रयोगात्मक प्रोटोटाइप पहले सोवियत अंतरिक्ष यान पर उड़ाए गए थे और हाल ही में 1996 में, जापानी अंतरिक्ष उड़ान इकाई पर जिसने अंतरिक्ष में अर्ध-स्थिर स्पंदित एमपीडी थ्रस्टर के सफल संचालन का प्रदर्शन किया। मास्को विमानन संस्थान, आरकेके एनर्जी, नेशनल एयरोस्पेस विश्वविद्यालय, खार्किव विमानन संस्थान, स्टटगार्ट विश्वविद्यालय के अंतरिक्ष प्रणाली संस्थान, अंतरिक्ष और अंतरिक्ष विज्ञान संस्थान, सेंट्रोस्पाज़ियो, अल्टा स्पा, ओसाका विश्वविद्यालय, दक्षिणी कैलिफोर्निया विश्वविद्यालय, प्रिंसटन विश्वविद्यालय की विद्युत प्रणोदन और प्लाज्मा गतिशील प्रयोगशाला में शोध (EPPDyL) (जहाँ MPD थ्रस्टर अनुसंधान 1967 से निर्बाध रूप से जारी है) और NASA केंद्रों (जेट प्रणोदन प्रयोगशाला और ग्लेन अनुसंधान केंद्र) ने MPD थ्रस्टर्स के प्रदर्शन, स्थिरता और जीवनकाल से संबंधित कई समस्याओं का समाधान किया है।

EPEX (इलेक्ट्रिक प्रोपल्शन एक्सपेरिमेंट) के भाग के रूप में जापानी अंतरिक्ष उड़ान इकाई पर MPD थ्रस्टर का परीक्षण किया गया था जिसे 18 मार्च, 1995 को प्रारंभ किया गया था और अंतरिक्ष शटल मिशन STS-72 द्वारा 20 जनवरी, 1996 को पुनः प्राप्त किया गया था आज तक यह एकमात्र परिचालन है। MPD प्रणोदक एक प्रणोदन प्रणाली के रूप में अंतरिक्ष में उड़ गया है, प्रायोगिक आद्यरूप पहले सोवियत अंतरिक्ष यान पर उड़ाए गए थे।

स्टटगार्ट विश्वविद्यालय के अंतरिक्ष प्रणालियों के संस्थान में विकास के लागू-क्षेत्र MPD थ्रस्टर 2019 में 61.99% की थ्रस्टर दक्षता तक पहुँच गया, जो sp = 4665 एस और 2.75 एन के जोर के विशिष्ट आवेग के अनुरूप है।[13]


यह भी देखें

संदर्भ

  1. "प्रणोदक". history.nasa.gov. Retrieved 2022-11-05.
  2. 2.0 2.1 "Choueiri, Edgar Y. (2009). New dawn of electric rocket. Next-Generation Thruster". Archived from the original on 2016-10-18. Retrieved 2016-10-18.
  3. 3.0 3.1 Choueiri, Edgar Y. (2009) New dawn of electric rocket Scientific American 300, 58–65 doi:10.1038/scientificamerican0209-58
  4. Kurchatov Institute with Roskosmos renewed the work over developing nuclear energy sources for interplanetary flights, June 2009, (in Russian
  5. Global Communications Satellite Using Nuclear Power Archived 2008-07-09 at the Wayback Machine
  6. "The USSR/Russia – RORSAT, Topaz, And RTG".
  7. "TOPAZ".
  8. Kurchatov Institute with Roskosmos renewed the work over developing nuclear energy sources for interplanetary flights, June 2009, (in Russian)
  9. Roskosmos prepared a project of a crewed spaceship with a nuclear engine, RIAN, October 2009, (in Russian)
  10. "Developments in the nuclear field will be actively applied ... also for creating propellant devices capable of ensuring space flights even to other planets", from the November 2009 Address to the Federal Assembly[permanent dead link].
  11. Edwards, Bradley C. Westling, Eric A. The Space Elevator: A revolutionary Earth-to-space transportation system. 2002, 2003 BC Edwards, Houston, TX.
  12. Sankaran, K.; Cassady, L.; Kodys, A.D.; Choueiri, E.Y. (2015). "मंगल ग्रह के लिए कार्गो और प्रायोगिक मिशनों के लिए प्रणोदन विकल्पों का सर्वेक्षण". Annals of the New York Academy of Sciences. 1017 (1): 450–467. doi:10.1196/annals.1311.027. PMID 15220162. S2CID 1405279.
  13. Boxberger, Adam; Behnke, Alexander; Herdrich, Georg (2019). "स्टेडी स्टेट एप्लाइड फील्ड एमपीडी थ्रस्टर्स के ऑपरेटिव रेजीम के अनुकूलन में वर्तमान अग्रिम" (PDF). International Electric Propulsion Conference (IEPC). IEPC-2019-585. Archived (PDF) from the original on 2022-10-09.


बाहरी संबंध