कॉची गति समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:
संवहन में (या प्रवाह क्षेत्र के Lagrangian और Eulerian विनिर्देश) कॉची संवेग समीकरण के रूप में लिखा गया है:
संवहन में (या प्रवाह क्षेत्र के Lagrangian और Eulerian विनिर्देश) कॉची संवेग समीकरण के रूप में लिखा गया है:
<math display="block"> \frac{D \mathbf{u}}{D t} = \frac 1 \rho \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}</math>
<math display="block"> \frac{D \mathbf{u}}{D t} = \frac 1 \rho \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}</math>
कहाँ
जहाँ
* <math>\mathbf{u}</math> [[प्रवाह वेग]] सदिश क्षेत्र है, जो समय और स्थान पर निर्भर करता है, (इकाई: <math>\mathrm{m/s}</math>)
* <math>\mathbf{u}</math> [[प्रवाह वेग]] सदिश क्षेत्र है, जो समय और स्थान पर निर्भर करता है, (इकाई: <math>\mathrm{m/s}</math>)
* <math>t</math> [[समय]] है, (इकाई: <math>\mathrm{s}</math>)
* <math>t</math> [[समय]] है, (इकाई: <math>\mathrm{s}</math>)
* <math>\frac{D \mathbf{u}}{D t}</math> की [[सामग्री व्युत्पन्न]] है <math>\mathbf{u}</math>, के बराबर <math>\partial_t\mathbf{u} + \mathbf{u}\cdot \nabla\mathbf{u}</math>, (इकाई: <math>\mathrm{m/s^2}</math>)  
* <math>\frac{D \mathbf{u}}{D t}</math> की [[सामग्री व्युत्पन्न]] है <math>\mathbf{u}</math>, के समान्तर <math>\partial_t\mathbf{u} + \mathbf{u}\cdot \nabla\mathbf{u}</math>, (इकाई: <math>\mathrm{m/s^2}</math>)  
* <math>\rho</math> सातत्य के दिए गए बिंदु पर [[घनत्व]] है (जिसके लिए निरंतरता समीकरण धारण करता है), (इकाई: <math>\mathrm{kg/m^3}</math>)
* <math>\rho</math> सातत्य के दिए गए बिंदु पर [[घनत्व]] है (जिसके लिए निरंतरता समीकरण धारण करता है), (इकाई: <math>\mathrm{kg/m^3}</math>)
* <math>\boldsymbol{\sigma}</math> [[कॉची तनाव टेन्सर]] है, (इकाई: <math>\mathrm{Pa=N/m^2 = kg \cdot m^{-1} \cdot s^{-2}}</math>)  
* <math>\boldsymbol{\sigma}</math> [[कॉची तनाव टेन्सर]] है, (इकाई: <math>\mathrm{Pa=N/m^2 = kg \cdot m^{-1} \cdot s^{-2}}</math>)  
Line 22: Line 22:




सामान्यतः उपयोग की जाने वाली SI इकाइयाँ कोष्ठकों में दी गई हैं, हालाँकि समीकरण प्रकृति में सामान्य हैं और अन्य इकाइयाँ उनमें दर्ज की जा सकती हैं या इकाइयों को [[गैर-विमीयकरण]] द्वारा हटाया जा सकता है।
सामान्यतः उपयोग की जाने वाली SI इकाइयाँ कोष्ठकों में दी गई हैं, चूँकि समीकरण प्रकृति में सामान्य हैं और अन्य इकाइयाँ उनमें अंकित की जा सकती हैं या इकाइयों को [[गैर-विमीयकरण]] द्वारा हटाया जा सकता है।


ध्यान दें कि स्पष्टता के लिए हम ऊपर केवल कॉलम वैक्टर ([[कार्तीय समन्वय प्रणाली]] में) का उपयोग करते हैं, लेकिन समीकरण को भौतिक घटकों का उपयोग करके लिखा गया है (जो न तो सहप्रसरण और सदिशों के प्रतिप्रसरण (कॉलम) हैं और न ही सहप्रसरण और सदिशों के प्रतिप्रसरण (पंक्ति))।<ref name="Clarke2011">{{cite web |
ध्यान दें कि स्पष्टता के लिए हम ऊपर केवल कॉलम सदिश ([[कार्तीय समन्वय प्रणाली]] में) का उपयोग करते हैं, किन्तु समीकरण को भौतिक घटकों का उपयोग करके लिखा गया है (जो न तो सहप्रसरण और सदिशों के प्रतिप्रसरण (कॉलम) हैं और न ही सहप्रसरण और सदिशों के प्रतिप्रसरण (पंक्ति))।<ref name="Clarke2011">{{cite web |
authors= David A. Clarke |  
authors= David A. Clarke |  
title= A Primer on Tensor Calculus |
title= A Primer on Tensor Calculus |
Line 30: Line 30:
page=11 (pdf 15) |
page=11 (pdf 15) |
url=https://www.ap.smu.ca/~dclarke/home/documents/byDAC/tprimer.pdf
url=https://www.ap.smu.ca/~dclarke/home/documents/byDAC/tprimer.pdf
}}</ref> हालाँकि, यदि हमने गैर-ऑर्थोगोनल [[वक्रीय निर्देशांक]] चुना है, तो हमें सहपरिवर्ती (पंक्ति सदिश) या प्रतिपरिवर्ती (स्तंभ सदिश) रूप में समीकरणों की गणना करनी चाहिए और उन्हें लिखना चाहिए।
}}</ref> चूँकि, यदि हमने गैर-ऑर्थोगोनल [[वक्रीय निर्देशांक]] चुना है, तो हमें सहपरिवर्ती (पंक्ति सदिश) या प्रतिपरिवर्ती (स्तंभ सदिश) रूप में समीकरणों की गणना करनी चाहिए और उन्हें लिखना चाहिए।


चरों के उचित परिवर्तन के बाद, इसे संरक्षण रूप में भी लिखा जा सकता है:
चरों के उचित परिवर्तन के पश्चात्, इसे संरक्षण रूप में भी लिखा जा सकता है:


<math display="block"> \frac {\partial  \mathbf j }{\partial t}+ \nabla \cdot \mathbf F  = \mathbf s </math>
<math display="block"> \frac {\partial  \mathbf j }{\partial t}+ \nabla \cdot \mathbf F  = \mathbf s </math>
कहाँ {{math|'''j'''}} किसी दिए गए स्थान-समय बिंदु पर [[द्रव्यमान प्रवाह]] है, {{math|'''F'''}} संवेग घनत्व से जुड़ा प्रवाह है, और {{math|'''s'''}} में प्रति इकाई आयतन में शरीर के सभी बल सम्मिलित हैं।
जहाँ {{math|'''j'''}} किसी दिए गए स्थान-समय बिंदु पर [[द्रव्यमान प्रवाह]] है, {{math|'''F'''}} संवेग घनत्व से जुड़ा प्रवाह है और {{math|'''s'''}} में प्रति इकाई आयतन में शरीर के सभी बल सम्मिलित हैं।


== विभेदक व्युत्पत्ति ==
== विभेदक व्युत्पत्ति ==
आइए हम मोमेंटम # बल से संबंध के साथ शुरू करें जिसे निम्नानुसार लिखा जा सकता है: सिस्टम मोमेंटम में परिवर्तन इस सिस्टम पर कार्य करने वाले परिणामी बल के समानुपाती होता है। यह सूत्र द्वारा व्यक्त किया गया है:<ref name="Anderson">{{cite book |last= Anderson |first=John D. Jr.|date=1995 |title=कम्प्यूटेशनल तरल सक्रिय| location=New York |publisher=McGraw-Hill |pages=61–64 |isbn=0-07-001685-2| url=https://www.airloads.net/Downloads/Textbooks/Computational-Fluid-Dynamics-the-Basics-With-Applications-Anderson-J-D.pdf}}</ref>
आइए हम मोमेंटम # बल से संबंध के साथ प्रारंभ करें जिसे निम्नानुसार लिखा जा सकता है: सिस्टम मोमेंटम में परिवर्तन इस सिस्टम पर कार्य करने वाले परिणामी बल के समानुपाती होता है। यह सूत्र द्वारा व्यक्त किया गया है:<ref name="Anderson">{{cite book |last= Anderson |first=John D. Jr.|date=1995 |title=कम्प्यूटेशनल तरल सक्रिय| location=New York |publisher=McGraw-Hill |pages=61–64 |isbn=0-07-001685-2| url=https://www.airloads.net/Downloads/Textbooks/Computational-Fluid-Dynamics-the-Basics-With-Applications-Anderson-J-D.pdf}}</ref>


<math display="block">\vec p(t+\Delta t) - \vec p(t) = \Delta t \vec\bar F</math>
<math display="block">\vec p(t+\Delta t) - \vec p(t) = \Delta t \vec\bar F</math>
कहाँ <math>\vec p(t)</math> समय में गति है {{mvar|t}}, <math>\vec\bar F</math> बल औसत से अधिक है <math>\Delta t</math>. द्वारा विभाजित करने के बाद <math>\Delta t</math> और सीमा से गुजर रहा है <math>\Delta t \to 0</math> हम प्राप्त करते हैं (व्युत्पन्न):
जहाँ <math>\vec p(t)</math> समय में गति है {{mvar|t}}, <math>\vec\bar F</math> बल औसत से अधिक है <math>\Delta t</math>. द्वारा विभाजित करने के पश्चात् <math>\Delta t</math> और सीमा से गुजर रहा है <math>\Delta t \to 0</math> हम प्राप्त करते हैं (व्युत्पन्न):


<math display="block">\frac{d\vec p}{dt} = \vec F</math>
<math display="block">\frac{d\vec p}{dt} = \vec F</math>
Line 76: Line 76:
-\sigma_{zx}dx\,dy
-\sigma_{zx}dx\,dy
</math>
</math>
आदेश देने के बाद <math>F_p^x</math> और घटकों के लिए समान तर्क देना <math>F_p^y, F_p^z</math> (उन्हें चित्र में नहीं दिखाया गया है, लेकिन ये क्रमशः Y और Z अक्षों के समानांतर वैक्टर होंगे) हमें मिलता है:
आदेश देने के पश्चात् <math>F_p^x</math> और घटकों के लिए समान तर्क देना <math>F_p^y, F_p^z</math> (उन्हें चित्र में नहीं दिखाया गया है, किन्तु ये क्रमशः Y और Z अक्षों के समानांतर सदिश होंगे) हमें मिलता है:


<math display="block"> \begin{align}
<math display="block"> \begin{align}
Line 101: Line 101:
आइए घन की गति की गणना करें:
आइए घन की गति की गणना करें:
<math display="block">\vec p = \mathbf u m = \mathbf u \rho \, dx \, dy \, dz</math>
<math display="block">\vec p = \mathbf u m = \mathbf u \rho \, dx \, dy \, dz</math>
क्योंकि हम मानते हैं कि परीक्षण किया गया द्रव्यमान (घन) <math>m=\rho \,dx\,dy\,dz</math> समय में स्थिर है, इसलिए
जिससे कि हम मानते हैं कि परीक्षण किया गया द्रव्यमान (घन) <math>m=\rho \,dx\,dy\,dz</math> समय में स्थिर है, इसलिए
<math display="block">\frac{d\vec p}{dt}=\frac{d\mathbf u}{dt} \rho \, dx \, dy \, dz</math>
<math display="block">\frac{d\vec p}{dt}=\frac{d\mathbf u}{dt} \rho \, dx \, dy \, dz</math>


Line 114: Line 114:
तब
तब
<math display="block">\frac{d\mathbf u}{dt}\rho \, dx \, dy \, dz = (\nabla\cdot\boldsymbol\sigma)dx \, dy \, dz + \mathbf f \rho \,dx \, dy \, dz</math>
<math display="block">\frac{d\mathbf u}{dt}\rho \, dx \, dy \, dz = (\nabla\cdot\boldsymbol\sigma)dx \, dy \, dz + \mathbf f \rho \,dx \, dy \, dz</math>
द्वारा दोनों पक्षों को विभाजित करें <math>\rho \,dx\,dy\,dz</math>, और क्योंकि <math display="inline">\frac{d\mathbf u}{dt} = \frac{D\mathbf u}{Dt}</math> हम पाते हैं:
द्वारा दोनों पक्षों को विभाजित करें <math>\rho \,dx\,dy\,dz</math>, और जिससे कि <math display="inline">\frac{d\mathbf u}{dt} = \frac{D\mathbf u}{Dt}</math> हम पाते हैं:
<math display="block">\frac{D\mathbf u}{Dt} = \frac{1}{\rho}\nabla\cdot\boldsymbol\sigma + \mathbf f</math>
<math display="block">\frac{D\mathbf u}{Dt} = \frac{1}{\rho}\nabla\cdot\boldsymbol\sigma + \mathbf f</math>
जो व्युत्पत्ति को समाप्त करता है।
जो व्युत्पत्ति को समाप्त करता है।


== इंटीग्रल व्युत्पत्ति ==
== इंटीग्रल व्युत्पत्ति ==
न्यूटन के दूसरे नियम को लागू करना ({{mvar|i}}वें घटक) मॉडल किए जा रहे सातत्य में [[नियंत्रण मात्रा]] देता है:
न्यूटन के दूसरे नियम को प्रयुक्त करना ({{mvar|i}}वें घटक) मॉडल किए जा रहे सातत्य में [[नियंत्रण मात्रा]] देता है:


<math display="block">m a_i = F_i</math>
<math display="block">m a_i = F_i</math>
Line 130: Line 130:
\frac{D u_i}{D t}- \frac {\nabla_j\sigma_i^j}{\rho} - f_i &= 0
\frac{D u_i}{D t}- \frac {\nabla_j\sigma_i^j}{\rho} - f_i &= 0
\end{align}</math>
\end{align}</math>
कहाँ {{math|Ω}} नियंत्रण मात्रा का प्रतिनिधित्व करता है। चूँकि यह समीकरण किसी भी नियंत्रण आयतन के लिए होना चाहिए, यह सच होना चाहिए कि समाकलन शून्य है, इससे कॉची संवेग समीकरण अनुसरण करता है। इस समीकरण को प्राप्त करने में मुख्य कदम (ऊपर नहीं किया गया) यह स्थापित कर रहा है कि तनाव टेंसर का [[टेंसर व्युत्पन्न]] उन बलों में से है जो गठन करता है {{mvar|F<sub>i</sub>}}.<ref name=Acheson />
जहाँ {{math|Ω}} नियंत्रण मात्रा का प्रतिनिधित्व करता है। चूँकि यह समीकरण किसी भी नियंत्रण आयतन के लिए होना चाहिए, यह सच होना चाहिए कि समाकलन शून्य है, इससे कॉची संवेग समीकरण अनुसरण करता है। इस समीकरण को प्राप्त करने में मुख्य कदम (ऊपर नहीं किया गया) यह स्थापित कर रहा है कि तनाव टेंसर का [[टेंसर व्युत्पन्न]] उन बलों में से है जो गठन करता है {{mvar|F<sub>i</sub>}}.<ref name=Acheson />




Line 154: Line 154:
{\mathbf s}&= \rho \mathbf f
{\mathbf s}&= \rho \mathbf f
\end{align}</math>
\end{align}</math>
कहाँ {{math|'''j'''}} सातत्य में माने गए बिंदु पर द्रव्यमान प्रवाह है (जिसके लिए निरंतरता समीकरण धारण करता है), {{math|'''F'''}} संवेग घनत्व से जुड़ा प्रवाह है, और {{math|'''s'''}} में प्रति इकाई आयतन में शरीर के सभी बल सम्मिलित हैं। {{math|'''u''' ⊗ '''u'''}} वेग का डायाडिक गुणनफल है।
जहाँ {{math|'''j'''}} सातत्य में माने गए बिंदु पर द्रव्यमान प्रवाह है (जिसके लिए निरंतरता समीकरण धारण करता है), {{math|'''F'''}} संवेग घनत्व से जुड़ा प्रवाह है, और {{math|'''s'''}} में प्रति इकाई आयतन में शरीर के सभी बल सम्मिलित हैं। {{math|'''u''' ⊗ '''u'''}} वेग का डायाडिक गुणनफल है।


यहाँ {{math|'''j'''}} और {{math|'''s'''}} में समान संख्या में आयाम हैं {{mvar|N}} प्रवाह की गति और शरीर के त्वरण के रूप में, जबकि {{math|'''F'''}}, [[ टेन्सर |टेन्सर]] होने के नाते, है {{math|''N''<sup>2</sup>}}.<ref group="note">In 3D for example, with respect to some coordinate system, the vector {{math|'''j'''}} has 3 components, while the tensors {{math|'''σ'''}} and {{math|'''F'''}} have 9 (3×3), so the explicit forms written as matrices would be:
यहाँ {{math|'''j'''}} और {{math|'''s'''}} में समान संख्या में आयाम हैं {{mvar|N}} प्रवाह की गति और शरीर के त्वरण के रूप में, जबकि {{math|'''F'''}}, [[ टेन्सर |टेन्सर]] होने के नाते, है {{math|''N''<sup>2</sup>}}.<ref group="note">In 3D for example, with respect to some coordinate system, the vector {{math|'''j'''}} has 3 components, while the tensors {{math|'''σ'''}} and {{math|'''F'''}} have 9 (3×3), so the explicit forms written as matrices would be:
Line 168: Line 168:


Note, however, that if symmetrical, {{math|'''F'''}} will only contain 6 ''[[degrees of freedom]]''. And {{math|'''F'''}}'s symmetry is equivalent to {{math|'''σ'''}}'s symmetry (which will be present for the most common [[Cauchy stress tensor]]s), since dyads of vectors with themselves are always symmetrical.</ref>
Note, however, that if symmetrical, {{math|'''F'''}} will only contain 6 ''[[degrees of freedom]]''. And {{math|'''F'''}}'s symmetry is equivalent to {{math|'''σ'''}}'s symmetry (which will be present for the most common [[Cauchy stress tensor]]s), since dyads of vectors with themselves are always symmetrical.</ref>
ऑयलरीय रूपों में यह स्पष्ट है कि कोई विचलित तनाव की धारणा कॉशी समीकरणों को यूलर समीकरणों (द्रव गतिकी) में नहीं लाती है।
ऑयलरीय रूपों में यह स्पष्ट है कि कोई विचलित तनाव की धारणा कॉशी समीकरणों को यूलर समीकरणों (द्रव गतिकी) में नहीं लाती है।


== संवहनी त्वरण ==
== संवहनी त्वरण ==
[[Image:ConvectiveAcceleration vectorized.svg|thumb|संवहन त्वरण का उदाहरण। प्रवाह स्थिर (समय-स्वतंत्र) है, लेकिन द्रव घटता है क्योंकि यह डायवर्जिंग डक्ट को नीचे ले जाता है (असम्पीडित या सबसोनिक कंप्रेसिबल प्रवाह मानते हुए)।]]नेवियर-स्टोक्स समीकरणों की महत्वपूर्ण विशेषता संवहनी त्वरण की उपस्थिति है: अंतरिक्ष के संबंध में प्रवाह के समय-स्वतंत्र त्वरण का प्रभाव। जबकि भिन्न-भिन्न सातत्य कण वास्तव में समय पर निर्भर त्वरण का अनुभव करते हैं, प्रवाह क्षेत्र का संवहन त्वरण स्थानिक प्रभाव है, उदाहरण नोजल में तरल पदार्थ की गति है।
[[Image:ConvectiveAcceleration vectorized.svg|thumb|संवहन त्वरण का उदाहरण। प्रवाह स्थिर (समय-स्वतंत्र) है, किन्तु द्रव घटता है जिससे कि यह डायवर्जिंग डक्ट को नीचे ले जाता है (असम्पीडित या सबसोनिक कंप्रेसिबल प्रवाह मानते हुए)।]]नेवियर-स्टोक्स समीकरणों की महत्वपूर्ण विशेषता संवहनी त्वरण की उपस्थिति है: अंतरिक्ष के संबंध में प्रवाह के समय-स्वतंत्र त्वरण का प्रभाव। जबकि भिन्न-भिन्न सातत्य कण वास्तव में समय पर निर्भर त्वरण का अनुभव करते हैं, प्रवाह क्षेत्र का संवहन त्वरण स्थानिक प्रभाव है, उदाहरण नोजल में तरल पदार्थ की गति है।


चाहे किसी भी प्रकार के सातत्य से निपटा जा रहा हो, संवहन त्वरण अरैखिक प्रभाव है। संवहन त्वरण अधिकांश प्रवाहों में उपस्तिथ होता है (अपवादों में आयामी असंपीड्य प्रवाह सम्मिलित है), लेकिन रेंगने वाले प्रवाह (जिसे स्टोक्स प्रवाह भी कहा जाता है) में इसके गतिशील प्रभाव की अवहेलना की जाती है। संवहन त्वरण को अरैखिक मात्रा द्वारा दर्शाया जाता है {{math|'''u''' ⋅ ∇'''u'''}}, जिसे या तो समझा जा सकता है {{math|('''u''' ⋅ ∇)'''u'''}} या के रूप में {{math|'''u''' ⋅ (∇'''u''')}}, साथ {{math|∇'''u'''}} वेग सदिश का टेंसर व्युत्पन्न {{math|'''u'''}}. दोनों व्याख्याएं समान परिणाम देती हैं।<ref name=Emanuel>{{cite book | last=Emanuel | first=G. | title=विश्लेषणात्मक द्रव गतिकी| publisher=CRC Press | year=2001 | edition=second | isbn=0-8493-9114-8 | pages=6–7 }}</ref>
चाहे किसी भी प्रकार के सातत्य से निपटा जा रहा हो, संवहन त्वरण अरैखिक प्रभाव है। संवहन त्वरण अधिकांश प्रवाहों में उपस्तिथ होता है (अपवादों में आयामी असंपीड्य प्रवाह सम्मिलित है), किन्तु रेंगने वाले प्रवाह (जिसे स्टोक्स प्रवाह भी कहा जाता है) में इसके गतिशील प्रभाव की अवहेलना की जाती है। संवहन त्वरण को अरैखिक मात्रा द्वारा दर्शाया जाता है {{math|'''u''' ⋅ ∇'''u'''}}, जिसे या तो समझा जा सकता है {{math|('''u''' ⋅ ∇)'''u'''}} या के रूप में {{math|'''u''' ⋅ (∇'''u''')}}, साथ {{math|∇'''u'''}} वेग सदिश का टेंसर व्युत्पन्न {{math|'''u'''}}. दोनों व्याख्याएं समान परिणाम देती हैं।<ref name=Emanuel>{{cite book | last=Emanuel | first=G. | title=विश्लेषणात्मक द्रव गतिकी| publisher=CRC Press | year=2001 | edition=second | isbn=0-8493-9114-8 | pages=6–7 }}</ref>




=== एडवेक्शन ऑपरेटर बनाम टेन्सर व्युत्पन्न ===
=== एडवेक्शन ऑपरेटर बनाम टेन्सर व्युत्पन्न ===


संवहन शब्द <math>D\mathbf{u}/Dt</math> रूप में लिखा जा सकता है {{math|('''u''' ⋅ ∇)'''u'''}}, कहाँ {{math|'''u''' ⋅ ∇}} [[संवहन]] है। इस निरूपण की तुलना टेन्सर व्युत्पन्न के संदर्भ में से की जा सकती है।<ref name=Emanuel/>टेंसर व्युत्पन्न {{math|∇'''u'''}} द्वारा परिभाषित वेग सदिश का घटक-दर-घटक व्युत्पन्न है {{math|1=[∇'''u''']<sub>''mi''</sub> = ∂''<sub>m</sub> v<sub>i</sub>''}}, जिससे कि
संवहन शब्द <math>D\mathbf{u}/Dt</math> रूप में लिखा जा सकता है {{math|('''u''' ⋅ ∇)'''u'''}}, जहाँ {{math|'''u''' ⋅ ∇}} [[संवहन]] है। इस निरूपण की तुलना टेन्सर व्युत्पन्न के संदर्भ में से की जा सकती है।<ref name=Emanuel/>टेंसर व्युत्पन्न {{math|∇'''u'''}} द्वारा परिभाषित वेग सदिश का घटक-दर-घटक व्युत्पन्न है {{math|1=[∇'''u''']<sub>''mi''</sub> = ∂''<sub>m</sub> v<sub>i</sub>''}}, जिससे कि
<math display="block">\left[\mathbf{u}\cdot\left(\nabla \mathbf{u}\right)\right]_i=\sum_m v_m \partial_m v_i=\left[(\mathbf{u}\cdot\nabla)\mathbf{u}\right]_i\,.</math>
<math display="block">\left[\mathbf{u}\cdot\left(\nabla \mathbf{u}\right)\right]_i=\sum_m v_m \partial_m v_i=\left[(\mathbf{u}\cdot\nabla)\mathbf{u}\right]_i\,.</math>


Line 188: Line 189:
जहां फेनमैन सबस्क्रिप्ट नोटेशन {{math|∇<sub>''a''</sub>}} का उपयोग किया जाता है, जिसका अर्थ है कि सबस्क्रिप्टेड ग्रेडिएंट केवल कारक पर काम करता है {{mvar|a}}.
जहां फेनमैन सबस्क्रिप्ट नोटेशन {{math|∇<sub>''a''</sub>}} का उपयोग किया जाता है, जिसका अर्थ है कि सबस्क्रिप्टेड ग्रेडिएंट केवल कारक पर काम करता है {{mvar|a}}.


[[होरेस लैम्ब]] ने अपनी प्रसिद्ध शास्त्रीय पुस्तक हाइड्रोडायनामिक्स (1895) में,<ref>{{cite web| language=en| url=https://archive.org/details/hydrodynamics00lamb/page/n3/mode/2up |last=Lamb |first=Horace | title=जल-गत्यात्मकता| year=1945 }}</ref> इस पहचान का उपयोग प्रवाह वेग के संवहन शब्द को घूर्णी रूप में बदलने के लिए किया जाता है, अर्थात टेन्सर व्युत्पन्न के बिना:<ref>See Batchelor (1967), §3.5, p. 160.</ref><ref>{{MathWorld| id=ConvectiveDerivative| title = Convective Derivative}}</ref>
[[होरेस लैम्ब]] ने अपनी प्रसिद्ध मौलिक पुस्तक हाइड्रोडायनामिक्स (1895) में,<ref>{{cite web| language=en| url=https://archive.org/details/hydrodynamics00lamb/page/n3/mode/2up |last=Lamb |first=Horace | title=जल-गत्यात्मकता| year=1945 }}</ref> इस पहचान का उपयोग प्रवाह वेग के संवहन शब्द को घूर्णी रूप में परिवर्तित के लिए किया जाता है, अर्थात टेन्सर व्युत्पन्न के बिना:<ref>See Batchelor (1967), §3.5, p. 160.</ref><ref>{{MathWorld| id=ConvectiveDerivative| title = Convective Derivative}}</ref>


<math display="block">\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \left( \frac{\|\mathbf{u}\|^2}{2} \right) + \left( \nabla \times \mathbf{u} \right) \times \mathbf{u}</math>
<math display="block">\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \left( \frac{\|\mathbf{u}\|^2}{2} \right) + \left( \nabla \times \mathbf{u} \right) \times \mathbf{u}</math>
Line 203: Line 204:


<math display="block">\nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \boldsymbol \sigma \cdot \nabla \rho + \mathbf u \times (\nabla \times \mathbf u) - \frac{\partial \mathbf u}{\partial t}</math>
<math display="block">\nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \boldsymbol \sigma \cdot \nabla \rho + \mathbf u \times (\nabla \times \mathbf u) - \frac{\partial \mathbf u}{\partial t}</math>
स्थिर प्रवाह के स्थितियों में प्रवाह वेग का समय व्युत्पन्न गायब हो जाता है, इसलिए संवेग समीकरण बन जाता है:
स्थिर प्रवाह के स्थितियों में प्रवाह वेग का समय व्युत्पन्न विलुप्त हो जाता है, इसलिए संवेग समीकरण बन जाता है:


<math display="block">\nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \boldsymbol \sigma \cdot \nabla \rho  + \mathbf u \times (\nabla \times \mathbf u)</math>
<math display="block">\nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \boldsymbol \sigma \cdot \nabla \rho  + \mathbf u \times (\nabla \times \mathbf u)</math>
और प्रवाह दिशा पर संवेग समीकरण को प्रक्षेपित करके, अर्थात् स्ट्रीमलाइन, स्ट्रीकलाइन और पाथलाइन के साथ, [[ट्रिपल स्केलर उत्पाद]] की सदिश कैलकुलस पहचान के कारण क्रॉस उत्पाद गायब हो जाता है:
और प्रवाह दिशा पर संवेग समीकरण को प्रक्षेपित करके, अर्थात् स्ट्रीमलाइन, स्ट्रीकलाइन और पाथलाइन के साथ, [[ट्रिपल स्केलर उत्पाद]] की सदिश कैलकुलस पहचान के कारण क्रॉस उत्पाद विलुप्त हो जाता है:


<math display="block">\mathbf u \cdot \nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \mathbf u \cdot (\boldsymbol \sigma \cdot \nabla \rho)</math>
<math display="block">\mathbf u \cdot \nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \mathbf u \cdot (\boldsymbol \sigma \cdot \nabla \rho)</math>
यदि तनाव टेंसर आइसोट्रोपिक है, तो केवल दबाव ही प्रवेश करता है: <math>\boldsymbol \sigma = -p \mathbf I</math> (कहाँ {{math|'''I'''}} पहचान टेन्सर है), और स्थिर असंपीड्य स्थितियों में यूलर संवेग समीकरण बन जाता है:
यदि तनाव टेंसर आइसोट्रोपिक है, तो केवल दबाव ही प्रवेश करता है: <math>\boldsymbol \sigma = -p \mathbf I</math> (जहाँ {{math|'''I'''}} पहचान टेन्सर है), और स्थिर असंपीड्य स्थितियों में यूलर संवेग समीकरण बन जाता है:


<math display="block">\mathbf u \cdot \nabla \left( \frac{1}{2} u^2 + \phi + \frac p \rho \right) + \frac{p}{\rho^2} \mathbf u \cdot \nabla \rho = 0</math>
<math display="block">\mathbf u \cdot \nabla \left( \frac{1}{2} u^2 + \phi + \frac p \rho \right) + \frac{p}{\rho^2} \mathbf u \cdot \nabla \rho = 0</math>
Line 215: Line 216:


<math display="block">\mathbf u \cdot \nabla \rho = 0\,,</math>
<math display="block">\mathbf u \cdot \nabla \rho = 0\,,</math>
अर्थात्, स्थिर असम्पीडित प्रवाह के लिए द्रव्यमान संरक्षण बताता है कि धारारेखा के साथ घनत्व स्थिर है। इससे यूलर गति समीकरण का काफी सरलीकरण होता है:
अर्थात्, स्थिर असम्पीडित प्रवाह के लिए द्रव्यमान संरक्षण बताता है कि धारारेखा के साथ घनत्व स्थिर है। इससे यूलर गति समीकरण का अधिक सरलीकरण होता है:


<math display="block">\mathbf u \cdot \nabla \left( \frac{1}{2} u^2 + \phi + \frac p \rho \right) = 0</math>
<math display="block">\mathbf u \cdot \nabla \left( \frac{1}{2} u^2 + \phi + \frac p \rho \right) = 0</math>
Line 227: Line 228:


=== अघूर्णी प्रवाह ===
=== अघूर्णी प्रवाह ===
मेमने का रूप इरोटेशनल फ्लो में भी उपयोगी होता है, जहां वेग का [[कर्ल (गणित)]] (जिसे [[vorticity]] कहा जाता है) {{math|1=''ω'' = ∇ × '''u'''}} शून्य के बराबर है। उस स्थिति में, संवहन शब्द में <math>D\mathbf{u}/Dt</math> कम कर देता है
मेमने का रूप इरोटेशनल फ्लो में भी उपयोगी होता है, जहां वेग का [[कर्ल (गणित)]] (जिसे [[vorticity]] कहा जाता है) {{math|1=''ω'' = ∇ × '''u'''}} शून्य के समान्तर है। उस स्थिति में, संवहन शब्द में <math>D\mathbf{u}/Dt</math> कम कर देता है


<math display="block">\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \left( \frac{\|\mathbf{u}\|^2}{2} \right).</math>
<math display="block">\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \left( \frac{\|\mathbf{u}\|^2}{2} \right).</math>
Line 233: Line 234:


== तनाव ==
== तनाव ==
सातत्य प्रवाह में तनाव के प्रभाव को इसके द्वारा दर्शाया गया है {{math|∇''p''}} और {{math|∇ ⋅ '''τ'''}} शर्तें; ये पृष्ठीय बलों की प्रवणताएँ हैं, जो किसी ठोस में प्रतिबलों के अनुरूप होती हैं। यहाँ {{math|∇''p''}} दाब प्रवणता है और कौशी प्रतिबल टेंसर के समदैशिक भाग से उत्पन्न होती है। यह हिस्सा लगभग सभी स्थितियों में होने वाले सामान्य तनावों द्वारा दिया जाता है। तनाव टेन्सर का अनिसोट्रोपिक हिस्सा उत्पन्न करता है {{math|∇ ⋅ '''τ'''}}, जो सामान्यतः चिपचिपी ताकतों का वर्णन करता है; असम्पीडित प्रवाह के लिए, यह केवल कतरनी प्रभाव है। इस प्रकार, {{math|'''τ'''}} [[विचलित तनाव टेंसर]] है, और तनाव टेंसर इसके बराबर है:<ref>Batchelor (1967) p. 142.</ref>
सातत्य प्रवाह में तनाव के प्रभाव को इसके द्वारा दर्शाया गया है {{math|∇''p''}} और {{math|∇ ⋅ '''τ'''}} शर्तें; ये पृष्ठीय बलों की प्रवणताएँ हैं, जो किसी ठोस में प्रतिबलों के अनुरूप होती हैं। यहाँ {{math|∇''p''}} दाब प्रवणता है और कौशी प्रतिबल टेंसर के समदैशिक भाग से उत्पन्न होती है। यह हिस्सा लगभग सभी स्थितियों में होने वाले सामान्य तनावों द्वारा दिया जाता है। तनाव टेन्सर का अनिसोट्रोपिक हिस्सा उत्पन्न करता है {{math|∇ ⋅ '''τ'''}}, जो सामान्यतः चिपचिपी शक्तियों का वर्णन करता है; असम्पीडित प्रवाह के लिए, यह केवल कतरनी प्रभाव है। इस प्रकार, {{math|'''τ'''}} [[विचलित तनाव टेंसर]] है, और तनाव टेंसर इसके समान्तर है:<ref>Batchelor (1967) p. 142.</ref>


<math display="block">\boldsymbol \sigma = - p \mathbf I + \boldsymbol \tau</math>
<math display="block">\boldsymbol \sigma = - p \mathbf I + \boldsymbol \tau</math>
कहाँ {{math|'''I'''}} माना स्थान में पहचान मैट्रिक्स है और {{math|'''τ'''}} कतरनी टेंसर।
जहाँ {{math|'''I'''}} माना स्थान में पहचान मैट्रिक्स है और {{math|'''τ'''}} कतरनी टेंसर।


सभी गैर-सापेक्षवादी संवेग संरक्षण समीकरण, जैसे कि नेवियर-स्टोक्स समीकरण, कॉची संवेग समीकरण के साथ शुरुआत करके और [[संवैधानिक संबंध]] के माध्यम से तनाव टेंसर को निर्दिष्ट करके प्राप्त किए जा सकते हैं। [[श्यानता]] और द्रव अपरूपण वेग के संदर्भ में अपरूपण टेंसर को व्यक्त करके, और निरंतर घनत्व और श्यानता को मानते हुए, कॉशी संवेग समीकरण नेवियर-स्टोक्स समीकरणों की ओर ले जाएगा। [[अदृश्य प्रवाह]] को मानकर, नेवियर-स्टोक्स समीकरण यूलर समीकरणों (द्रव गतिकी) को और सरल बना सकते हैं।
सभी गैर-सापेक्षवादी संवेग संरक्षण समीकरण, जैसे कि नेवियर-स्टोक्स समीकरण, कॉची संवेग समीकरण के साथ शुरुआत करके और [[संवैधानिक संबंध]] के माध्यम से तनाव टेंसर को निर्दिष्ट करके प्राप्त किए जा सकते हैं। [[श्यानता]] और द्रव अपरूपण वेग के संदर्भ में अपरूपण टेंसर को व्यक्त करके, और निरंतर घनत्व और श्यानता को मानते हुए, कॉशी संवेग समीकरण नेवियर-स्टोक्स समीकरणों की ओर ले जाएगा। [[अदृश्य प्रवाह]] को मानकर, नेवियर-स्टोक्स समीकरण यूलर समीकरणों (द्रव गतिकी) को और सरल बना सकते हैं।
Line 261: Line 262:
  | publisher=Addison-Wesley
  | publisher=Addison-Wesley
  | location=Reading, Massachusetts
  | location=Reading, Massachusetts
  |at= Vol. 1, §9–4 and §12–1}}</ref> इस कारण से, प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए लागू किया जाता है।
  |at= Vol. 1, §9–4 and §12–1}}</ref> इस कारण से, प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए प्रयुक्त किया जाता है।


== बाहरी बल ==
== बाहरी बल ==
सदिश क्षेत्र {{math|'''f'''}} प्रति इकाई द्रव्यमान में शारीरिक बलों का प्रतिनिधित्व करता है। सामान्यतः, इनमें केवल गुरुत्व त्वरण होता है, लेकिन इसमें अन्य सम्मिलित हो सकते हैं, जैसे विद्युत चुम्बकीय बल। गैर-जड़त्वीय समन्वय फ्रेम में, काल्पनिक बल से जुड़े अन्य जड़त्वीय त्वरण उत्पन्न हो सकते हैं।
सदिश क्षेत्र {{math|'''f'''}} प्रति इकाई द्रव्यमान में शारीरिक बलों का प्रतिनिधित्व करता है। सामान्यतः, इनमें केवल गुरुत्व त्वरण होता है, किन्तु इसमें अन्य सम्मिलित हो सकते हैं, जैसे विद्युत चुम्बकीय बल। गैर-जड़त्वीय समन्वय फ्रेम में, काल्पनिक बल से जुड़े अन्य जड़त्वीय त्वरण उत्पन्न हो सकते हैं।


अधिकांशतः, इन बलों को कुछ स्केलर मात्रा के ढाल के रूप में प्रदर्शित किया जा सकता है {{mvar|χ}}, साथ {{math|1='''f''' = ∇''χ''}} जिस स्थिति में उन्हें संरक्षी बल कहा जाता है। गुरुत्वाकर्षण में {{mvar|z}} दिशा, उदाहरण के लिए, की ढाल है {{math|−''ρgz''}}. क्योंकि इस तरह के गुरुत्वाकर्षण से दबाव केवल ढाल के रूप में उत्पन्न होता है, हम इसे दबाव शब्द में शरीर बल के रूप में सम्मिलित कर सकते हैं {{math|1=''h'' = ''p'' − ''χ''}}. नेवियर-स्टोक्स समीकरण के दाहिनी ओर दबाव और बल की शर्तें बन जाती हैं
अधिकांशतः, इन बलों को कुछ स्केलर मात्रा के ढाल के रूप में प्रदर्शित किया जा सकता है {{mvar|χ}}, साथ {{math|1='''f''' = ∇''χ''}} जिस स्थिति में उन्हें संरक्षी बल कहा जाता है। गुरुत्वाकर्षण में {{mvar|z}} दिशा, उदाहरण के लिए, की ढाल है {{math|−''ρgz''}}. जिससे कि इस तरह के गुरुत्वाकर्षण से दबाव केवल ढाल के रूप में उत्पन्न होता है, हम इसे दबाव शब्द में शरीर बल के रूप में सम्मिलित कर सकते हैं {{math|1=''h'' = ''p'' − ''χ''}}. नेवियर-स्टोक्स समीकरण के दाहिनी ओर दबाव और बल की शर्तें बन जाती हैं


<math display="block">-\nabla p + \mathbf{f} = -\nabla p + \nabla \chi = -\nabla \left( p - \chi \right) = -\nabla h.</math>
<math display="block">-\nabla p + \mathbf{f} = -\nabla p + \nabla \chi = -\nabla \left( p - \chi \right) = -\nabla h.</math>

Revision as of 12:59, 16 April 2023

कॉची संवेग समीकरण सदिश आंशिक अंतर समीकरण है जो कॉची द्वारा प्रस्तुत किया गया है जो किसी भी सातत्य यांत्रिकी में गैर-सापेक्षतावादी संवेग परिवहन परिघटना का वर्णन करता है।[1]


मुख्य समीकरण

संवहन में (या प्रवाह क्षेत्र के Lagrangian और Eulerian विनिर्देश) कॉची संवेग समीकरण के रूप में लिखा गया है:

जहाँ

  • प्रवाह वेग सदिश क्षेत्र है, जो समय और स्थान पर निर्भर करता है, (इकाई: )
  • समय है, (इकाई: )
  • की सामग्री व्युत्पन्न है , के समान्तर , (इकाई: )
  • सातत्य के दिए गए बिंदु पर घनत्व है (जिसके लिए निरंतरता समीकरण धारण करता है), (इकाई: )
  • कॉची तनाव टेन्सर है, (इकाई: )
  • सदिश है जिसमें शरीर की शक्तियों (कभी-कभी केवल गुरुत्वाकर्षण त्वरण) के कारण होने वाले सभी त्वरण होते हैं, (इकाई: )
  • डायवर्जेंस # स्ट्रेस टेंसर का टेंसर क्षेत्र है।[2][3][4](इकाई: )


सामान्यतः उपयोग की जाने वाली SI इकाइयाँ कोष्ठकों में दी गई हैं, चूँकि समीकरण प्रकृति में सामान्य हैं और अन्य इकाइयाँ उनमें अंकित की जा सकती हैं या इकाइयों को गैर-विमीयकरण द्वारा हटाया जा सकता है।

ध्यान दें कि स्पष्टता के लिए हम ऊपर केवल कॉलम सदिश (कार्तीय समन्वय प्रणाली में) का उपयोग करते हैं, किन्तु समीकरण को भौतिक घटकों का उपयोग करके लिखा गया है (जो न तो सहप्रसरण और सदिशों के प्रतिप्रसरण (कॉलम) हैं और न ही सहप्रसरण और सदिशों के प्रतिप्रसरण (पंक्ति))।[5] चूँकि, यदि हमने गैर-ऑर्थोगोनल वक्रीय निर्देशांक चुना है, तो हमें सहपरिवर्ती (पंक्ति सदिश) या प्रतिपरिवर्ती (स्तंभ सदिश) रूप में समीकरणों की गणना करनी चाहिए और उन्हें लिखना चाहिए।

चरों के उचित परिवर्तन के पश्चात्, इसे संरक्षण रूप में भी लिखा जा सकता है:

जहाँ j किसी दिए गए स्थान-समय बिंदु पर द्रव्यमान प्रवाह है, F संवेग घनत्व से जुड़ा प्रवाह है और s में प्रति इकाई आयतन में शरीर के सभी बल सम्मिलित हैं।

विभेदक व्युत्पत्ति

आइए हम मोमेंटम # बल से संबंध के साथ प्रारंभ करें जिसे निम्नानुसार लिखा जा सकता है: सिस्टम मोमेंटम में परिवर्तन इस सिस्टम पर कार्य करने वाले परिणामी बल के समानुपाती होता है। यह सूत्र द्वारा व्यक्त किया गया है:[6]

जहाँ समय में गति है t, बल औसत से अधिक है . द्वारा विभाजित करने के पश्चात् और सीमा से गुजर रहा है हम प्राप्त करते हैं (व्युत्पन्न):

आइए हम उपरोक्त समीकरण के प्रत्येक पक्ष का विश्लेषण करें।

दाईं ओर

घन द्रव तत्व की दीवारों पर कार्य करने वाले बलों का एक्स घटक (ऊपर-नीचे की दीवारों के लिए हरा, बाएं-दाएं के लिए लाल, आगे-पीछे के लिए काला)।
शीर्ष ग्राफ में हम फ़ंक्शन का सन्निकटन देखते हैं (नीली रेखा) परिमित अंतर (पीली रेखा) का उपयोग करते हुए। नीचे के ग्राफ में हम बिंदु के कई गुना बढ़े हुए पड़ोस को देखते हैं (ऊपरी ग्राफ से बैंगनी वर्ग)। नीचे के ग्राफ़ में, पीली रेखा पूरी तरह से नीले रंग से ढकी हुई है, इसलिए दिखाई नहीं देती। नीचे की आकृति में, दो समतुल्य व्युत्पन्न रूपों का उपयोग किया गया है: ], और पदनाम प्रयोग किया गया

]

हम बलों को शरीर बलों में विभाजित करते हैं और सतह बल

सतही बल घन द्रव तत्व की दीवारों पर कार्य करते हैं। प्रत्येक दीवार के लिए, इन बलों के एक्स घटक को घन तत्व के साथ चित्र में चिह्नित किया गया था (तनाव और सतह क्षेत्र के उत्पाद के रूप में उदा। इकाइयों के साथ ).

घन की प्रत्येक दीवार पर कार्य करने वाले बलों (उनके एक्स घटक) को जोड़ने पर, हम प्राप्त करते हैं:

आदेश देने के पश्चात् और घटकों के लिए समान तर्क देना (उन्हें चित्र में नहीं दिखाया गया है, किन्तु ये क्रमशः Y और Z अक्षों के समानांतर सदिश होंगे) हमें मिलता है:

हम इसे प्रतीकात्मक परिचालन रूप में लिख सकते हैं:

नियंत्रण आयतन के अंदर द्रव्यमान बल कार्य कर रहे हैं। हम उन्हें त्वरण क्षेत्र का उपयोग करके लिख सकते हैं (जैसे गुरुत्वाकर्षण त्वरण):

वाम पक्ष

आइए घन की गति की गणना करें:

जिससे कि हम मानते हैं कि परीक्षण किया गया द्रव्यमान (घन) समय में स्थिर है, इसलिए


बाएँ और दाएँ पक्ष की तुलना

अपने पास

तब

तब
द्वारा दोनों पक्षों को विभाजित करें , और जिससे कि हम पाते हैं:
जो व्युत्पत्ति को समाप्त करता है।

इंटीग्रल व्युत्पत्ति

न्यूटन के दूसरे नियम को प्रयुक्त करना (iवें घटक) मॉडल किए जा रहे सातत्य में नियंत्रण मात्रा देता है:

फिर, रेनॉल्ड्स परिवहन प्रमेय के आधार पर और सामग्री व्युत्पन्न संकेतन का उपयोग करके, कोई लिख सकता है

जहाँ Ω नियंत्रण मात्रा का प्रतिनिधित्व करता है। चूँकि यह समीकरण किसी भी नियंत्रण आयतन के लिए होना चाहिए, यह सच होना चाहिए कि समाकलन शून्य है, इससे कॉची संवेग समीकरण अनुसरण करता है। इस समीकरण को प्राप्त करने में मुख्य कदम (ऊपर नहीं किया गया) यह स्थापित कर रहा है कि तनाव टेंसर का टेंसर व्युत्पन्न उन बलों में से है जो गठन करता है Fi.[1]


संरक्षण रूप

कॉशी संवेग समीकरण को निम्न रूप में भी रखा जा सकता है:

Cauchy momentum equation (conservation form)

बस परिभाषित करके:

जहाँ j सातत्य में माने गए बिंदु पर द्रव्यमान प्रवाह है (जिसके लिए निरंतरता समीकरण धारण करता है), F संवेग घनत्व से जुड़ा प्रवाह है, और s में प्रति इकाई आयतन में शरीर के सभी बल सम्मिलित हैं। uu वेग का डायाडिक गुणनफल है।

यहाँ j और s में समान संख्या में आयाम हैं N प्रवाह की गति और शरीर के त्वरण के रूप में, जबकि F, टेन्सर होने के नाते, है N2.[note 1]

ऑयलरीय रूपों में यह स्पष्ट है कि कोई विचलित तनाव की धारणा कॉशी समीकरणों को यूलर समीकरणों (द्रव गतिकी) में नहीं लाती है।

संवहनी त्वरण

संवहन त्वरण का उदाहरण। प्रवाह स्थिर (समय-स्वतंत्र) है, किन्तु द्रव घटता है जिससे कि यह डायवर्जिंग डक्ट को नीचे ले जाता है (असम्पीडित या सबसोनिक कंप्रेसिबल प्रवाह मानते हुए)।

नेवियर-स्टोक्स समीकरणों की महत्वपूर्ण विशेषता संवहनी त्वरण की उपस्थिति है: अंतरिक्ष के संबंध में प्रवाह के समय-स्वतंत्र त्वरण का प्रभाव। जबकि भिन्न-भिन्न सातत्य कण वास्तव में समय पर निर्भर त्वरण का अनुभव करते हैं, प्रवाह क्षेत्र का संवहन त्वरण स्थानिक प्रभाव है, उदाहरण नोजल में तरल पदार्थ की गति है।

चाहे किसी भी प्रकार के सातत्य से निपटा जा रहा हो, संवहन त्वरण अरैखिक प्रभाव है। संवहन त्वरण अधिकांश प्रवाहों में उपस्तिथ होता है (अपवादों में आयामी असंपीड्य प्रवाह सम्मिलित है), किन्तु रेंगने वाले प्रवाह (जिसे स्टोक्स प्रवाह भी कहा जाता है) में इसके गतिशील प्रभाव की अवहेलना की जाती है। संवहन त्वरण को अरैखिक मात्रा द्वारा दर्शाया जाता है u ⋅ ∇u, जिसे या तो समझा जा सकता है (u ⋅ ∇)u या के रूप में u ⋅ (∇u), साथ u वेग सदिश का टेंसर व्युत्पन्न u. दोनों व्याख्याएं समान परिणाम देती हैं।[7]


एडवेक्शन ऑपरेटर बनाम टेन्सर व्युत्पन्न

संवहन शब्द रूप में लिखा जा सकता है (u ⋅ ∇)u, जहाँ u ⋅ ∇ संवहन है। इस निरूपण की तुलना टेन्सर व्युत्पन्न के संदर्भ में से की जा सकती है।[7]टेंसर व्युत्पन्न u द्वारा परिभाषित वेग सदिश का घटक-दर-घटक व्युत्पन्न है [∇u]mi = ∂m vi, जिससे कि


मेमने का रूप

कर्ल (गणित) की सदिश कलन पहचान # पहचान रखती है:

जहां फेनमैन सबस्क्रिप्ट नोटेशन a का उपयोग किया जाता है, जिसका अर्थ है कि सबस्क्रिप्टेड ग्रेडिएंट केवल कारक पर काम करता है a.

होरेस लैम्ब ने अपनी प्रसिद्ध मौलिक पुस्तक हाइड्रोडायनामिक्स (1895) में,[8] इस पहचान का उपयोग प्रवाह वेग के संवहन शब्द को घूर्णी रूप में परिवर्तित के लिए किया जाता है, अर्थात टेन्सर व्युत्पन्न के बिना:[9][10]

जहां सदिश मेम्ने सदिश कहा जाता है। कॉची संवेग समीकरण बन जाता है:

पहचान का उपयोग करना:

कॉची समीकरण बन जाता है:

वास्तव में, बाहरी रूढ़िवादी क्षेत्र के स्थितियों में, इसकी क्षमता को परिभाषित करके φ:

स्थिर प्रवाह के स्थितियों में प्रवाह वेग का समय व्युत्पन्न विलुप्त हो जाता है, इसलिए संवेग समीकरण बन जाता है:

और प्रवाह दिशा पर संवेग समीकरण को प्रक्षेपित करके, अर्थात् स्ट्रीमलाइन, स्ट्रीकलाइन और पाथलाइन के साथ, ट्रिपल स्केलर उत्पाद की सदिश कैलकुलस पहचान के कारण क्रॉस उत्पाद विलुप्त हो जाता है:

यदि तनाव टेंसर आइसोट्रोपिक है, तो केवल दबाव ही प्रवेश करता है: (जहाँ I पहचान टेन्सर है), और स्थिर असंपीड्य स्थितियों में यूलर संवेग समीकरण बन जाता है:

स्थिर असम्पीडित स्थितियों में जन समीकरण बस है:

अर्थात्, स्थिर असम्पीडित प्रवाह के लिए द्रव्यमान संरक्षण बताता है कि धारारेखा के साथ घनत्व स्थिर है। इससे यूलर गति समीकरण का अधिक सरलीकरण होता है:

अदृश्य तरल प्रवाह के लिए कुल शीर्ष को परिभाषित करने की सुविधा अब स्पष्ट है:

वास्तव में, उपरोक्त समीकरण को केवल इस प्रकार लिखा जा सकता है:

यही है, बाहरी रूढ़िवादी क्षेत्र में स्थिर अदृश्य और असम्पीडित प्रवाह के लिए संवेग संतुलन बताता है कि स्ट्रीमलाइन के साथ कुल सिर स्थिर है।

अघूर्णी प्रवाह

मेमने का रूप इरोटेशनल फ्लो में भी उपयोगी होता है, जहां वेग का कर्ल (गणित) (जिसे vorticity कहा जाता है) ω = ∇ × u शून्य के समान्तर है। उस स्थिति में, संवहन शब्द में कम कर देता है


तनाव

सातत्य प्रवाह में तनाव के प्रभाव को इसके द्वारा दर्शाया गया है p और ∇ ⋅ τ शर्तें; ये पृष्ठीय बलों की प्रवणताएँ हैं, जो किसी ठोस में प्रतिबलों के अनुरूप होती हैं। यहाँ p दाब प्रवणता है और कौशी प्रतिबल टेंसर के समदैशिक भाग से उत्पन्न होती है। यह हिस्सा लगभग सभी स्थितियों में होने वाले सामान्य तनावों द्वारा दिया जाता है। तनाव टेन्सर का अनिसोट्रोपिक हिस्सा उत्पन्न करता है ∇ ⋅ τ, जो सामान्यतः चिपचिपी शक्तियों का वर्णन करता है; असम्पीडित प्रवाह के लिए, यह केवल कतरनी प्रभाव है। इस प्रकार, τ विचलित तनाव टेंसर है, और तनाव टेंसर इसके समान्तर है:[11]

जहाँ I माना स्थान में पहचान मैट्रिक्स है और τ कतरनी टेंसर।

सभी गैर-सापेक्षवादी संवेग संरक्षण समीकरण, जैसे कि नेवियर-स्टोक्स समीकरण, कॉची संवेग समीकरण के साथ शुरुआत करके और संवैधानिक संबंध के माध्यम से तनाव टेंसर को निर्दिष्ट करके प्राप्त किए जा सकते हैं। श्यानता और द्रव अपरूपण वेग के संदर्भ में अपरूपण टेंसर को व्यक्त करके, और निरंतर घनत्व और श्यानता को मानते हुए, कॉशी संवेग समीकरण नेवियर-स्टोक्स समीकरणों की ओर ले जाएगा। अदृश्य प्रवाह को मानकर, नेवियर-स्टोक्स समीकरण यूलर समीकरणों (द्रव गतिकी) को और सरल बना सकते हैं।

तनाव टेन्सर के विचलन को इस प्रकार लिखा जा सकता है

प्रवाह पर दाब प्रवणता का प्रभाव उच्च दाब से निम्न दाब की दिशा में प्रवाह को तेज करना है।

जैसा कि कॉची संवेग समीकरण में लिखा गया है, तनाव की शर्तें p और τ अभी तक अज्ञात हैं, इसलिए अकेले इस समीकरण का उपयोग समस्याओं को हल करने के लिए नहीं किया जा सकता है। गति के समीकरणों के अतिरिक्त - न्यूटन का दूसरा नियम - बल मॉडल की आवश्यकता है जो तनाव को प्रवाह गति से संबंधित करता है।[12] इस कारण से, प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए प्रयुक्त किया जाता है।

बाहरी बल

सदिश क्षेत्र f प्रति इकाई द्रव्यमान में शारीरिक बलों का प्रतिनिधित्व करता है। सामान्यतः, इनमें केवल गुरुत्व त्वरण होता है, किन्तु इसमें अन्य सम्मिलित हो सकते हैं, जैसे विद्युत चुम्बकीय बल। गैर-जड़त्वीय समन्वय फ्रेम में, काल्पनिक बल से जुड़े अन्य जड़त्वीय त्वरण उत्पन्न हो सकते हैं।

अधिकांशतः, इन बलों को कुछ स्केलर मात्रा के ढाल के रूप में प्रदर्शित किया जा सकता है χ, साथ f = ∇χ जिस स्थिति में उन्हें संरक्षी बल कहा जाता है। गुरुत्वाकर्षण में z दिशा, उदाहरण के लिए, की ढाल है ρgz. जिससे कि इस तरह के गुरुत्वाकर्षण से दबाव केवल ढाल के रूप में उत्पन्न होता है, हम इसे दबाव शब्द में शरीर बल के रूप में सम्मिलित कर सकते हैं h = pχ. नेवियर-स्टोक्स समीकरण के दाहिनी ओर दबाव और बल की शर्तें बन जाती हैं

तनाव की अवधि में बाहरी प्रभावों को सम्मिलित करना भी संभव है शरीर बल शब्द के अतिरिक्त। इसमें स्ट्रेस टेंसर में सामान्यतः सममित आंतरिक योगदान के विपरीत एंटीसिमेट्रिक स्ट्रेस (कोणीय गति के इनपुट) भी सम्मिलित हो सकते हैं।[13]


गैर-विमीयकरण

समीकरणों को आयाम रहित बनाने के लिए, विशिष्ट लंबाई r0 और विशेषता वेग u0 को परिभाषित करने की आवश्यकता है। इन्हें ऐसे चुना जाना चाहिए कि आयाम रहित चर सभी क्रम के हों। निम्नलिखित आयाम रहित चर इस प्रकार प्राप्त होते हैं:

यूलर संवेग समीकरणों में इन उल्टे संबंधों का प्रतिस्थापन:

और पहले गुणांक के लिए विभाजित करके:

अब फ्राउड संख्या को परिभाषित करना:

यूलर संख्या (भौतिकी):

और घर्षण का गुणांक | त्वचा-घर्षण का गुणांक या जिसे सामान्यतः वायुगतिकी के क्षेत्र में 'ड्रैग' गुणांक कहा जाता है:

क्रमशः रूढ़िवादी चर, अर्थात् द्रव्यमान प्रवाह और बल घनत्व से गुजरकर:

समीकरण अंत में व्यक्त किए गए हैं (अब इंडेक्स को छोड़ रहे हैं):

Cauchy momentum equation (nondimensional conservative form)

फ्राउड लिमिट में कौशी समीकरण Fr → ∞ (नगण्य बाहरी क्षेत्र के अनुरूप) मुक्त कौशी समीकरण नामित हैं:

Free Cauchy momentum equation (nondimensional conservative form)

और अंततः संरक्षण कानून हो सकता है। इस तरह के समीकरणों के लिए उच्च फ्राउड संख्या (कम बाहरी क्षेत्र) की सीमा इस प्रकार उल्लेखनीय है और गड़बड़ी सिद्धांत के साथ अध्ययन किया जाता है।

अंत में संवहन रूप में समीकरण हैं:

Cauchy momentum equation (nondimensional convective form)

3डी स्पष्ट संवहन रूप

कार्तीय 3डी निर्देशांक

असममित तनाव टेंसरों के लिए, सामान्य रूप से समीकरण निम्नलिखित रूप लेते हैं:[2][3][4][14]