कॉची गति समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
संवहन में (या प्रवाह क्षेत्र के Lagrangian और Eulerian विनिर्देश) कॉची संवेग समीकरण के रूप में लिखा गया है: | संवहन में (या प्रवाह क्षेत्र के Lagrangian और Eulerian विनिर्देश) कॉची संवेग समीकरण के रूप में लिखा गया है: | ||
<math display="block"> \frac{D \mathbf{u}}{D t} = \frac 1 \rho \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}</math> | <math display="block"> \frac{D \mathbf{u}}{D t} = \frac 1 \rho \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}</math> | ||
जहाँ | |||
* <math>\mathbf{u}</math> [[प्रवाह वेग]] सदिश क्षेत्र है, जो समय और स्थान पर निर्भर करता है, (इकाई: <math>\mathrm{m/s}</math>) | * <math>\mathbf{u}</math> [[प्रवाह वेग]] सदिश क्षेत्र है, जो समय और स्थान पर निर्भर करता है, (इकाई: <math>\mathrm{m/s}</math>) | ||
* <math>t</math> [[समय]] है, (इकाई: <math>\mathrm{s}</math>) | * <math>t</math> [[समय]] है, (इकाई: <math>\mathrm{s}</math>) | ||
* <math>\frac{D \mathbf{u}}{D t}</math> की [[सामग्री व्युत्पन्न]] है <math>\mathbf{u}</math>, के | * <math>\frac{D \mathbf{u}}{D t}</math> की [[सामग्री व्युत्पन्न]] है <math>\mathbf{u}</math>, के समान्तर <math>\partial_t\mathbf{u} + \mathbf{u}\cdot \nabla\mathbf{u}</math>, (इकाई: <math>\mathrm{m/s^2}</math>) | ||
* <math>\rho</math> सातत्य के दिए गए बिंदु पर [[घनत्व]] है (जिसके लिए निरंतरता समीकरण धारण करता है), (इकाई: <math>\mathrm{kg/m^3}</math>) | * <math>\rho</math> सातत्य के दिए गए बिंदु पर [[घनत्व]] है (जिसके लिए निरंतरता समीकरण धारण करता है), (इकाई: <math>\mathrm{kg/m^3}</math>) | ||
* <math>\boldsymbol{\sigma}</math> [[कॉची तनाव टेन्सर]] है, (इकाई: <math>\mathrm{Pa=N/m^2 = kg \cdot m^{-1} \cdot s^{-2}}</math>) | * <math>\boldsymbol{\sigma}</math> [[कॉची तनाव टेन्सर]] है, (इकाई: <math>\mathrm{Pa=N/m^2 = kg \cdot m^{-1} \cdot s^{-2}}</math>) | ||
Line 22: | Line 22: | ||
सामान्यतः उपयोग की जाने वाली SI इकाइयाँ कोष्ठकों में दी गई हैं, | सामान्यतः उपयोग की जाने वाली SI इकाइयाँ कोष्ठकों में दी गई हैं, चूँकि समीकरण प्रकृति में सामान्य हैं और अन्य इकाइयाँ उनमें अंकित की जा सकती हैं या इकाइयों को [[गैर-विमीयकरण]] द्वारा हटाया जा सकता है। | ||
ध्यान दें कि स्पष्टता के लिए हम ऊपर केवल कॉलम | ध्यान दें कि स्पष्टता के लिए हम ऊपर केवल कॉलम सदिश ([[कार्तीय समन्वय प्रणाली]] में) का उपयोग करते हैं, किन्तु समीकरण को भौतिक घटकों का उपयोग करके लिखा गया है (जो न तो सहप्रसरण और सदिशों के प्रतिप्रसरण (कॉलम) हैं और न ही सहप्रसरण और सदिशों के प्रतिप्रसरण (पंक्ति))।<ref name="Clarke2011">{{cite web | | ||
authors= David A. Clarke | | authors= David A. Clarke | | ||
title= A Primer on Tensor Calculus | | title= A Primer on Tensor Calculus | | ||
Line 30: | Line 30: | ||
page=11 (pdf 15) | | page=11 (pdf 15) | | ||
url=https://www.ap.smu.ca/~dclarke/home/documents/byDAC/tprimer.pdf | url=https://www.ap.smu.ca/~dclarke/home/documents/byDAC/tprimer.pdf | ||
}}</ref> | }}</ref> चूँकि, यदि हमने गैर-ऑर्थोगोनल [[वक्रीय निर्देशांक]] चुना है, तो हमें सहपरिवर्ती (पंक्ति सदिश) या प्रतिपरिवर्ती (स्तंभ सदिश) रूप में समीकरणों की गणना करनी चाहिए और उन्हें लिखना चाहिए। | ||
चरों के उचित परिवर्तन के | चरों के उचित परिवर्तन के पश्चात्, इसे संरक्षण रूप में भी लिखा जा सकता है: | ||
<math display="block"> \frac {\partial \mathbf j }{\partial t}+ \nabla \cdot \mathbf F = \mathbf s </math> | <math display="block"> \frac {\partial \mathbf j }{\partial t}+ \nabla \cdot \mathbf F = \mathbf s </math> | ||
जहाँ {{math|'''j'''}} किसी दिए गए स्थान-समय बिंदु पर [[द्रव्यमान प्रवाह]] है, {{math|'''F'''}} संवेग घनत्व से जुड़ा प्रवाह है और {{math|'''s'''}} में प्रति इकाई आयतन में शरीर के सभी बल सम्मिलित हैं। | |||
== विभेदक व्युत्पत्ति == | == विभेदक व्युत्पत्ति == | ||
आइए हम मोमेंटम # बल से संबंध के साथ | आइए हम मोमेंटम # बल से संबंध के साथ प्रारंभ करें जिसे निम्नानुसार लिखा जा सकता है: सिस्टम मोमेंटम में परिवर्तन इस सिस्टम पर कार्य करने वाले परिणामी बल के समानुपाती होता है। यह सूत्र द्वारा व्यक्त किया गया है:<ref name="Anderson">{{cite book |last= Anderson |first=John D. Jr.|date=1995 |title=कम्प्यूटेशनल तरल सक्रिय| location=New York |publisher=McGraw-Hill |pages=61–64 |isbn=0-07-001685-2| url=https://www.airloads.net/Downloads/Textbooks/Computational-Fluid-Dynamics-the-Basics-With-Applications-Anderson-J-D.pdf}}</ref> | ||
<math display="block">\vec p(t+\Delta t) - \vec p(t) = \Delta t \vec\bar F</math> | <math display="block">\vec p(t+\Delta t) - \vec p(t) = \Delta t \vec\bar F</math> | ||
जहाँ <math>\vec p(t)</math> समय में गति है {{mvar|t}}, <math>\vec\bar F</math> बल औसत से अधिक है <math>\Delta t</math>. द्वारा विभाजित करने के पश्चात् <math>\Delta t</math> और सीमा से गुजर रहा है <math>\Delta t \to 0</math> हम प्राप्त करते हैं (व्युत्पन्न): | |||
<math display="block">\frac{d\vec p}{dt} = \vec F</math> | <math display="block">\frac{d\vec p}{dt} = \vec F</math> | ||
Line 76: | Line 76: | ||
-\sigma_{zx}dx\,dy | -\sigma_{zx}dx\,dy | ||
</math> | </math> | ||
आदेश देने के | आदेश देने के पश्चात् <math>F_p^x</math> और घटकों के लिए समान तर्क देना <math>F_p^y, F_p^z</math> (उन्हें चित्र में नहीं दिखाया गया है, किन्तु ये क्रमशः Y और Z अक्षों के समानांतर सदिश होंगे) हमें मिलता है: | ||
<math display="block"> \begin{align} | <math display="block"> \begin{align} | ||
Line 101: | Line 101: | ||
आइए घन की गति की गणना करें: | आइए घन की गति की गणना करें: | ||
<math display="block">\vec p = \mathbf u m = \mathbf u \rho \, dx \, dy \, dz</math> | <math display="block">\vec p = \mathbf u m = \mathbf u \rho \, dx \, dy \, dz</math> | ||
जिससे कि हम मानते हैं कि परीक्षण किया गया द्रव्यमान (घन) <math>m=\rho \,dx\,dy\,dz</math> समय में स्थिर है, इसलिए | |||
<math display="block">\frac{d\vec p}{dt}=\frac{d\mathbf u}{dt} \rho \, dx \, dy \, dz</math> | <math display="block">\frac{d\vec p}{dt}=\frac{d\mathbf u}{dt} \rho \, dx \, dy \, dz</math> | ||
Line 114: | Line 114: | ||
तब | तब | ||
<math display="block">\frac{d\mathbf u}{dt}\rho \, dx \, dy \, dz = (\nabla\cdot\boldsymbol\sigma)dx \, dy \, dz + \mathbf f \rho \,dx \, dy \, dz</math> | <math display="block">\frac{d\mathbf u}{dt}\rho \, dx \, dy \, dz = (\nabla\cdot\boldsymbol\sigma)dx \, dy \, dz + \mathbf f \rho \,dx \, dy \, dz</math> | ||
द्वारा दोनों पक्षों को विभाजित करें <math>\rho \,dx\,dy\,dz</math>, और | द्वारा दोनों पक्षों को विभाजित करें <math>\rho \,dx\,dy\,dz</math>, और जिससे कि <math display="inline">\frac{d\mathbf u}{dt} = \frac{D\mathbf u}{Dt}</math> हम पाते हैं: | ||
<math display="block">\frac{D\mathbf u}{Dt} = \frac{1}{\rho}\nabla\cdot\boldsymbol\sigma + \mathbf f</math> | <math display="block">\frac{D\mathbf u}{Dt} = \frac{1}{\rho}\nabla\cdot\boldsymbol\sigma + \mathbf f</math> | ||
जो व्युत्पत्ति को समाप्त करता है। | जो व्युत्पत्ति को समाप्त करता है। | ||
== इंटीग्रल व्युत्पत्ति == | == इंटीग्रल व्युत्पत्ति == | ||
न्यूटन के दूसरे नियम को | न्यूटन के दूसरे नियम को प्रयुक्त करना ({{mvar|i}}वें घटक) मॉडल किए जा रहे सातत्य में [[नियंत्रण मात्रा]] देता है: | ||
<math display="block">m a_i = F_i</math> | <math display="block">m a_i = F_i</math> | ||
Line 130: | Line 130: | ||
\frac{D u_i}{D t}- \frac {\nabla_j\sigma_i^j}{\rho} - f_i &= 0 | \frac{D u_i}{D t}- \frac {\nabla_j\sigma_i^j}{\rho} - f_i &= 0 | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ {{math|Ω}} नियंत्रण मात्रा का प्रतिनिधित्व करता है। चूँकि यह समीकरण किसी भी नियंत्रण आयतन के लिए होना चाहिए, यह सच होना चाहिए कि समाकलन शून्य है, इससे कॉची संवेग समीकरण अनुसरण करता है। इस समीकरण को प्राप्त करने में मुख्य कदम (ऊपर नहीं किया गया) यह स्थापित कर रहा है कि तनाव टेंसर का [[टेंसर व्युत्पन्न]] उन बलों में से है जो गठन करता है {{mvar|F<sub>i</sub>}}.<ref name=Acheson /> | |||
Line 154: | Line 154: | ||
{\mathbf s}&= \rho \mathbf f | {\mathbf s}&= \rho \mathbf f | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ {{math|'''j'''}} सातत्य में माने गए बिंदु पर द्रव्यमान प्रवाह है (जिसके लिए निरंतरता समीकरण धारण करता है), {{math|'''F'''}} संवेग घनत्व से जुड़ा प्रवाह है, और {{math|'''s'''}} में प्रति इकाई आयतन में शरीर के सभी बल सम्मिलित हैं। {{math|'''u''' ⊗ '''u'''}} वेग का डायाडिक गुणनफल है। | |||
यहाँ {{math|'''j'''}} और {{math|'''s'''}} में समान संख्या में आयाम हैं {{mvar|N}} प्रवाह की गति और शरीर के त्वरण के रूप में, जबकि {{math|'''F'''}}, [[ टेन्सर |टेन्सर]] होने के नाते, है {{math|''N''<sup>2</sup>}}.<ref group="note">In 3D for example, with respect to some coordinate system, the vector {{math|'''j'''}} has 3 components, while the tensors {{math|'''σ'''}} and {{math|'''F'''}} have 9 (3×3), so the explicit forms written as matrices would be: | यहाँ {{math|'''j'''}} और {{math|'''s'''}} में समान संख्या में आयाम हैं {{mvar|N}} प्रवाह की गति और शरीर के त्वरण के रूप में, जबकि {{math|'''F'''}}, [[ टेन्सर |टेन्सर]] होने के नाते, है {{math|''N''<sup>2</sup>}}.<ref group="note">In 3D for example, with respect to some coordinate system, the vector {{math|'''j'''}} has 3 components, while the tensors {{math|'''σ'''}} and {{math|'''F'''}} have 9 (3×3), so the explicit forms written as matrices would be: | ||
Line 168: | Line 168: | ||
Note, however, that if symmetrical, {{math|'''F'''}} will only contain 6 ''[[degrees of freedom]]''. And {{math|'''F'''}}'s symmetry is equivalent to {{math|'''σ'''}}'s symmetry (which will be present for the most common [[Cauchy stress tensor]]s), since dyads of vectors with themselves are always symmetrical.</ref> | Note, however, that if symmetrical, {{math|'''F'''}} will only contain 6 ''[[degrees of freedom]]''. And {{math|'''F'''}}'s symmetry is equivalent to {{math|'''σ'''}}'s symmetry (which will be present for the most common [[Cauchy stress tensor]]s), since dyads of vectors with themselves are always symmetrical.</ref> | ||
ऑयलरीय रूपों में यह स्पष्ट है कि कोई विचलित तनाव की धारणा कॉशी समीकरणों को यूलर समीकरणों (द्रव गतिकी) में नहीं लाती है। | ऑयलरीय रूपों में यह स्पष्ट है कि कोई विचलित तनाव की धारणा कॉशी समीकरणों को यूलर समीकरणों (द्रव गतिकी) में नहीं लाती है। | ||
== संवहनी त्वरण == | == संवहनी त्वरण == | ||
[[Image:ConvectiveAcceleration vectorized.svg|thumb|संवहन त्वरण का उदाहरण। प्रवाह स्थिर (समय-स्वतंत्र) है, | [[Image:ConvectiveAcceleration vectorized.svg|thumb|संवहन त्वरण का उदाहरण। प्रवाह स्थिर (समय-स्वतंत्र) है, किन्तु द्रव घटता है जिससे कि यह डायवर्जिंग डक्ट को नीचे ले जाता है (असम्पीडित या सबसोनिक कंप्रेसिबल प्रवाह मानते हुए)।]]नेवियर-स्टोक्स समीकरणों की महत्वपूर्ण विशेषता संवहनी त्वरण की उपस्थिति है: अंतरिक्ष के संबंध में प्रवाह के समय-स्वतंत्र त्वरण का प्रभाव। जबकि भिन्न-भिन्न सातत्य कण वास्तव में समय पर निर्भर त्वरण का अनुभव करते हैं, प्रवाह क्षेत्र का संवहन त्वरण स्थानिक प्रभाव है, उदाहरण नोजल में तरल पदार्थ की गति है। | ||
चाहे किसी भी प्रकार के सातत्य से निपटा जा रहा हो, संवहन त्वरण अरैखिक प्रभाव है। संवहन त्वरण अधिकांश प्रवाहों में उपस्तिथ होता है (अपवादों में आयामी असंपीड्य प्रवाह सम्मिलित है), | चाहे किसी भी प्रकार के सातत्य से निपटा जा रहा हो, संवहन त्वरण अरैखिक प्रभाव है। संवहन त्वरण अधिकांश प्रवाहों में उपस्तिथ होता है (अपवादों में आयामी असंपीड्य प्रवाह सम्मिलित है), किन्तु रेंगने वाले प्रवाह (जिसे स्टोक्स प्रवाह भी कहा जाता है) में इसके गतिशील प्रभाव की अवहेलना की जाती है। संवहन त्वरण को अरैखिक मात्रा द्वारा दर्शाया जाता है {{math|'''u''' ⋅ ∇'''u'''}}, जिसे या तो समझा जा सकता है {{math|('''u''' ⋅ ∇)'''u'''}} या के रूप में {{math|'''u''' ⋅ (∇'''u''')}}, साथ {{math|∇'''u'''}} वेग सदिश का टेंसर व्युत्पन्न {{math|'''u'''}}. दोनों व्याख्याएं समान परिणाम देती हैं।<ref name=Emanuel>{{cite book | last=Emanuel | first=G. | title=विश्लेषणात्मक द्रव गतिकी| publisher=CRC Press | year=2001 | edition=second | isbn=0-8493-9114-8 | pages=6–7 }}</ref> | ||
=== एडवेक्शन ऑपरेटर बनाम टेन्सर व्युत्पन्न === | === एडवेक्शन ऑपरेटर बनाम टेन्सर व्युत्पन्न === | ||
संवहन शब्द <math>D\mathbf{u}/Dt</math> रूप में लिखा जा सकता है {{math|('''u''' ⋅ ∇)'''u'''}}, | संवहन शब्द <math>D\mathbf{u}/Dt</math> रूप में लिखा जा सकता है {{math|('''u''' ⋅ ∇)'''u'''}}, जहाँ {{math|'''u''' ⋅ ∇}} [[संवहन]] है। इस निरूपण की तुलना टेन्सर व्युत्पन्न के संदर्भ में से की जा सकती है।<ref name=Emanuel/>टेंसर व्युत्पन्न {{math|∇'''u'''}} द्वारा परिभाषित वेग सदिश का घटक-दर-घटक व्युत्पन्न है {{math|1=[∇'''u''']<sub>''mi''</sub> = ∂''<sub>m</sub> v<sub>i</sub>''}}, जिससे कि | ||
<math display="block">\left[\mathbf{u}\cdot\left(\nabla \mathbf{u}\right)\right]_i=\sum_m v_m \partial_m v_i=\left[(\mathbf{u}\cdot\nabla)\mathbf{u}\right]_i\,.</math> | <math display="block">\left[\mathbf{u}\cdot\left(\nabla \mathbf{u}\right)\right]_i=\sum_m v_m \partial_m v_i=\left[(\mathbf{u}\cdot\nabla)\mathbf{u}\right]_i\,.</math> | ||
Line 188: | Line 189: | ||
जहां फेनमैन सबस्क्रिप्ट नोटेशन {{math|∇<sub>''a''</sub>}} का उपयोग किया जाता है, जिसका अर्थ है कि सबस्क्रिप्टेड ग्रेडिएंट केवल कारक पर काम करता है {{mvar|a}}. | जहां फेनमैन सबस्क्रिप्ट नोटेशन {{math|∇<sub>''a''</sub>}} का उपयोग किया जाता है, जिसका अर्थ है कि सबस्क्रिप्टेड ग्रेडिएंट केवल कारक पर काम करता है {{mvar|a}}. | ||
[[होरेस लैम्ब]] ने अपनी प्रसिद्ध | [[होरेस लैम्ब]] ने अपनी प्रसिद्ध मौलिक पुस्तक हाइड्रोडायनामिक्स (1895) में,<ref>{{cite web| language=en| url=https://archive.org/details/hydrodynamics00lamb/page/n3/mode/2up |last=Lamb |first=Horace | title=जल-गत्यात्मकता| year=1945 }}</ref> इस पहचान का उपयोग प्रवाह वेग के संवहन शब्द को घूर्णी रूप में परिवर्तित के लिए किया जाता है, अर्थात टेन्सर व्युत्पन्न के बिना:<ref>See Batchelor (1967), §3.5, p. 160.</ref><ref>{{MathWorld| id=ConvectiveDerivative| title = Convective Derivative}}</ref> | ||
<math display="block">\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \left( \frac{\|\mathbf{u}\|^2}{2} \right) + \left( \nabla \times \mathbf{u} \right) \times \mathbf{u}</math> | <math display="block">\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \left( \frac{\|\mathbf{u}\|^2}{2} \right) + \left( \nabla \times \mathbf{u} \right) \times \mathbf{u}</math> | ||
Line 203: | Line 204: | ||
<math display="block">\nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \boldsymbol \sigma \cdot \nabla \rho + \mathbf u \times (\nabla \times \mathbf u) - \frac{\partial \mathbf u}{\partial t}</math> | <math display="block">\nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \boldsymbol \sigma \cdot \nabla \rho + \mathbf u \times (\nabla \times \mathbf u) - \frac{\partial \mathbf u}{\partial t}</math> | ||
स्थिर प्रवाह के स्थितियों में प्रवाह वेग का समय व्युत्पन्न | स्थिर प्रवाह के स्थितियों में प्रवाह वेग का समय व्युत्पन्न विलुप्त हो जाता है, इसलिए संवेग समीकरण बन जाता है: | ||
<math display="block">\nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \boldsymbol \sigma \cdot \nabla \rho + \mathbf u \times (\nabla \times \mathbf u)</math> | <math display="block">\nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \boldsymbol \sigma \cdot \nabla \rho + \mathbf u \times (\nabla \times \mathbf u)</math> | ||
और प्रवाह दिशा पर संवेग समीकरण को प्रक्षेपित करके, अर्थात् स्ट्रीमलाइन, स्ट्रीकलाइन और पाथलाइन के साथ, [[ट्रिपल स्केलर उत्पाद]] की सदिश कैलकुलस पहचान के कारण क्रॉस उत्पाद | और प्रवाह दिशा पर संवेग समीकरण को प्रक्षेपित करके, अर्थात् स्ट्रीमलाइन, स्ट्रीकलाइन और पाथलाइन के साथ, [[ट्रिपल स्केलर उत्पाद]] की सदिश कैलकुलस पहचान के कारण क्रॉस उत्पाद विलुप्त हो जाता है: | ||
<math display="block">\mathbf u \cdot \nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \mathbf u \cdot (\boldsymbol \sigma \cdot \nabla \rho)</math> | <math display="block">\mathbf u \cdot \nabla \cdot \left( \frac{1}{2} u^2 + \phi - \frac {\boldsymbol \sigma} \rho \right) = \frac{1}{\rho^2} \mathbf u \cdot (\boldsymbol \sigma \cdot \nabla \rho)</math> | ||
यदि तनाव टेंसर आइसोट्रोपिक है, तो केवल दबाव ही प्रवेश करता है: <math>\boldsymbol \sigma = -p \mathbf I</math> ( | यदि तनाव टेंसर आइसोट्रोपिक है, तो केवल दबाव ही प्रवेश करता है: <math>\boldsymbol \sigma = -p \mathbf I</math> (जहाँ {{math|'''I'''}} पहचान टेन्सर है), और स्थिर असंपीड्य स्थितियों में यूलर संवेग समीकरण बन जाता है: | ||
<math display="block">\mathbf u \cdot \nabla \left( \frac{1}{2} u^2 + \phi + \frac p \rho \right) + \frac{p}{\rho^2} \mathbf u \cdot \nabla \rho = 0</math> | <math display="block">\mathbf u \cdot \nabla \left( \frac{1}{2} u^2 + \phi + \frac p \rho \right) + \frac{p}{\rho^2} \mathbf u \cdot \nabla \rho = 0</math> | ||
Line 215: | Line 216: | ||
<math display="block">\mathbf u \cdot \nabla \rho = 0\,,</math> | <math display="block">\mathbf u \cdot \nabla \rho = 0\,,</math> | ||
अर्थात्, स्थिर असम्पीडित प्रवाह के लिए द्रव्यमान संरक्षण बताता है कि धारारेखा के साथ घनत्व स्थिर है। इससे यूलर गति समीकरण का | अर्थात्, स्थिर असम्पीडित प्रवाह के लिए द्रव्यमान संरक्षण बताता है कि धारारेखा के साथ घनत्व स्थिर है। इससे यूलर गति समीकरण का अधिक सरलीकरण होता है: | ||
<math display="block">\mathbf u \cdot \nabla \left( \frac{1}{2} u^2 + \phi + \frac p \rho \right) = 0</math> | <math display="block">\mathbf u \cdot \nabla \left( \frac{1}{2} u^2 + \phi + \frac p \rho \right) = 0</math> | ||
Line 227: | Line 228: | ||
=== अघूर्णी प्रवाह === | === अघूर्णी प्रवाह === | ||
मेमने का रूप इरोटेशनल फ्लो में भी उपयोगी होता है, जहां वेग का [[कर्ल (गणित)]] (जिसे [[vorticity]] कहा जाता है) {{math|1=''ω'' = ∇ × '''u'''}} शून्य के | मेमने का रूप इरोटेशनल फ्लो में भी उपयोगी होता है, जहां वेग का [[कर्ल (गणित)]] (जिसे [[vorticity]] कहा जाता है) {{math|1=''ω'' = ∇ × '''u'''}} शून्य के समान्तर है। उस स्थिति में, संवहन शब्द में <math>D\mathbf{u}/Dt</math> कम कर देता है | ||
<math display="block">\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \left( \frac{\|\mathbf{u}\|^2}{2} \right).</math> | <math display="block">\mathbf{u} \cdot \nabla \mathbf{u} = \nabla \left( \frac{\|\mathbf{u}\|^2}{2} \right).</math> | ||
Line 233: | Line 234: | ||
== तनाव == | == तनाव == | ||
सातत्य प्रवाह में तनाव के प्रभाव को इसके द्वारा दर्शाया गया है {{math|∇''p''}} और {{math|∇ ⋅ '''τ'''}} शर्तें; ये पृष्ठीय बलों की प्रवणताएँ हैं, जो किसी ठोस में प्रतिबलों के अनुरूप होती हैं। यहाँ {{math|∇''p''}} दाब प्रवणता है और कौशी प्रतिबल टेंसर के समदैशिक भाग से उत्पन्न होती है। यह हिस्सा लगभग सभी स्थितियों में होने वाले सामान्य तनावों द्वारा दिया जाता है। तनाव टेन्सर का अनिसोट्रोपिक हिस्सा उत्पन्न करता है {{math|∇ ⋅ '''τ'''}}, जो सामान्यतः चिपचिपी | सातत्य प्रवाह में तनाव के प्रभाव को इसके द्वारा दर्शाया गया है {{math|∇''p''}} और {{math|∇ ⋅ '''τ'''}} शर्तें; ये पृष्ठीय बलों की प्रवणताएँ हैं, जो किसी ठोस में प्रतिबलों के अनुरूप होती हैं। यहाँ {{math|∇''p''}} दाब प्रवणता है और कौशी प्रतिबल टेंसर के समदैशिक भाग से उत्पन्न होती है। यह हिस्सा लगभग सभी स्थितियों में होने वाले सामान्य तनावों द्वारा दिया जाता है। तनाव टेन्सर का अनिसोट्रोपिक हिस्सा उत्पन्न करता है {{math|∇ ⋅ '''τ'''}}, जो सामान्यतः चिपचिपी शक्तियों का वर्णन करता है; असम्पीडित प्रवाह के लिए, यह केवल कतरनी प्रभाव है। इस प्रकार, {{math|'''τ'''}} [[विचलित तनाव टेंसर]] है, और तनाव टेंसर इसके समान्तर है:<ref>Batchelor (1967) p. 142.</ref> | ||
<math display="block">\boldsymbol \sigma = - p \mathbf I + \boldsymbol \tau</math> | <math display="block">\boldsymbol \sigma = - p \mathbf I + \boldsymbol \tau</math> | ||
जहाँ {{math|'''I'''}} माना स्थान में पहचान मैट्रिक्स है और {{math|'''τ'''}} कतरनी टेंसर। | |||
सभी गैर-सापेक्षवादी संवेग संरक्षण समीकरण, जैसे कि नेवियर-स्टोक्स समीकरण, कॉची संवेग समीकरण के साथ शुरुआत करके और [[संवैधानिक संबंध]] के माध्यम से तनाव टेंसर को निर्दिष्ट करके प्राप्त किए जा सकते हैं। [[श्यानता]] और द्रव अपरूपण वेग के संदर्भ में अपरूपण टेंसर को व्यक्त करके, और निरंतर घनत्व और श्यानता को मानते हुए, कॉशी संवेग समीकरण नेवियर-स्टोक्स समीकरणों की ओर ले जाएगा। [[अदृश्य प्रवाह]] को मानकर, नेवियर-स्टोक्स समीकरण यूलर समीकरणों (द्रव गतिकी) को और सरल बना सकते हैं। | सभी गैर-सापेक्षवादी संवेग संरक्षण समीकरण, जैसे कि नेवियर-स्टोक्स समीकरण, कॉची संवेग समीकरण के साथ शुरुआत करके और [[संवैधानिक संबंध]] के माध्यम से तनाव टेंसर को निर्दिष्ट करके प्राप्त किए जा सकते हैं। [[श्यानता]] और द्रव अपरूपण वेग के संदर्भ में अपरूपण टेंसर को व्यक्त करके, और निरंतर घनत्व और श्यानता को मानते हुए, कॉशी संवेग समीकरण नेवियर-स्टोक्स समीकरणों की ओर ले जाएगा। [[अदृश्य प्रवाह]] को मानकर, नेवियर-स्टोक्स समीकरण यूलर समीकरणों (द्रव गतिकी) को और सरल बना सकते हैं। | ||
Line 261: | Line 262: | ||
| publisher=Addison-Wesley | | publisher=Addison-Wesley | ||
| location=Reading, Massachusetts | | location=Reading, Massachusetts | ||
|at= Vol. 1, §9–4 and §12–1}}</ref> इस कारण से, प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए | |at= Vol. 1, §9–4 and §12–1}}</ref> इस कारण से, प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए प्रयुक्त किया जाता है। | ||
== बाहरी बल == | == बाहरी बल == | ||
सदिश क्षेत्र {{math|'''f'''}} प्रति इकाई द्रव्यमान में शारीरिक बलों का प्रतिनिधित्व करता है। सामान्यतः, इनमें केवल गुरुत्व त्वरण होता है, | सदिश क्षेत्र {{math|'''f'''}} प्रति इकाई द्रव्यमान में शारीरिक बलों का प्रतिनिधित्व करता है। सामान्यतः, इनमें केवल गुरुत्व त्वरण होता है, किन्तु इसमें अन्य सम्मिलित हो सकते हैं, जैसे विद्युत चुम्बकीय बल। गैर-जड़त्वीय समन्वय फ्रेम में, काल्पनिक बल से जुड़े अन्य जड़त्वीय त्वरण उत्पन्न हो सकते हैं। | ||
अधिकांशतः, इन बलों को कुछ स्केलर मात्रा के ढाल के रूप में प्रदर्शित किया जा सकता है {{mvar|χ}}, साथ {{math|1='''f''' = ∇''χ''}} जिस स्थिति में उन्हें संरक्षी बल कहा जाता है। गुरुत्वाकर्षण में {{mvar|z}} दिशा, उदाहरण के लिए, की ढाल है {{math|−''ρgz''}}. | अधिकांशतः, इन बलों को कुछ स्केलर मात्रा के ढाल के रूप में प्रदर्शित किया जा सकता है {{mvar|χ}}, साथ {{math|1='''f''' = ∇''χ''}} जिस स्थिति में उन्हें संरक्षी बल कहा जाता है। गुरुत्वाकर्षण में {{mvar|z}} दिशा, उदाहरण के लिए, की ढाल है {{math|−''ρgz''}}. जिससे कि इस तरह के गुरुत्वाकर्षण से दबाव केवल ढाल के रूप में उत्पन्न होता है, हम इसे दबाव शब्द में शरीर बल के रूप में सम्मिलित कर सकते हैं {{math|1=''h'' = ''p'' − ''χ''}}. नेवियर-स्टोक्स समीकरण के दाहिनी ओर दबाव और बल की शर्तें बन जाती हैं | ||
<math display="block">-\nabla p + \mathbf{f} = -\nabla p + \nabla \chi = -\nabla \left( p - \chi \right) = -\nabla h.</math> | <math display="block">-\nabla p + \mathbf{f} = -\nabla p + \nabla \chi = -\nabla \left( p - \chi \right) = -\nabla h.</math> |
Revision as of 12:59, 16 April 2023
कॉची संवेग समीकरण सदिश आंशिक अंतर समीकरण है जो कॉची द्वारा प्रस्तुत किया गया है जो किसी भी सातत्य यांत्रिकी में गैर-सापेक्षतावादी संवेग परिवहन परिघटना का वर्णन करता है।[1]
मुख्य समीकरण
संवहन में (या प्रवाह क्षेत्र के Lagrangian और Eulerian विनिर्देश) कॉची संवेग समीकरण के रूप में लिखा गया है:
- प्रवाह वेग सदिश क्षेत्र है, जो समय और स्थान पर निर्भर करता है, (इकाई: )
- समय है, (इकाई: )
- की सामग्री व्युत्पन्न है , के समान्तर , (इकाई: )
- सातत्य के दिए गए बिंदु पर घनत्व है (जिसके लिए निरंतरता समीकरण धारण करता है), (इकाई: )
- कॉची तनाव टेन्सर है, (इकाई: )
- सदिश है जिसमें शरीर की शक्तियों (कभी-कभी केवल गुरुत्वाकर्षण त्वरण) के कारण होने वाले सभी त्वरण होते हैं, (इकाई: )
- डायवर्जेंस # स्ट्रेस टेंसर का टेंसर क्षेत्र है।[2][3][4](इकाई: )
सामान्यतः उपयोग की जाने वाली SI इकाइयाँ कोष्ठकों में दी गई हैं, चूँकि समीकरण प्रकृति में सामान्य हैं और अन्य इकाइयाँ उनमें अंकित की जा सकती हैं या इकाइयों को गैर-विमीयकरण द्वारा हटाया जा सकता है।
ध्यान दें कि स्पष्टता के लिए हम ऊपर केवल कॉलम सदिश (कार्तीय समन्वय प्रणाली में) का उपयोग करते हैं, किन्तु समीकरण को भौतिक घटकों का उपयोग करके लिखा गया है (जो न तो सहप्रसरण और सदिशों के प्रतिप्रसरण (कॉलम) हैं और न ही सहप्रसरण और सदिशों के प्रतिप्रसरण (पंक्ति))।[5] चूँकि, यदि हमने गैर-ऑर्थोगोनल वक्रीय निर्देशांक चुना है, तो हमें सहपरिवर्ती (पंक्ति सदिश) या प्रतिपरिवर्ती (स्तंभ सदिश) रूप में समीकरणों की गणना करनी चाहिए और उन्हें लिखना चाहिए।
चरों के उचित परिवर्तन के पश्चात्, इसे संरक्षण रूप में भी लिखा जा सकता है:
विभेदक व्युत्पत्ति
आइए हम मोमेंटम # बल से संबंध के साथ प्रारंभ करें जिसे निम्नानुसार लिखा जा सकता है: सिस्टम मोमेंटम में परिवर्तन इस सिस्टम पर कार्य करने वाले परिणामी बल के समानुपाती होता है। यह सूत्र द्वारा व्यक्त किया गया है:[6]
दाईं ओर
]
हम बलों को शरीर बलों में विभाजित करते हैं और सतह बल
Explanation of the value of forces (approximations and minus signs) acting on the cube walls. |
---|
It requires some explanation why stress applied to the walls covering the coordinate axes takes a minus sign (e.g. for the left wall we have ). For simplicity, let us focus on the left wall with tension . The minus sign is due to the fact that a vector normal to this wall is a negative unit vector. Then, we calculated the stress vector by definition , thus the X component of this vector is (we use similar reasoning for stresses acting on the bottom and back walls, i.e.: ). The second element requiring explanation is the approximation of the values of stress acting on the walls opposite the walls covering the axes. Let us focus on the right wall where the stress is an approximation of stress from the left wall at points with coordinates and it is equal to . This approximation suffices since, as goes to zero, approaches zero as well. This can be seen by dividing through by and noting that the above expression is equivalent to and observing the left hand side matches the definition of the right hand side as a limit. A more intuitive representation of the value of approximation in point has been shown in the figure below the cube. We proceed with similar reasoning for stress approximations . |
घन की प्रत्येक दीवार पर कार्य करने वाले बलों (उनके एक्स घटक) को जोड़ने पर, हम प्राप्त करते हैं:
वाम पक्ष
आइए घन की गति की गणना करें:
बाएँ और दाएँ पक्ष की तुलना
अपने पास
इंटीग्रल व्युत्पत्ति
न्यूटन के दूसरे नियम को प्रयुक्त करना (iवें घटक) मॉडल किए जा रहे सातत्य में नियंत्रण मात्रा देता है:
संरक्षण रूप
कॉशी संवेग समीकरण को निम्न रूप में भी रखा जा सकता है:
बस परिभाषित करके:
यहाँ j और s में समान संख्या में आयाम हैं N प्रवाह की गति और शरीर के त्वरण के रूप में, जबकि F, टेन्सर होने के नाते, है N2.[note 1]
ऑयलरीय रूपों में यह स्पष्ट है कि कोई विचलित तनाव की धारणा कॉशी समीकरणों को यूलर समीकरणों (द्रव गतिकी) में नहीं लाती है।
संवहनी त्वरण
नेवियर-स्टोक्स समीकरणों की महत्वपूर्ण विशेषता संवहनी त्वरण की उपस्थिति है: अंतरिक्ष के संबंध में प्रवाह के समय-स्वतंत्र त्वरण का प्रभाव। जबकि भिन्न-भिन्न सातत्य कण वास्तव में समय पर निर्भर त्वरण का अनुभव करते हैं, प्रवाह क्षेत्र का संवहन त्वरण स्थानिक प्रभाव है, उदाहरण नोजल में तरल पदार्थ की गति है।
चाहे किसी भी प्रकार के सातत्य से निपटा जा रहा हो, संवहन त्वरण अरैखिक प्रभाव है। संवहन त्वरण अधिकांश प्रवाहों में उपस्तिथ होता है (अपवादों में आयामी असंपीड्य प्रवाह सम्मिलित है), किन्तु रेंगने वाले प्रवाह (जिसे स्टोक्स प्रवाह भी कहा जाता है) में इसके गतिशील प्रभाव की अवहेलना की जाती है। संवहन त्वरण को अरैखिक मात्रा द्वारा दर्शाया जाता है u ⋅ ∇u, जिसे या तो समझा जा सकता है (u ⋅ ∇)u या के रूप में u ⋅ (∇u), साथ ∇u वेग सदिश का टेंसर व्युत्पन्न u. दोनों व्याख्याएं समान परिणाम देती हैं।[7]
एडवेक्शन ऑपरेटर बनाम टेन्सर व्युत्पन्न
संवहन शब्द रूप में लिखा जा सकता है (u ⋅ ∇)u, जहाँ u ⋅ ∇ संवहन है। इस निरूपण की तुलना टेन्सर व्युत्पन्न के संदर्भ में से की जा सकती है।[7]टेंसर व्युत्पन्न ∇u द्वारा परिभाषित वेग सदिश का घटक-दर-घटक व्युत्पन्न है [∇u]mi = ∂m vi, जिससे कि
मेमने का रूप
कर्ल (गणित) की सदिश कलन पहचान # पहचान रखती है:
होरेस लैम्ब ने अपनी प्रसिद्ध मौलिक पुस्तक हाइड्रोडायनामिक्स (1895) में,[8] इस पहचान का उपयोग प्रवाह वेग के संवहन शब्द को घूर्णी रूप में परिवर्तित के लिए किया जाता है, अर्थात टेन्सर व्युत्पन्न के बिना:[9][10]
अघूर्णी प्रवाह
मेमने का रूप इरोटेशनल फ्लो में भी उपयोगी होता है, जहां वेग का कर्ल (गणित) (जिसे vorticity कहा जाता है) ω = ∇ × u शून्य के समान्तर है। उस स्थिति में, संवहन शब्द में कम कर देता है
तनाव
सातत्य प्रवाह में तनाव के प्रभाव को इसके द्वारा दर्शाया गया है ∇p और ∇ ⋅ τ शर्तें; ये पृष्ठीय बलों की प्रवणताएँ हैं, जो किसी ठोस में प्रतिबलों के अनुरूप होती हैं। यहाँ ∇p दाब प्रवणता है और कौशी प्रतिबल टेंसर के समदैशिक भाग से उत्पन्न होती है। यह हिस्सा लगभग सभी स्थितियों में होने वाले सामान्य तनावों द्वारा दिया जाता है। तनाव टेन्सर का अनिसोट्रोपिक हिस्सा उत्पन्न करता है ∇ ⋅ τ, जो सामान्यतः चिपचिपी शक्तियों का वर्णन करता है; असम्पीडित प्रवाह के लिए, यह केवल कतरनी प्रभाव है। इस प्रकार, τ विचलित तनाव टेंसर है, और तनाव टेंसर इसके समान्तर है:[11]
सभी गैर-सापेक्षवादी संवेग संरक्षण समीकरण, जैसे कि नेवियर-स्टोक्स समीकरण, कॉची संवेग समीकरण के साथ शुरुआत करके और संवैधानिक संबंध के माध्यम से तनाव टेंसर को निर्दिष्ट करके प्राप्त किए जा सकते हैं। श्यानता और द्रव अपरूपण वेग के संदर्भ में अपरूपण टेंसर को व्यक्त करके, और निरंतर घनत्व और श्यानता को मानते हुए, कॉशी संवेग समीकरण नेवियर-स्टोक्स समीकरणों की ओर ले जाएगा। अदृश्य प्रवाह को मानकर, नेवियर-स्टोक्स समीकरण यूलर समीकरणों (द्रव गतिकी) को और सरल बना सकते हैं।
तनाव टेन्सर के विचलन को इस प्रकार लिखा जा सकता है
जैसा कि कॉची संवेग समीकरण में लिखा गया है, तनाव की शर्तें p और τ अभी तक अज्ञात हैं, इसलिए अकेले इस समीकरण का उपयोग समस्याओं को हल करने के लिए नहीं किया जा सकता है। गति के समीकरणों के अतिरिक्त - न्यूटन का दूसरा नियम - बल मॉडल की आवश्यकता है जो तनाव को प्रवाह गति से संबंधित करता है।[12] इस कारण से, प्राकृतिक प्रेक्षणों पर आधारित मान्यताओं को अधिकांशतः वेग और घनत्व जैसे अन्य प्रवाह चरों के संदर्भ में तनावों को निर्दिष्ट करने के लिए प्रयुक्त किया जाता है।
बाहरी बल
सदिश क्षेत्र f प्रति इकाई द्रव्यमान में शारीरिक बलों का प्रतिनिधित्व करता है। सामान्यतः, इनमें केवल गुरुत्व त्वरण होता है, किन्तु इसमें अन्य सम्मिलित हो सकते हैं, जैसे विद्युत चुम्बकीय बल। गैर-जड़त्वीय समन्वय फ्रेम में, काल्पनिक बल से जुड़े अन्य जड़त्वीय त्वरण उत्पन्न हो सकते हैं।
अधिकांशतः, इन बलों को कुछ स्केलर मात्रा के ढाल के रूप में प्रदर्शित किया जा सकता है χ, साथ f = ∇χ जिस स्थिति में उन्हें संरक्षी बल कहा जाता है। गुरुत्वाकर्षण में z दिशा, उदाहरण के लिए, की ढाल है −ρgz. जिससे कि इस तरह के गुरुत्वाकर्षण से दबाव केवल ढाल के रूप में उत्पन्न होता है, हम इसे दबाव शब्द में शरीर बल के रूप में सम्मिलित कर सकते हैं h = p − χ. नेवियर-स्टोक्स समीकरण के दाहिनी ओर दबाव और बल की शर्तें बन जाती हैं
गैर-विमीयकरण
समीकरणों को आयाम रहित बनाने के लिए, विशिष्ट लंबाई r0 और विशेषता वेग u0 को परिभाषित करने की आवश्यकता है। इन्हें ऐसे चुना जाना चाहिए कि आयाम रहित चर सभी क्रम के हों। निम्नलिखित आयाम रहित चर इस प्रकार प्राप्त होते हैं:
फ्राउड लिमिट में कौशी समीकरण Fr → ∞ (नगण्य बाहरी क्षेत्र के अनुरूप) मुक्त कौशी समीकरण नामित हैं:
और अंततः संरक्षण कानून हो सकता है। इस तरह के समीकरणों के लिए उच्च फ्राउड संख्या (कम बाहरी क्षेत्र) की सीमा इस प्रकार उल्लेखनीय है और गड़बड़ी सिद्धांत के साथ अध्ययन किया जाता है।
अंत में संवहन रूप में समीकरण हैं:
3डी स्पष्ट संवहन रूप
कार्तीय 3डी निर्देशांक
असममित तनाव टेंसरों के लिए, सामान्य रूप से समीकरण निम्नलिखित रूप लेते हैं:[2][3][4][14]
बेलनाकार 3डी निर्देशांक
नीचे, हम मुख्य समीकरण को दाब-ताऊ रूप में यह मानते हुए लिखते हैं कि प्रतिबल टेन्सर सममित है ():
यह भी देखें
- यूलर समीकरण (द्रव गतिकी)
- नेवियर-स्टोक्स समीकरण
- बर्नेट समीकरण
- चैपमैन-एनस्कॉग विस्तार
टिप्पणियाँ
- ↑ In 3D for example, with respect to some coordinate system, the vector j has 3 components, while the tensors σ and F have 9 (3×3), so the explicit forms written as matrices would be:
Note, however, that if symmetrical, F will only contain 6 degrees of freedom. And F's symmetry is equivalent to σ's symmetry (which will be present for the most common Cauchy stress tensors), since dyads of vectors with themselves are always symmetrical.
संदर्भ
- ↑ 1.0 1.1 Acheson, D. J. (1990). प्राथमिक द्रव गतिकी. Oxford University Press. p. 205. ISBN 0-19-859679-0.
- ↑ 2.0 2.1 Berdahl, C. I.; Strang, W. Z. (1986). "द्रव प्रवाह में वर्टिसिटी-प्रभावित असममित तनाव टेंसर का व्यवहार" (PDF). AIR FORCE WRIGHT AERONAUTICAL LABORATORIES. p. 13 (Below the main equation, authors describe ).
- ↑ 3.0 3.1 Papanastasiou, Tasos C.; Georgiou, Georgios C.; Alexandrou, Andreas N. (2000). चिपचिपा द्रव प्रवाह (PDF). CRC Press. p. 66,68,143,182 (Authors use ). ISBN 0-8493-1606-5.
- ↑ 4.0 4.1 Deen, William M. (2016). केमिकल इंजीनियरिंग द्रव यांत्रिकी का परिचय. Cambridge University Press. pp. 133–136. ISBN 978-1-107-12377-9.
- ↑ David A. Clarke (2011). "A Primer on Tensor Calculus" (PDF). p. 11 (pdf 15).
{{cite web}}
: CS1 maint: uses authors parameter (link) - ↑ Anderson, John D. Jr. (1995). कम्प्यूटेशनल तरल सक्रिय (PDF). New York: McGraw-Hill. pp. 61–64. ISBN 0-07-001685-2.
- ↑ 7.0 7.1 Emanuel, G. (2001). विश्लेषणात्मक द्रव गतिकी (second ed.). CRC Press. pp. 6–7. ISBN 0-8493-9114-8.
- ↑ Lamb, Horace (1945). "जल-गत्यात्मकता" (in English).
- ↑ See Batchelor (1967), §3.5, p. 160.
- ↑ Weisstein, Eric W. "Convective Derivative". MathWorld.
- ↑ Batchelor (1967) p. 142.
- ↑ Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (1963), The Feynman Lectures on Physics, Reading, Massachusetts: Addison-Wesley, Vol. 1, §9–4 and §12–1, ISBN 0-201-02116-1
- ↑ Dahler, J. S.; Scriven, L. E. (1961). "कॉन्टिनुआ का कोणीय संवेग". Nature. 192 (4797): 36–37. Bibcode:1961Natur.192...36D. doi:10.1038/192036a0. ISSN 0028-0836. S2CID 11034749.
- ↑ Powell, Adam (12 April 2010). "नेवियर-स्टोक्स समीकरण" (PDF). p. 2 (Author uses ).