द्रव्यमान प्रवाह

From Vigyanwiki

भौतिक विज्ञान और अभियांत्रिकी में द्रव्यमान फ्लक्स द्रव्यमान प्रवाह दर है। इसका SI मात्रक kg m−2 s−1 है तथा इसके सामान्य प्रतीक j, J, q, Q, φ, या Φ हैं कभी-कभी सबस्क्रिप्ट m केसापेक्ष द्रव्यमान प्रवाहित मात्रा को इंगित करने के लिए है। द्रव्यमान फ्लक्स भी फिक के नियम में प्रवाह को वैकल्पिक रूप से उल्लेख किया जा सकता है जिसमें आणविक द्रव्यमान या डार्सी के नियम में द्रव्यमान घनत्व सम्मिलित है।[1]

कभी-कभी इस आलेख में द्रव्यमान फ्लक्स के लिए परिभाषित समीकरण का उपयोग बड़े पैमाने पर प्रवाह दर में परिभाषित समीकरण के सापेक्ष किया जाता है। उदाहरण के लिए, द्रव यांत्रिकी, शाउम एट अल [2] द्रव्यमान फ्लक्स की परिभाषा का उपयोग द्रव्यमान फ्लक्स दर लेख में समीकरण के रूप में करता है।

परिभाषा

गणितीय रूप से, द्रव्यमान फ्लक्स को किसी फलन सीमा के रूप में परिभाषित किया जाता है

जहाँ
द्रव्यमान धारा और A वह क्षेत्र है जिससे द्रव्यमान फ्लक्स स्थित होता है।

सदिश के रूप में द्रव्यमान फ्लक्स के लिए jm, एक सतह गणित S पर इसका सतही समाकलन, इसके उपरांत समयावधि में समाकलन t1 को t2, उस समय t2t1 में सतह के माध्यम से प्रवाहित द्रव्यमान की कुल मात्रा की गणना करता है

प्रवाह की गणना करने के लिए आवश्यक क्षेत्र वास्तविक या काल्पनिक तथा सपाट या घुमावदार है, या तो क्रॉस-आंशिक क्षेत्र या सतह के रूप में हैं।

उदाहरण के लिए, एक फिल्टर पेपर या एक कृत्रिम झिल्ली से होकर गुजरने वाले पदार्थों के लिए, वास्तविक सतह फिल्टर का सामान्यतः घुमावदार सतह क्षेत्र होता है, मैक्रोस्कोपिक स्केल - फिल्टर/झिल्ली में छेद द्वारा विस्तृत क्षेत्र की अनदेखी करती हैं। रिक्त स्थान क्रॉस-सेक्शन क्षेत्र होते होंगे। एक पाइप से गुजरने वाले तरल पदार्थ के लिए, क्षेत्र माने जाने वाले खंड में पाइप का क्रॉस-सेक्शन होता है।

सदिश क्षेत्र उस क्षेत्र के परिमाण का एक संयोजन है जिसके माध्यम से द्रव्यमान A से होकर गुजरता है, और एक इकाई वेक्टर क्षेत्र के लिए सामान्य . है,तथा इसका सम्बन्ध होता है

यदि द्रव्यमान फ्लक्स jm सामान्य क्षेत्र , से θ कोण पर क्षेत्र से होकर गुजरता है तब

जहाँ यूनिट वैक्टर का उत्पाद · डॉट है। अर्थात्, सतह से होकर गुजरने वाले द्रव्यमान फ्लक्स का घटक jm cos θ है, जबकि क्षेत्र में स्पर्शरेखा से होकर गुजरने वाले द्रव्यमान फ्लक्स का घटकjm sin θ, है परंतु वास्तव में स्पर्शरेखा में दिशा के क्षेत्र से होकर गुजरने वाला कोई भी द्रव्यमान फ्लक्स नहीं होता है। द्रव्यमान फ्लक्स का एकमात्र घटक है जो क्षेत्र के लिए सामान्य है, और जो कोसाइन घटक है।

उदाहरण

बहते पानी के एक पाइप के सिरे पर विचार करें। मान लीजिए कि पाइप का एक स्थिर अनुप्रस्थ काट है और हम इसके एक सीधे खंड पर विचार करते हैं, और मानक परिस्थितियों में पानी एक स्थिर दर पर स्थिर रूप से बह रहा है। क्षेत्र A पाइप का क्रॉस-आंशिक क्षेत्र है। मान लीजिए कि पाइप में त्रिज्या r = 2 cm = 2 × 10−2 m. क्षेत्र है

द्रव्यमान फ्लक्स jm की गणना करने के लिए, हमें क्षेत्र के माध्यम से स्थानांतरित पानी के द्रव्यमान और लगने वाले समय की भी आवश्यकता है। मान लीजिए एक मात्रा V = 1.5 L = 1.5 × 10−3 m3 समय t = 2 s में होकर गुजरता है। पानी के गुणों को मानते हुए पानी और बर्फ का घनत्व ρ = 1000 kg m−3 है, जो कि हमारे पास है:
क्योंकी क्षेत्र से गुजरने वाली प्रारंभिक मात्रा शून्य थी,और अंतिम V है. तो संगत द्रव्यमान m है , तो द्रव्यमान फ्लक्स है:
संख्याओं को प्रतिस्थापित करना देता है:
जो लगभग 596.8 किलोग्राम s−1 m−2 है..

तरल पदार्थ के लिए समीकरण

वैकल्पिक समीकरण

सदिश परिभाषा का प्रयोग करते हुए यह पता चलता है कि, द्रव्यमान फ्लक्स भी इसके समान है:[3]

जहाँ:

  • ρ = द्रव्यमान घनत्व,
  • u = बहने वाले द्रव्यमान तत्वों का वेग क्षेत्र अर्थात अंतरिक्ष में प्रत्येक बिंदु पर पदार्थ के एक तत्व का वेग कुछ वेग सदिश u.है

कभी-कभी इस समीकरण का उपयोग jm को सदिश के रूप में परिभाषित करने के लिए किया जा सकता है।

मिश्रित द्रवों के लिए द्रव्यमान और मोलर फ्लक्स

द्रव्यमान फ्लक्स

द्रव इस परिस्थिति में शुद्ध नहीं होता है, अर्थात् यह पदार्थों का मिश्रण है मिश्रण के प्रत्येक घटक के लिए द्रव्यमान फ्लक्स को पृथक माना जाना चाहिए।

द्रव प्रवाह अर्थात् पदार्थ का प्रवाह का वर्णन करते समय, द्रव्यमान फ्लक्स उपयुक्त होता है। कण परिवहन का वर्णन करते समय, एक समान मात्रा का उपयोग करना उपयोगी होता है, जिसे मोलर फ्लक्स कहा जाता है।

द्रव्यमान का उपयोग करे हुए घटक i का द्रव्यमान फ्लक्स है

घटक i बैरीसेंट्रिक द्रव्यमान फ्लक्स है
जहाँ द्वारा दिए गए मिश्रण में सभी घटकों का औसत द्रव्यमान वेग है जो इस प्रकार है:
जहाँ

  • ρ = पूरे मिश्रण का द्रव्यमान घनत्व है।,
  • ρi = घटक i का द्रव्यमान घनत्व है।,
  • ui = घटक i का वेग है।

घटक के वेग को औसत पर लिया जाता है।

मोलर फ्लक्स

यदि हम घनत्व (ρ) को "मोलर घनत्व" से प्रतिस्थापित करते हैं, तो सांद्रता c, हमारे पास मोलर फ्लक्स एनालॉग्स हैं।

मोलर फ्लक्स प्रति इकाई क्षेत्र में प्रति इकाई समय में मोल्स की संख्या है सामान्यतः:

तो घटक i मोलर फ्लक्स है प्रति इकाई क्षेत्र प्रति इकाई समय में मोल्स की संख्या:
और घटक i बैरीसेंट्रिक मोलर फ्लक्स है
जहाँ यह समय मिश्रण में सभी घटकों का औसत मोलर वेग है, जो निम्न द्वारा दिया गया है:


उपयोग

बड़े पैमाने पर प्रवाह जलगतिकी में कुछ समीकरणों में प्रकट होता है, विशेष रूप से निरंतरता समीकरण:

जो द्रव का द्रव्यमान संरक्षण है ,वो हाइड्रोडायनामिक्स में, द्रव्यमान केवल एक स्थान से दूसरे स्थान पर प्रवाहित हो सकता है।

फिक के प्रसार के पहले नियम में मोलर फ्लक्स होता है:

जहाँ D प्रसार गुणांक है।

यह भी देखें

संदर्भ

  1. "Thesaurus: Mass flux". Retrieved 2008-12-24.[permanent dead link]
  2. Fluid Mechanics, M. Potter, D.C. Wiggart, Schuam's outlines, McGraw Hill (USA), 2008, ISBN 978-0-07-148781-8
  3. Vectors, Tensors, and the basic Equations of Fluid Mechanics, R. Aris, Dover Publications, 1989, ISBN 0-486-66110-5