ऊष्मा रोधन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Minimization of heat transfer}}
'''ऊष्मा रोधन''' थर्मल संपर्क में या विकिरण प्रभाव की सीमा में वस्तुओं के बीच हीट हस्तांतरण (अर्थात अलग-अलग [[तापमान]] की वस्तुओं के बीच [[थर्मल ऊर्जा]] का हस्तांतरण) में कमी है। थर्मल इन्सुलेशन विशेष रूप से इंजीनियर विधियों या प्रक्रियाओं के साथ-साथ उपयुक्त वस्तु आकार और सामग्री के साथ प्राप्त किया जा सकता है।
[[Image:Steinwolle 1600dpi roxul rxl80.jpg|thumb|right|[[खनिज ऊन]] इन्सुलेशन, 1600 डीपीआई स्कैन]]थर्मल इंसुलेशन थर्मल संपर्क में या विकिरण प्रभाव की सीमा में वस्तुओं के बीच गर्मी हस्तांतरण (अर्थात अलग-अलग [[तापमान]] की वस्तुओं के बीच [[थर्मल ऊर्जा]] का हस्तांतरण) में कमी है। थर्मल इन्सुलेशन विशेष रूप से इंजीनियर विधियों या प्रक्रियाओं के साथ-साथ उपयुक्त वस्तु आकार और सामग्री के साथ प्राप्त किया जा सकता है।


ताप प्रवाह विभिन्न तापमान की वस्तुओं के बीच संपर्क का एक अनिवार्य परिणाम है। थर्मल इन्सुलेशन इन्सुलेशन का एक क्षेत्र प्रदान करता है। जिसमें थर्मल चालन कम हो जाता है। जिससे थर्मल ब्रेक या थर्मल बैरियर बनता है।<ref>{{Cite web|url=https://technical.iqglassuk.com/technical-advice/what-is-a-thermal-break-how-does-it-work/|title=थर्मल ब्रेक टेक्नोलॉजी - आईक्यू टेक्निकल|website=IQ Glass Technical|language=en-GB|access-date=2019-10-16}}</ref> थर्मल विकिरण कम तापमान वाले शरीर द्वारा अवशोषित होने के अतिरिक्त परिलक्षित होता है।
ताप प्रवाह विभिन्न तापमान की वस्तुओं के बीच संपर्क का एक अनिवार्य परिणाम है। थर्मल इन्सुलेशन इन्सुलेशन का एक क्षेत्र प्रदान करता है। जिसमें थर्मल चालन कम हो जाता है। जिससे थर्मल ब्रेक या थर्मल बैरियर बनता है।<ref>{{Cite web|url=https://technical.iqglassuk.com/technical-advice/what-is-a-thermal-break-how-does-it-work/|title=थर्मल ब्रेक टेक्नोलॉजी - आईक्यू टेक्निकल|website=IQ Glass Technical|language=en-GB|access-date=2019-10-16}}</ref> थर्मल विकिरण कम तापमान वाले शरीर द्वारा अवशोषित होने के अतिरिक्त परिलक्षित होता है।


किसी सामग्री की इन्सुलेट क्षमता को तापीय चालकता के व्युत्क्रम | तापीय चालकता (k) के रूप में मापा जाता है। कम तापीय चालकता उच्च इन्सुलेट क्षमता (इन्सुलेशन) के बराबर है।<ref>{{Cite web |last=Ashley |first=Jake |title=अपने घर के लिए सही इंसुलेशन चुनना|url=https://homaphy.com/choosing-the-correct-insulation-for-your-home/ |url-status=live |website=Homaphy}}</ref> [[थर्मल इंजीनियरिंग]] में [[इन्सुलेट सामग्री]] के अन्य महत्वपूर्ण गुण उत्पाद घनत्व घनत्व (ρ) और ताप क्षमता विशिष्ट ताप क्षमता (c) हैं।
किसी सामग्री की इन्सुलेट क्षमता को तापीय चालकता के व्युत्क्रम तापीय चालकता (k) के रूप में मापा जाता है। कम तापीय चालकता उच्च इन्सुलेट क्षमता (इन्सुलेशन) के बराबर है।<ref>{{Cite web |last=Ashley |first=Jake |title=अपने घर के लिए सही इंसुलेशन चुनना|url=https://homaphy.com/choosing-the-correct-insulation-for-your-home/ |url-status=live |website=Homaphy}}</ref> [[थर्मल इंजीनियरिंग]] में [[इन्सुलेट सामग्री]] के अन्य महत्वपूर्ण गुण उत्पाद घनत्व घनत्व (ρ) और ताप क्षमता विशिष्ट ताप क्षमता (c) हैं।


== परिभाषा ==
== परिभाषा ==
{{main|ऊष्मीय चालकता}}
{{main|ऊष्मीय चालकता}}
तापीय चालकता k को [[वाट]]-प्रति-मीटर प्रति [[केल्विन]] (W·m<sup>−1</sup>·K<sup>−1</sup> अथवा W/m/K में मापा जाता है। ऐसा इसलिए है क्योंकि गर्मी हस्तांतरण [[शक्ति (भौतिकी)]] के रूप में मापा जाता है। (लगभग) आनुपातिक पाया गया है।
तापीय चालकता k को [[वाट]]-प्रति-मीटर प्रति [[केल्विन]] (W·m<sup>−1</sup>·K<sup>−1</sup> अथवा W/m/K में मापा जाता है। ऐसा इसलिए है क्योंकि हीट हस्तांतरण [[शक्ति (भौतिकी)]] के रूप में मापा जाता है। (लगभग) आनुपातिक पाया गया है।
* तापमान का अंतर <math> \Delta T </math>
* तापमान का अंतर <math> \Delta T </math>
* [[थर्मल संपर्क]] की सतह क्षेत्र <math> A </math>
* [[थर्मल संपर्क]] की सतह क्षेत्र <math> A </math>
* सामग्री की मोटाई का व्युत्क्रम <math> d </math>
* सामग्री की मोटाई का व्युत्क्रम <math> d </math>
इससे यह पता चलता है कि गर्मी के हानिकारक की शक्ति <math> P </math> द्वारा दिया गया है।
इससे यह पता चलता है कि हीट के हानिकारक की शक्ति <math> P </math> द्वारा दिया गया है।


<math> P = \frac{k A\, \Delta T }{d} </math>
<math> P = \frac{k A\, \Delta T }{d} </math>


तापीय चालकता सामग्री और तरल पदार्थ उसके तापमान और दबाव पर निर्भर करती है। तुलनात्मक उद्देश्यों के लिए मानक स्थितियों (20 डिग्री सेल्सियस पर 1 एटीएम) के तहत चालकता का सामान्यतः उपयोग किया जाता है। कुछ सामग्रियों के लिए, तापीय चालकता भी गर्मी हस्तांतरण की दिशा पर निर्भर हो सकती है।
तापीय चालकता सामग्री और तरल पदार्थ उसके तापमान और दबाव पर निर्भर करती है। तुलनात्मक उद्देश्यों के लिए मानक स्थितियों (20 डिग्री सेल्सियस पर 1 एटीएम) के अनुसार चालकता का सामान्यतः उपयोग किया जाता है। कुछ सामग्रियों के लिए तापीय चालकता भी हीट हस्तांतरण की दिशा पर निर्भर हो सकती है।


{{See ||तापीय चालकता की सूची}}
{{See ||तापीय चालकता की सूची}}


उच्च मोटाई में कम तापीय चालकता वाली सामग्री में किसी वस्तु को घेरने से इन्सुलेशन का कार्य पूरा होता है। उजागर सतह क्षेत्र को कम करने से गर्मी हस्तांतरण भी कम हो सकता है। किन्तु यह मात्रा सामान्यतः वस्तु की ज्यामिति द्वारा इन्सुलेट की जाती है।
उच्च मोटाई में कम तापीय चालकता वाली सामग्री में किसी वस्तु को घेरने से इन्सुलेशन का कार्य पूरा होता है। खुली सतह क्षेत्र को कम करने से हीट हस्तांतरण भी कम हो सकता है। किन्तु यह मात्रा सामान्यतः वस्तु की ज्यामिति द्वारा इन्सुलेट की जाती है।


[[बहुपरत इन्सुलेशन]] का उपयोग वहां किया जाता है जहां रेडिएटिव लॉस हावी होता है। जब उपयोगकर्ता इंसुलेशन की मात्रा और वजन में प्रतिबंधित होता है (जैसे आपातकालीन कंबल[[ दीप्तिमान बाधा ]])
[[बहुपरत इन्सुलेशन]] का उपयोग वहां किया जाता है, जहां पर रेडिएटिव लॉस अधिक होता है। जब उपयोगकर्ता इंसुलेशन की मात्रा और भार में प्रतिबंधित होता है। (जैसे आपातकालीन कंबल[[ दीप्तिमान बाधा ]])


=== सिलेंडरों का इन्सुलेशन ===
=== सिलेंडरों का इन्सुलेशन ===


[[File:Plasma sprayed ceramic coating applied onto a part of an automotive exhaust system copy.jpg|thumb|right|कार के निकास के लिए सामान्यतः किसी प्रकार के ताप अवरोध की आवश्यकता होती है, विशेष रूप से उच्च-प्रदर्शन वाले निकास, जहां अक्सर एक सिरेमिक कोटिंग लगाई जाती है।]]इन्सुलेटेड सिलेंडरों के लिए एक महत्वपूर्ण त्रिज्या कंबल तक पहुंचना चाहिए। महत्वपूर्ण त्रिज्या तक पहुँचने से पहले कोई भी अतिरिक्त इन्सुलेशन गर्मी हस्तांतरण को बढ़ाता है।<ref>{{cite web|url=http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node123.html|title=17.2 Combined Conduction and Convection|website=web.mit.edu|access-date=29 April 2018|url-status=live|archive-url=https://web.archive.org/web/20171019222743/http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node123.html|archive-date=19 October 2017}}</ref> संवहन थर्मल प्रतिरोध सतह क्षेत्र के व्युत्क्रमानुपाती होता है। इसलिए सिलेंडर की त्रिज्या, जबकि थर्मल चालन, बेलनाकार गोले (इन्सुलेशन परत) बाहरी और आंतरिक त्रिज्या के बीच के अनुपात पर निर्भर करता है। यदि इन्सुलेशन लगाकर सिलेंडर के बाहरी त्रिज्या को बढ़ाया जाता है तो प्रवाहकीय प्रतिरोध की एक निश्चित मात्रा (2×π×k×L(Tin-Tout)/ln(Rout/Rin) के बराबर) जोड़ा जाता है। चूँकि एक ही समय में संवहनी प्रतिरोध कम हो जाता है। इसका तात्पर्य है कि एक निश्चित महत्वपूर्ण त्रिज्या के नीचे इन्सुलेशन जोड़ने से वास्तव में गर्मी हस्तांतरण बढ़ जाता है। विद्युतरोधित सिलिंडरों के लिए क्रांतिक त्रिज्या समीकरण द्वारा दी गई है।<ref>Bergman, Lavine, Incropera and DeWitt, ''Introduction to Heat Transfer'' (sixth edition), Wiley, 2011.</ref>
[[File:Plasma sprayed ceramic coating applied onto a part of an automotive exhaust system copy.jpg|thumb|right|कार के निकास के लिए सामान्यतः किसी प्रकार के ताप अवरोध की आवश्यकता होती है। विशेष रूप से उच्च-प्रदर्शन वाले निकास। जहां अधिकांशतः एक सिरेमिक कोटिंग लगाई जाती है।]]इन्सुलेटेड सिलेंडरों के लिए एक महत्वपूर्ण त्रिज्या कंबल तक पहुंचना चाहिए। महत्वपूर्ण त्रिज्या तक पहुँचने से पहले कोई भी अतिरिक्त इन्सुलेशन हीट हस्तांतरण को बढ़ाता है।<ref>{{cite web|url=http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node123.html|title=17.2 Combined Conduction and Convection|website=web.mit.edu|access-date=29 April 2018|url-status=live|archive-url=https://web.archive.org/web/20171019222743/http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node123.html|archive-date=19 October 2017}}</ref> संवहन थर्मल प्रतिरोध सतह क्षेत्र के व्युत्क्रमानुपाती होता है। इसलिए सिलेंडर की त्रिज्या थर्मल चालन बेलनाकार गोले (इन्सुलेशन परत) बाहरी और आंतरिक त्रिज्या के बीच के अनुपात पर निर्भर करता है। यदि इन्सुलेशन लगाकर सिलेंडर के बाहरी त्रिज्या को बढ़ाया जाता है। तो प्रवाहकीय प्रतिरोध की एक निश्चित मात्रा (2×π×k×L के बराबर) जोड़ा जाता है। चूँकि एक ही समय में संवहनी प्रतिरोध कम हो जाता है। इसका तात्पर्य है कि एक निश्चित महत्वपूर्ण त्रिज्या के नीचे इन्सुलेशन जोड़ने से वास्तव में हीट हस्तांतरण बढ़ जाता है। विद्युतरोधित सिलिंडरों के लिए क्रांतिक त्रिज्या समीकरण द्वारा दी गई है।<ref>Bergman, Lavine, Incropera and DeWitt, ''Introduction to Heat Transfer'' (sixth edition), Wiley, 2011.</ref>
:<math>{r_{critical}} = {k \over h}</math>
:<math>{r_{critical}} = {k \over h}</math>
यह समीकरण दर्शाता है कि महत्वपूर्ण त्रिज्या केवल गर्मी हस्तांतरण गुणांक और इन्सुलेशन की तापीय चालकता पर निर्भर करती है। यदि इंसुलेटेड सिलिंडर की त्रिज्या इंसुलेशन के लिए क्रिटिकल रेडियस से छोटी है, तो इंसुलेशन की किसी भी मात्रा को जोड़ने से हीट ट्रांसफर में वृद्धि होगी।
यह समीकरण दर्शाता है कि महत्वपूर्ण त्रिज्या केवल हीट हस्तांतरण गुणांक और इन्सुलेशन की तापीय चालकता पर निर्भर करती है। यदि इंसुलेटेड सिलिंडर की त्रिज्या इंसुलेशन के लिए क्रिटिकल रेडियस से छोटी है। तो इंसुलेशन की किसी भी मात्रा को जोड़ने से हीट ट्रांसफर में वृद्धि होगी।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 35: Line 34:
{{Main|वस्त्र इन्सुलेशन}}
{{Main|वस्त्र इन्सुलेशन}}


तरल पदार्थ और ठोस पदार्थों की तुलना में गैसों में खराब तापीय चालकता गुण होते हैं। इस प्रकार उन्हें फंसाया जा सकता है, तो वे अच्छी इन्सुलेशन सामग्री बनाते हैं। गैस (जैसे हवा) की प्रभावशीलता को और बढ़ाने के लिए इसे छोटी कोशिकाओं में बाधित किया जा सकता है। जो [[प्राकृतिक संवहन]] द्वारा गर्मी को प्रभावी ढंग से स्थानांतरित नहीं कर सकते हैं। संवहन में उछाल और तापमान के अंतर से संचालित गैस का एक बड़ा थोक प्रवाह सम्मिलित होता है। और यह छोटी कोशिकाओं में अच्छी तरह से काम नहीं करता है। जहां इसे चलाने के लिए थोड़ा घनत्व अंतर होता है। छोटी कोशिकाओं के उच्च सतह-से-आयतन अनुपात गैस प्रवाह को धीमा कर देते हैं। उनमें विस्कोस ड्रैग (भौतिकी) के माध्यम से।
तरल पदार्थ और ठोस पदार्थों की तुलना में गैसों में खराब तापीय चालकता गुण होते हैं। इस प्रकार उन्हें फंसाया जा सकता है। तो वे अच्छी इन्सुलेशन सामग्री बनाते हैं। गैस (जैसे हवा) की प्रभावशीलता को और बढ़ाने के लिए इसे छोटी कोशिकाओं में बाधित किया जा सकता है। जो [[प्राकृतिक संवहन]] द्वारा हीट को प्रभावी ढंग से स्थानांतरित नहीं कर सकते हैं। संवहन में उछाल और तापमान के अंतर से संचालित गैस का एक बड़ा प्रवाह सम्मिलित होता है और यह छोटी कोशिकाओं में अच्छी प्रकार से काम नहीं करता है। जहां इसे चलाने के लिए थोड़ा घनत्व अंतर होता है। छोटी कोशिकाओं के उच्च सतह से आयतन अनुपात गैस प्रवाह को धीमा कर देते हैं। उनमें विस्कोस ड्रैग (भौतिकी) के माध्यम से।


मानव निर्मित थर्मल इन्सुलेशन में छोटे गैस सेल गठन को पूरा करने के लिए फोम जैसी संरचना में हवा को फंसाने के लिए कांच और बहुलक सामग्री का उपयोग किया जा सकता है। इस सिद्धांत का उपयोग औद्योगिक रूप से ([[ ग्लास वुल ]]) [[सेल्यूलोज]][[ रॉक ऊन ]] [[POLYSTYRENE|पॉली स्टाइरीन]] फोम (स्टायरोफोम)[[ polyurethane |  पॉलीयुरेथेन वर्मीक्यूलाइट पेर्लाइट]] और [[कॉर्क (सामग्री)]] जैसे इन्सुलेशन के निर्माण और पाइपिंग में किया जाता है। फँसाने वाली हवा भी सभी अत्यधिक इन्सुलेट कपड़ों की सामग्री जैसे [[ऊन]] नीचे पंख और ऊन में सिद्धांत है।
मानव निर्मित थर्मल इन्सुलेशन में छोटे गैस सेल गठन को पूरा करने के लिए फोम जैसी संरचना में हवा को फंसाने के लिए कांच और बहुलक सामग्री का उपयोग किया जा सकता है। इस सिद्धांत का उपयोग औद्योगिक रूप से ([[ ग्लास वुल ]]) [[सेल्यूलोज]][[ रॉक ऊन | रॉक ऊन]] [[POLYSTYRENE|पॉली स्टाइरीन]] फोम (स्टायरोफोम)[[ polyurethane |  पॉलीयुरेथेन वर्मीक्यूलाइट पेर्लाइट]] और [[कॉर्क (सामग्री)]] जैसे इन्सुलेशन के निर्माण और पाइपिंग में किया जाता है। फँसाने वाली हवा भी सभी अत्यधिक इन्सुलेट कपड़ों की सामग्री जैसे [[ऊन]] नीचे पंख और ऊन में सिद्धांत है।


वायु-फँसाने की संपत्ति भी गर्म रहने के लिए [[समतापी]] जानवरों द्वारा नियोजित इन्सुलेशन सिद्धांत है। उदाहरण के लिए पंखों के नीचे और प्राकृतिक भेड़ के ऊन जैसे बालों को इन्सुलेट करना। दोनों ही मामलों में प्राथमिक इन्सुलेट सामग्री हवा है। हवा को फंसाने के लिए इस्तेमाल किया जाने वाला बहुलक प्राकृतिक [[ केरातिन ]] प्रोटीन है।
वायु ग्रहण करने का गुण भी गर्म रहने के लिए [[समतापी]] जानवरों द्वारा नियोजित इन्सुलेशन सिद्धांत है। उदाहरण के लिए पंखों के नीचे और प्राकृतिक भेड़ के ऊन जैसे बालों को इन्सुलेट करना। दोनों ही स्थितियों में प्राथमिक इन्सुलेट सामग्री हवा है। हवा को फंसाने के लिए प्रयोग किया जाने वाला बहुलक प्राकृतिक [[ केरातिन |केरातिन]] प्रोटीन है।


=== भवन ===
=== भवन ===
भवन का इन्सुलेशन[[Image:Hallway insulation.jpg|thumb|right|[[ओंटारियो]], कनाडा में [[अपार्टमेंट]] [[ इमारत ]] में सामान्य इन्सुलेशन अनुप्रयोग।]]इमारतों में स्वीकार्य तापमान बनाए रखने (गर्म करने और ठंडा करने से) वैश्विक ऊर्जा खपत का एक बड़ा हिस्सा उपयोग करता है। बिल्डिंग इंसुलेशन भी सामान्यतः छोटे फंसे हुए वायु-कोशिकाओं के सिद्धांत का उपयोग करते हैं जैसा कि ऊपर बताया गया है। फाइबरग्लास (विशेष रूप से ग्लास वूल) सेल्यूलोज, रॉक वूल, पॉलीस्टाइरीन फोम, पॉलीयुरेथेन, वर्मीक्यूलाइट, पेर्लाइट, कॉर्क (सामग्री) आदि। कुछ समय के लिए [[अदह]] का भी उपयोग किया जाता था। चूँकि इससे स्वास्थ्य समस्याएं होती थीं।
भवन का इन्सुलेशन[[Image:Hallway insulation.jpg|thumb|right|[[ओंटारियो]], कनाडा में [[अपार्टमेंट]] [[ इमारत |भवन]] में सामान्य इन्सुलेशन अनुप्रयोग।]]भवनों में स्थिर तापमान बनाए रखने (गर्म करने और ठंडा करने से) से वैश्विक ऊर्जा व्यय का एक बड़ा भाग उपयोग करता है। बिल्डिंग इंसुलेशन भी सामान्यतः छोटे फंसे हुए वायु-कोशिकाओं के सिद्धांत का उपयोग करते हैं, जैसा कि ऊपर बताया गया है। फाइबरग्लास (विशेष रूप से ग्लास वूल) सेल्यूलोज, रॉक वूल, पॉलीस्टाइरीन फोम, पॉलीयुरेथेन, वर्मीक्यूलाइट, पेर्लाइट, कॉर्क (सामग्री) आदि। कुछ समय के लिए [[अदह|एस्बेस्टॉस]] का भी उपयोग किया जाता था। चूँकि इससे स्वास्थ्य समस्याएं होती थीं।


गर्मियों में आने वाले थर्मल विकिरण और सर्दियों में नुकसान को कम करने के लिए [[खिड़की इन्सुलेशन फिल्म]] को मौसम संबंधी अनुप्रयोगों में लगाया जा सकता है।
गर्मियों में आने वाले थर्मल विकिरण और सर्दियों में हानि को कम करने के लिए [[खिड़की इन्सुलेशन फिल्म]] को मौसम संबंधी अनुप्रयोगों में लगाया जा सकता है।


जब अच्छी तरह से इन्सुलेट किया जाता है, तो एक इमारत है:
जब अच्छी प्रकार से इन्सुलेट किया जाता है। तो एक भवन है:
* ऊर्जा कुशल और सर्दियों में गर्म रखने के लिए सस्ता या गर्मियों में ठंडा। ऊर्जा दक्षता से [[ कार्बन पदचिह्न ]] कम होगा।
* ऊर्जा कुशल और सर्दियों में गर्म रखने के लिए सस्ता या गर्मियों में ठंडा ऊर्जा दक्षता से [[ कार्बन पदचिह्न |कार्बन पदचिह्न]] कम होगा।
* अधिक आरामदायक क्योंकि पूरे अंतरिक्ष में एक समान तापमान होता है। लंबवत (टखने की ऊंचाई और सिर की ऊंचाई के बीच) और बाहरी दीवारों छत और खिड़कियों से आंतरिक दीवारों तक क्षैतिज रूप से कम तापमान प्रवणता होती है। इस प्रकार बाहरी तापमान बेहद ठंडा या गर्म होने पर अधिक आरामदायक रहने वाले वातावरण का उत्पादन होता है।
* अधिक आरामदायक क्योंकि पूरे अंतरिक्ष में एक समान तापमान होता है। लंबवत (टखने की ऊंचाई और सिर की ऊंचाई के बीच) और बाहरी दीवारों छत और खिड़कियों से आंतरिक दीवारों तक क्षैतिज रूप से कम तापमान प्रवणता होती है। इस प्रकार बाहरी तापमान बहुत ठंडा या गर्म होने पर अधिक आरामदायक रहने वाले वातावरण का उत्पादन होता है।


उद्योग में वस्तुओं या प्रक्रिया तरल पदार्थों के तापमान को बढ़ाने कम करने या बनाए रखने के लिए ऊर्जा खर्च करनी पड़ती है। यदि इन्हें इंसुलेटेड नहीं किया जाता है, तो यह एक प्रक्रिया की ऊर्जा आवश्यकताओं को बढ़ाता है। और इसलिए लागत और पर्यावरणीय प्रभाव।
उद्योग में वस्तुओं या प्रक्रिया तरल पदार्थों के तापमान को बढ़ाने कम करने या बनाए रखने के लिए ऊर्जा खर्च करनी पड़ती है। यदि इन्हें इंसुलेटेड नहीं किया जाता है। तो यह एक प्रक्रिया की ऊर्जा आवश्यकताओं को बढ़ाता है और इसलिए व्यय और पर्यावरणीय प्रभाव को भी बढा़ने का कार्य करता है।


=== यांत्रिक प्रणाली ===
=== यांत्रिक प्रणाली ===
पाइप इन्सुलेशन[[File:Water Boiler Supply and Return Piping.jpg|thumb|गर्म पानी की आपूर्ति और गैस से चलने वाले बॉयलर पर हाइड्रोनिक पाइपिंग लौटाएं]]
पाइप इन्सुलेशन[[File:Water Boiler Supply and Return Piping.jpg|thumb|गर्म पानी की आपूर्ति और गैस से चलने वाले बॉयलर पर हाइड्रोनिक पाइपिंग लौटाएं]]
[[File:Coloured ceramic thermal barrier coating on exhaust component.jpg|thumb|प्लाज्मा छिड़काव के माध्यम से निकास घटक पर थर्मल इन्सुलेशन लगाया जाता है]]स्पेस हीटिंग और कूलिंग सिस्टम पाइप या डक्टवर्क के माध्यम से इमारतों में गर्मी वितरित करते हैं। पाइप इन्सुलेशन का उपयोग करके इन पाइपों को इन्सुलेट करने से खाली कमरों में ऊर्जा कम हो जाती है। और ठंडे पाइपवर्क पर संघनन होने से रोकता है।
[[File:Coloured ceramic thermal barrier coating on exhaust component.jpg|thumb|प्लाज्मा छिड़काव के माध्यम से निकास घटक पर थर्मल इन्सुलेशन लगाया जाता है]]स्पेस हीटिंग और कूलिंग प्रणाली पाइप या डक्टवर्क के माध्यम से भवनों में हीट वितरित करते हैं। पाइप इन्सुलेशन का उपयोग करके इन पाइपों को इन्सुलेट करने से खाली कमरों में ऊर्जा कम हो जाती है और ठंडे पाइपवर्क पर संघनन होने से रोकता है।


पाइप इंसुलेशन का उपयोग जल आपूर्ति पाइपवर्क पर भी किया जाता है। जिससे स्वीकार्य समय के लिए पाइप जमने में देरी हो सके।
पाइप इंसुलेशन का उपयोग जल आपूर्ति पाइपवर्क पर भी किया जाता है। जिससे स्वीकार्य समय के लिए पाइप जमने में देरी हो सके।
Line 61: Line 60:


=== [[निष्क्रिय विकिरण शीतलन]] सतह ===
=== [[निष्क्रिय विकिरण शीतलन]] सतह ===
प्रत्यक्ष सौर तीव्रता के तहत परिवेश के नीचे तापमान कम करने की सतह की क्षमता को बढ़ाकर निष्क्रिय विकिरण शीतलन सतहों के [[थर्मल उत्सर्जन]] में सुधार करने के लिए थर्मल इन्सुलेशन पाया गया है।<ref name=":0">{{Cite journal |last1=Leroy |first1=A. |last2=Bhatia |first2=B. |last3=Kelsall |first3=C.C. |last4=Castillejo-Cuberos |first4=A.M. |last5=Capua H. |first5=Di |last6=Zhang |first6=L. |last7=Guzman |first7=A.M. |last8=Wang |first8=E.N. |date=October 2019 |title=वैकल्पिक रूप से चयनात्मक और तापीय रूप से इन्सुलेट पॉलीइथाइलीन एयरजेल द्वारा सक्षम उच्च-प्रदर्शन सबअम्बिएंट रेडिएटिव कूलिंग|journal=Materials Science |volume=5 |issue=10 |pages=eaat9480 |doi=10.1126/sciadv.aat9480 |pmid=31692957 |pmc=6821464 }}</ref> थर्मल इन्सुलेशन के लिए विभिन्न सामग्रियों का उपयोग किया जा सकता है। जिसमें [[POLYETHYLENE|पॉलीथीन एयरजेल]] सम्मिलित है। जो सौर अवशोषण और परजीवी ताप लाभ को कम करता है। जो उत्सर्जक के प्रदर्शन में 20% से अधिक सुधार कर सकता है।<ref name=":0" />अन्य एरोगल्स ने रेडियेटिव कूलिंग सतहों के लिए मजबूत थर्मल इन्सुलेशन प्रदर्शन भी प्रदर्शित किया। जिसमें [[सिलिका-एल्यूमिना]] [[नैनोफाइबर]] एयरगेल भी सम्मिलित है।<ref name=":27">{{Cite journal |last1=Li |first1=Tao |last2=Sun |first2=Haoyang |last3=Yang |first3=Meng |last4=Zhang |first4=Chentao |last5=Lv |first5=Sha |last6=Li |first6=Bin |last7=Chen |first7=Longhao |last8=Sun |first8=Dazhi |date=October 2022 |title=सबएम्बिएंट डेटाइम रेडिएटिव कूलिंग के लिए ऑल-सिरेमिक, कंप्रेसिबल और स्केलेबल नैनोफाइबर एरोगल्स|url=https://www.sciencedirect.com/science/article/abs/pii/S138589472204997X |journal=Chemical Engineering Journal |via=Elsevier Science Direct}}</ref>
प्रत्यक्ष सौर तीव्रता के अनुसार परिवेश के नीचे तापमान कम करने की सतह की क्षमता को बढ़ाकर निष्क्रिय विकिरण शीतलन सतहों के [[थर्मल उत्सर्जन]] में सुधार करने के लिए थर्मल इन्सुलेशन पाया गया है।<ref name=":0">{{Cite journal |last1=Leroy |first1=A. |last2=Bhatia |first2=B. |last3=Kelsall |first3=C.C. |last4=Castillejo-Cuberos |first4=A.M. |last5=Capua H. |first5=Di |last6=Zhang |first6=L. |last7=Guzman |first7=A.M. |last8=Wang |first8=E.N. |date=October 2019 |title=वैकल्पिक रूप से चयनात्मक और तापीय रूप से इन्सुलेट पॉलीइथाइलीन एयरजेल द्वारा सक्षम उच्च-प्रदर्शन सबअम्बिएंट रेडिएटिव कूलिंग|journal=Materials Science |volume=5 |issue=10 |pages=eaat9480 |doi=10.1126/sciadv.aat9480 |pmid=31692957 |pmc=6821464 }}</ref> थर्मल इन्सुलेशन के लिए विभिन्न सामग्रियों का उपयोग किया जा सकता है। जिसमें [[POLYETHYLENE|पॉलीथीन एयरजेल]] सम्मिलित है। जो सौर अवशोषण और परजीवी ताप लाभ को कम करता है। जो उत्सर्जक के प्रदर्शन में 20% से अधिक सुधार कर सकता है।<ref name=":0" />अन्य एरोगल्स ने रेडियेटिव कूलिंग सतहों के लिए शक्तिशाली थर्मल इन्सुलेशन प्रदर्शन भी प्रदर्शित किया। जिसमें [[सिलिका-एल्यूमिना]] [[नैनोफाइबर]] एयरगेल भी सम्मिलित है।<ref name=":27">{{Cite journal |last1=Li |first1=Tao |last2=Sun |first2=Haoyang |last3=Yang |first3=Meng |last4=Zhang |first4=Chentao |last5=Lv |first5=Sha |last6=Li |first6=Bin |last7=Chen |first7=Longhao |last8=Sun |first8=Dazhi |date=October 2022 |title=सबएम्बिएंट डेटाइम रेडिएटिव कूलिंग के लिए ऑल-सिरेमिक, कंप्रेसिबल और स्केलेबल नैनोफाइबर एरोगल्स|url=https://www.sciencedirect.com/science/article/abs/pii/S138589472204997X |journal=Chemical Engineering Journal |via=Elsevier Science Direct}}</ref>




=== प्रशीतन ===
=== प्रशीतन ===
एक [[ रेफ़्रिजरेटर ]] में एक हीट पंप और एक थर्मली इंसुलेटेड कम्पार्टमेंट होता है।<ref name="bbc.co.uk">[https://web.archive.org/web/20090213114520/http://www.bbc.co.uk/bloom/actions/fridgefreezertips.shtml Keep your fridge-freezer clean and ice-free]. ''BBC''. 30 April 2008</ref>
एक [[ रेफ़्रिजरेटर |रेफ़्रिजरेटर]] में एक हीट पंप और एक थर्मली इंसुलेटेड कम्पार्टमेंट होता है।<ref name="bbc.co.uk">[https://web.archive.org/web/20090213114520/http://www.bbc.co.uk/bloom/actions/fridgefreezertips.shtml Keep your fridge-freezer clean and ice-free]. ''BBC''. 30 April 2008</ref>




=== अंतरिक्ष यान ===
=== अंतरिक्ष यान ===
[[Image:Huygens thermal multilayer insulation.jpg|thumb|right|[[ह्यूजेंस जांच]] पर थर्मल इन्सुलेशन]]
[[Image:Huygens thermal multilayer insulation.jpg|thumb|right|[[ह्यूजेंस जांच]] पर थर्मल इन्सुलेशन]]
[[File:Aircraft cabin insulation in a B747-8.jpg|thumb|[[बोइंग 747-8]] एयरलाइनर का केबिन इंसुलेशन]]प्रक्षेपण और पुन: प्रवेश अंतरिक्ष यान पर गंभीर यांत्रिक तनाव डालता है, इसलिए एक इन्सुलेटर की ताकत गंभीर रूप से महत्वपूर्ण है (जैसा कि [[ अंतरिक्ष शटल ]] कोलंबिया पर इन्सुलेटिंग टाइलों की विफलता से देखा गया है, जिसके कारण शटल एयरफ्रेम पुनर्प्रवेश के दौरान गर्म हो गया और अलग हो गया, हत्या बोर्ड पर अंतरिक्ष यात्री)। उच्च गति पर हवा के संपीड़न के कारण वायुमंडल के माध्यम से पुन: प्रवेश बहुत उच्च तापमान उत्पन्न करता है। इंसुलेटर को अपने थर्मल ट्रांसफर रिटार्डेंट गुणों से परे भौतिक गुणों की मांग को पूरा करना चाहिए। अंतरिक्ष यान पर उपयोग किए जाने वाले इन्सुलेशन के उदाहरणों में स्पेस शटल के प्रबलित [[कार्बन]]-कार्बन समग्र नाक शंकु और [[सिलिकॉन डाइऑक्साइड]] फाइबर टाइल सम्मिलित हैं। [[इन्सुलेट पेंट]] भी देखें।
[[File:Aircraft cabin insulation in a B747-8.jpg|thumb|[[बोइंग 747-8]] एयरलाइनर का केबिन इंसुलेशन]]प्रक्षेपण और पुन: प्रवेश अंतरिक्ष यान पर गंभीर यांत्रिक तनाव डालता है। इसलिए एक इन्सुलेटर की शक्ति गंभीर रूप से महत्वपूर्ण है (जैसा कि [[ अंतरिक्ष शटल |अंतरिक्ष शटल]] कोलंबिया पर इन्सुलेटिंग टाइलों की विफलता से देखा गया है। जिसके कारण शटल एयरफ्रेम पुनर्प्रवेश के समय गर्म हो गया और अलग हो गया। उच्च गति पर हवा के संपीड़न के कारण वायुमंडल के माध्यम से पुन: प्रवेश बहुत उच्च तापमान उत्पन्न करता है। इंसुलेटर को अपने थर्मल ट्रांसफर रिटार्डेंट गुणों से परे भौतिक गुणों की मांग को पूरा करना चाहिए। अंतरिक्ष यान पर उपयोग किए जाने वाले इन्सुलेशन के उदाहरणों में स्पेस शटल के प्रबलित [[कार्बन]]-कार्बन समग्र नाक शंकु और [[सिलिकॉन डाइऑक्साइड]] फाइबर टाइल सम्मिलित हैं। [[इन्सुलेट पेंट]] भी देखें।


===ऑटोमोटिव ===
===ऑटोमोटिव ===
{{main|Exhaust Heat Management}}
निकास हीट प्रबंधन
[[आंतरिक दहन इंजन]] अपने दहन चक्र के दौरान बहुत अधिक गर्मी उत्पन्न करते हैं। सेंसर, बैटरी और स्टार्टर मोटर्स जैसे विभिन्न गर्मी-संवेदनशील घटकों तक पहुंचने पर इसका नकारात्मक प्रभाव पड़ सकता है। नतीजतन, गर्मी को इन घटकों तक पहुंचने से निकास से रोकने के लिए थर्मल इन्सुलेशन आवश्यक है।


उच्च प्रदर्शन वाली कारें अक्सर इंजन के प्रदर्शन को बढ़ाने के साधन के रूप में थर्मल इन्सुलेशन का उपयोग करती हैं।
[[आंतरिक दहन इंजन]] अपने दहन चक्र के समय बहुत अधिक हीट उत्पन्न करते हैं। सेंसर बैटरी और स्टार्टर मोटर्स जैसे विभिन्न हीट-संवेदनशील घटकों तक पहुंचने पर इसका श्रणात्मक प्रभाव पड़ सकता है। परिणाम स्वरुप हीट को इन घटकों तक पहुंचने से निकास से रोकने के लिए थर्मल इन्सुलेशन आवश्यक है।
 
उच्च प्रदर्शन वाली कारें प्राय: इंजन के प्रदर्शन को बढ़ाने के साधन के रूप में थर्मल इन्सुलेशन का उपयोग करती हैं।


== प्रदर्शन को प्रभावित करने वाले कारक ==
== प्रदर्शन को प्रभावित करने वाले कारक ==
इन्सुलेशन प्रदर्शन कई कारकों से प्रभावित होता है, जिनमें से सबसे प्रमुख में सम्मिलित हैं:
इन्सुलेशन प्रदर्शन कई कारकों से प्रभावित होता है। जिनमें से सबसे प्रमुख में सम्मिलित हैं:


* तापीय चालकता ( k या λ मान)
* तापीय चालकता ( k या λ मान)
Line 85: Line 85:
* इन्सुलेशन की मोटाई
* इन्सुलेशन की मोटाई
* [[घनत्व]]
* [[घनत्व]]
* [[विशिष्ट गर्मी की क्षमता]]
* [[विशिष्ट गर्मी की क्षमता|विशिष्ट हीट की क्षमता]]
* [[थर्मल ब्रिजिंग]]
* [[थर्मल ब्रिजिंग]]


Line 91: Line 91:


== आवश्यकताओं की गणना ==
== आवश्यकताओं की गणना ==
उद्योग मानक अक्सर अंगूठे के नियम होते हैं, जो कई वर्षों में विकसित हुए हैं, जो कई परस्पर विरोधी लक्ष्यों को ऑफसेट करते हैं: लोग किसके लिए भुगतान करेंगे, निर्माण लागत, स्थानीय जलवायु, पारंपरिक भवन निर्माण प्रथाएं और आराम के अलग-अलग मानक। गर्मी हस्तांतरण और परत विश्लेषण दोनों बड़े औद्योगिक अनुप्रयोगों में किए जा सकते हैं, लेकिन घरेलू स्थितियों (उपकरणों और भवन इन्सुलेशन) में, वायु रिसाव (मजबूर या प्राकृतिक संवहन) के कारण गर्मी हस्तांतरण को कम करने में वायुरोधकता महत्वपूर्ण है। एक बार वायुरुद्धता प्राप्त हो जाने के बाद, अंगूठे के नियमों के आधार पर इन्सुलेटिंग परत की मोटाई का चयन करना अक्सर पर्याप्त होता है। इंसुलेटिंग परत के प्रत्येक क्रमिक दोहरीकरण के साथ ह्रासमान प्रतिफल प्राप्त किया जाता है।
उद्योग मानक अधिकांशतः अंगूठे के नियम होते हैं। जो कई वर्षों में विकसित हुए हैं। जो कई परस्पर विरोधी लक्ष्यों को ऑफसेट करते हैं। लोग किसके लिए भुगतान करेंगे निर्माण व्यय स्थानीय जलवायु पारंपरिक भवन निर्माण प्रथाएं और आराम के अलग-अलग मानक हीट हस्तांतरण और परत विश्लेषण दोनों बड़े औद्योगिक अनुप्रयोगों में किए जा सकते हैं। किन्तु घरेलू स्थितियों (उपकरणों और भवन इन्सुलेशन) में वायु रिसाव ( प्राकृतिक संवहन) के कारण हीट हस्तांतरण को कम करने में वायुरोधकता महत्वपूर्ण है। एक बार वायुरुद्धता प्राप्त हो जाने के बाद अंगूठे के नियमों के आधार पर इन्सुलेटिंग परत की मोटाई का चयन करना अधिकांशतः पर्याप्त होता है। इंसुलेटिंग परत के प्रत्येक क्रमिक दोहरीकरण के साथ ह्रासमान प्रतिफल प्राप्त किया जाता है।
यह दिखाया जा सकता है कि कुछ प्रणालियों के लिए, सुधार के लिए न्यूनतम इन्सुलेशन मोटाई की आवश्यकता होती है।<ref>{{cite book
 
यह दिखाया जा सकता है कि कुछ प्रणालियों के लिए सुधार के लिए न्यूनतम इन्सुलेशन मोटाई की आवश्यकता होती है।<ref>{{cite book
   | author = Frank P. Incroperation
   | author = Frank P. Incroperation
   |author2=David P. De Witt  
   |author2=David P. De Witt  
Line 103: Line 104:
   | year = 1990
   | year = 1990
   | isbn = 0-471-51729-1 }}</ref>
   | isbn = 0-471-51729-1 }}</ref>




Line 109: Line 111:
* [[तापीय चालकता की सूची]]
* [[तापीय चालकता की सूची]]
* इन्सुलेशन पेंट
* इन्सुलेशन पेंट
* [[गर्मी का जाल]]
* [[गर्मी का जाल|हीट ट्रेप]]
* [[थर्मल पैड (पीसीबी)]]
* [[थर्मल पैड (पीसीबी)]]


Line 126: Line 128:
{{commons category}}
{{commons category}}


{{HVAC}}[[Category: गर्मी का हस्तांतरण]] [[Category: थर्मल सुरक्षा]] [[Category: रोधक]]
{{HVAC}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 British English-language sources (en-gb)]]
[[Category:CS1 maint]]
[[Category:Collapse templates]]
[[Category:Commons category link from Wikidata]]
[[Category:Created On 22/03/2023]]
[[Category:Created On 22/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:गर्मी का हस्तांतरण]]
[[Category:थर्मल सुरक्षा]]
[[Category:रोधक]]

Latest revision as of 18:48, 21 April 2023

ऊष्मा रोधन थर्मल संपर्क में या विकिरण प्रभाव की सीमा में वस्तुओं के बीच हीट हस्तांतरण (अर्थात अलग-अलग तापमान की वस्तुओं के बीच थर्मल ऊर्जा का हस्तांतरण) में कमी है। थर्मल इन्सुलेशन विशेष रूप से इंजीनियर विधियों या प्रक्रियाओं के साथ-साथ उपयुक्त वस्तु आकार और सामग्री के साथ प्राप्त किया जा सकता है।

ताप प्रवाह विभिन्न तापमान की वस्तुओं के बीच संपर्क का एक अनिवार्य परिणाम है। थर्मल इन्सुलेशन इन्सुलेशन का एक क्षेत्र प्रदान करता है। जिसमें थर्मल चालन कम हो जाता है। जिससे थर्मल ब्रेक या थर्मल बैरियर बनता है।[1] थर्मल विकिरण कम तापमान वाले शरीर द्वारा अवशोषित होने के अतिरिक्त परिलक्षित होता है।

किसी सामग्री की इन्सुलेट क्षमता को तापीय चालकता के व्युत्क्रम तापीय चालकता (k) के रूप में मापा जाता है। कम तापीय चालकता उच्च इन्सुलेट क्षमता (इन्सुलेशन) के बराबर है।[2] थर्मल इंजीनियरिंग में इन्सुलेट सामग्री के अन्य महत्वपूर्ण गुण उत्पाद घनत्व घनत्व (ρ) और ताप क्षमता विशिष्ट ताप क्षमता (c) हैं।

परिभाषा

तापीय चालकता k को वाट-प्रति-मीटर प्रति केल्विन (W·m−1·K−1 अथवा W/m/K में मापा जाता है। ऐसा इसलिए है क्योंकि हीट हस्तांतरण शक्ति (भौतिकी) के रूप में मापा जाता है। (लगभग) आनुपातिक पाया गया है।

  • तापमान का अंतर
  • थर्मल संपर्क की सतह क्षेत्र
  • सामग्री की मोटाई का व्युत्क्रम

इससे यह पता चलता है कि हीट के हानिकारक की शक्ति द्वारा दिया गया है।

तापीय चालकता सामग्री और तरल पदार्थ उसके तापमान और दबाव पर निर्भर करती है। तुलनात्मक उद्देश्यों के लिए मानक स्थितियों (20 डिग्री सेल्सियस पर 1 एटीएम) के अनुसार चालकता का सामान्यतः उपयोग किया जाता है। कुछ सामग्रियों के लिए तापीय चालकता भी हीट हस्तांतरण की दिशा पर निर्भर हो सकती है।

उच्च मोटाई में कम तापीय चालकता वाली सामग्री में किसी वस्तु को घेरने से इन्सुलेशन का कार्य पूरा होता है। खुली सतह क्षेत्र को कम करने से हीट हस्तांतरण भी कम हो सकता है। किन्तु यह मात्रा सामान्यतः वस्तु की ज्यामिति द्वारा इन्सुलेट की जाती है।

बहुपरत इन्सुलेशन का उपयोग वहां किया जाता है, जहां पर रेडिएटिव लॉस अधिक होता है। जब उपयोगकर्ता इंसुलेशन की मात्रा और भार में प्रतिबंधित होता है। (जैसे आपातकालीन कंबलदीप्तिमान बाधा )

सिलेंडरों का इन्सुलेशन

कार के निकास के लिए सामान्यतः किसी प्रकार के ताप अवरोध की आवश्यकता होती है। विशेष रूप से उच्च-प्रदर्शन वाले निकास। जहां अधिकांशतः एक सिरेमिक कोटिंग लगाई जाती है।

इन्सुलेटेड सिलेंडरों के लिए एक महत्वपूर्ण त्रिज्या कंबल तक पहुंचना चाहिए। महत्वपूर्ण त्रिज्या तक पहुँचने से पहले कोई भी अतिरिक्त इन्सुलेशन हीट हस्तांतरण को बढ़ाता है।[3] संवहन थर्मल प्रतिरोध सतह क्षेत्र के व्युत्क्रमानुपाती होता है। इसलिए सिलेंडर की त्रिज्या थर्मल चालन बेलनाकार गोले (इन्सुलेशन परत) बाहरी और आंतरिक त्रिज्या के बीच के अनुपात पर निर्भर करता है। यदि इन्सुलेशन लगाकर सिलेंडर के बाहरी त्रिज्या को बढ़ाया जाता है। तो प्रवाहकीय प्रतिरोध की एक निश्चित मात्रा (2×π×k×L के बराबर) जोड़ा जाता है। चूँकि एक ही समय में संवहनी प्रतिरोध कम हो जाता है। इसका तात्पर्य है कि एक निश्चित महत्वपूर्ण त्रिज्या के नीचे इन्सुलेशन जोड़ने से वास्तव में हीट हस्तांतरण बढ़ जाता है। विद्युतरोधित सिलिंडरों के लिए क्रांतिक त्रिज्या समीकरण द्वारा दी गई है।[4]

यह समीकरण दर्शाता है कि महत्वपूर्ण त्रिज्या केवल हीट हस्तांतरण गुणांक और इन्सुलेशन की तापीय चालकता पर निर्भर करती है। यदि इंसुलेटेड सिलिंडर की त्रिज्या इंसुलेशन के लिए क्रिटिकल रेडियस से छोटी है। तो इंसुलेशन की किसी भी मात्रा को जोड़ने से हीट ट्रांसफर में वृद्धि होगी।

अनुप्रयोग

पक्षियों और स्तनधारियों में कपड़े और प्राकृतिक पशु इन्सुलेशन

तरल पदार्थ और ठोस पदार्थों की तुलना में गैसों में खराब तापीय चालकता गुण होते हैं। इस प्रकार उन्हें फंसाया जा सकता है। तो वे अच्छी इन्सुलेशन सामग्री बनाते हैं। गैस (जैसे हवा) की प्रभावशीलता को और बढ़ाने के लिए इसे छोटी कोशिकाओं में बाधित किया जा सकता है। जो प्राकृतिक संवहन द्वारा हीट को प्रभावी ढंग से स्थानांतरित नहीं कर सकते हैं। संवहन में उछाल और तापमान के अंतर से संचालित गैस का एक बड़ा प्रवाह सम्मिलित होता है और यह छोटी कोशिकाओं में अच्छी प्रकार से काम नहीं करता है। जहां इसे चलाने के लिए थोड़ा घनत्व अंतर होता है। छोटी कोशिकाओं के उच्च सतह से आयतन अनुपात गैस प्रवाह को धीमा कर देते हैं। उनमें विस्कोस ड्रैग (भौतिकी) के माध्यम से।

मानव निर्मित थर्मल इन्सुलेशन में छोटे गैस सेल गठन को पूरा करने के लिए फोम जैसी संरचना में हवा को फंसाने के लिए कांच और बहुलक सामग्री का उपयोग किया जा सकता है। इस सिद्धांत का उपयोग औद्योगिक रूप से (ग्लास वुल ) सेल्यूलोज रॉक ऊन पॉली स्टाइरीन फोम (स्टायरोफोम) पॉलीयुरेथेन वर्मीक्यूलाइट पेर्लाइट और कॉर्क (सामग्री) जैसे इन्सुलेशन के निर्माण और पाइपिंग में किया जाता है। फँसाने वाली हवा भी सभी अत्यधिक इन्सुलेट कपड़ों की सामग्री जैसे ऊन नीचे पंख और ऊन में सिद्धांत है।

वायु ग्रहण करने का गुण भी गर्म रहने के लिए समतापी जानवरों द्वारा नियोजित इन्सुलेशन सिद्धांत है। उदाहरण के लिए पंखों के नीचे और प्राकृतिक भेड़ के ऊन जैसे बालों को इन्सुलेट करना। दोनों ही स्थितियों में प्राथमिक इन्सुलेट सामग्री हवा है। हवा को फंसाने के लिए प्रयोग किया जाने वाला बहुलक प्राकृतिक केरातिन प्रोटीन है।

भवन

भवन का इन्सुलेशन

ओंटारियो, कनाडा में अपार्टमेंट भवन में सामान्य इन्सुलेशन अनुप्रयोग।

भवनों में स्थिर तापमान बनाए रखने (गर्म करने और ठंडा करने से) से वैश्विक ऊर्जा व्यय का एक बड़ा भाग उपयोग करता है। बिल्डिंग इंसुलेशन भी सामान्यतः छोटे फंसे हुए वायु-कोशिकाओं के सिद्धांत का उपयोग करते हैं, जैसा कि ऊपर बताया गया है। फाइबरग्लास (विशेष रूप से ग्लास वूल) सेल्यूलोज, रॉक वूल, पॉलीस्टाइरीन फोम, पॉलीयुरेथेन, वर्मीक्यूलाइट, पेर्लाइट, कॉर्क (सामग्री) आदि। कुछ समय के लिए एस्बेस्टॉस का भी उपयोग किया जाता था। चूँकि इससे स्वास्थ्य समस्याएं होती थीं।

गर्मियों में आने वाले थर्मल विकिरण और सर्दियों में हानि को कम करने के लिए खिड़की इन्सुलेशन फिल्म को मौसम संबंधी अनुप्रयोगों में लगाया जा सकता है।

जब अच्छी प्रकार से इन्सुलेट किया जाता है। तो एक भवन है:

  • ऊर्जा कुशल और सर्दियों में गर्म रखने के लिए सस्ता या गर्मियों में ठंडा ऊर्जा दक्षता से कार्बन पदचिह्न कम होगा।
  • अधिक आरामदायक क्योंकि पूरे अंतरिक्ष में एक समान तापमान होता है। लंबवत (टखने की ऊंचाई और सिर की ऊंचाई के बीच) और बाहरी दीवारों छत और खिड़कियों से आंतरिक दीवारों तक क्षैतिज रूप से कम तापमान प्रवणता होती है। इस प्रकार बाहरी तापमान बहुत ठंडा या गर्म होने पर अधिक आरामदायक रहने वाले वातावरण का उत्पादन होता है।

उद्योग में वस्तुओं या प्रक्रिया तरल पदार्थों के तापमान को बढ़ाने कम करने या बनाए रखने के लिए ऊर्जा खर्च करनी पड़ती है। यदि इन्हें इंसुलेटेड नहीं किया जाता है। तो यह एक प्रक्रिया की ऊर्जा आवश्यकताओं को बढ़ाता है और इसलिए व्यय और पर्यावरणीय प्रभाव को भी बढा़ने का कार्य करता है।

यांत्रिक प्रणाली

पाइप इन्सुलेशन

गर्म पानी की आपूर्ति और गैस से चलने वाले बॉयलर पर हाइड्रोनिक पाइपिंग लौटाएं
प्लाज्मा छिड़काव के माध्यम से निकास घटक पर थर्मल इन्सुलेशन लगाया जाता है

स्पेस हीटिंग और कूलिंग प्रणाली पाइप या डक्टवर्क के माध्यम से भवनों में हीट वितरित करते हैं। पाइप इन्सुलेशन का उपयोग करके इन पाइपों को इन्सुलेट करने से खाली कमरों में ऊर्जा कम हो जाती है और ठंडे पाइपवर्क पर संघनन होने से रोकता है।

पाइप इंसुलेशन का उपयोग जल आपूर्ति पाइपवर्क पर भी किया जाता है। जिससे स्वीकार्य समय के लिए पाइप जमने में देरी हो सके।

यांत्रिक इन्सुलेशन सामान्यतः औद्योगिक और वाणिज्यिक सुविधाओं में स्थापित किया जाता है।

निष्क्रिय विकिरण शीतलन सतह

प्रत्यक्ष सौर तीव्रता के अनुसार परिवेश के नीचे तापमान कम करने की सतह की क्षमता को बढ़ाकर निष्क्रिय विकिरण शीतलन सतहों के थर्मल उत्सर्जन में सुधार करने के लिए थर्मल इन्सुलेशन पाया गया है।[5] थर्मल इन्सुलेशन के लिए विभिन्न सामग्रियों का उपयोग किया जा सकता है। जिसमें पॉलीथीन एयरजेल सम्मिलित है। जो सौर अवशोषण और परजीवी ताप लाभ को कम करता है। जो उत्सर्जक के प्रदर्शन में 20% से अधिक सुधार कर सकता है।[5]अन्य एरोगल्स ने रेडियेटिव कूलिंग सतहों के लिए शक्तिशाली थर्मल इन्सुलेशन प्रदर्शन भी प्रदर्शित किया। जिसमें सिलिका-एल्यूमिना नैनोफाइबर एयरगेल भी सम्मिलित है।[6]


प्रशीतन

एक रेफ़्रिजरेटर में एक हीट पंप और एक थर्मली इंसुलेटेड कम्पार्टमेंट होता है।[7]


अंतरिक्ष यान

ह्यूजेंस जांच पर थर्मल इन्सुलेशन
बोइंग 747-8 एयरलाइनर का केबिन इंसुलेशन

प्रक्षेपण और पुन: प्रवेश अंतरिक्ष यान पर गंभीर यांत्रिक तनाव डालता है। इसलिए एक इन्सुलेटर की शक्ति गंभीर रूप से महत्वपूर्ण है (जैसा कि अंतरिक्ष शटल कोलंबिया पर इन्सुलेटिंग टाइलों की विफलता से देखा गया है। जिसके कारण शटल एयरफ्रेम पुनर्प्रवेश के समय गर्म हो गया और अलग हो गया। उच्च गति पर हवा के संपीड़न के कारण वायुमंडल के माध्यम से पुन: प्रवेश बहुत उच्च तापमान उत्पन्न करता है। इंसुलेटर को अपने थर्मल ट्रांसफर रिटार्डेंट गुणों से परे भौतिक गुणों की मांग को पूरा करना चाहिए। अंतरिक्ष यान पर उपयोग किए जाने वाले इन्सुलेशन के उदाहरणों में स्पेस शटल के प्रबलित कार्बन-कार्बन समग्र नाक शंकु और सिलिकॉन डाइऑक्साइड फाइबर टाइल सम्मिलित हैं। इन्सुलेट पेंट भी देखें।

ऑटोमोटिव

निकास हीट प्रबंधन

आंतरिक दहन इंजन अपने दहन चक्र के समय बहुत अधिक हीट उत्पन्न करते हैं। सेंसर बैटरी और स्टार्टर मोटर्स जैसे विभिन्न हीट-संवेदनशील घटकों तक पहुंचने पर इसका श्रणात्मक प्रभाव पड़ सकता है। परिणाम स्वरुप हीट को इन घटकों तक पहुंचने से निकास से रोकने के लिए थर्मल इन्सुलेशन आवश्यक है।

उच्च प्रदर्शन वाली कारें प्राय: इंजन के प्रदर्शन को बढ़ाने के साधन के रूप में थर्मल इन्सुलेशन का उपयोग करती हैं।

प्रदर्शन को प्रभावित करने वाले कारक

इन्सुलेशन प्रदर्शन कई कारकों से प्रभावित होता है। जिनमें से सबसे प्रमुख में सम्मिलित हैं:

यह ध्यान रखना महत्वपूर्ण है कि प्रदर्शन को प्रभावित करने वाले कारक समय के साथ भिन्न हो सकते हैं क्योंकि भौतिक युग या पर्यावरण की स्थिति बदलती है।

आवश्यकताओं की गणना

उद्योग मानक अधिकांशतः अंगूठे के नियम होते हैं। जो कई वर्षों में विकसित हुए हैं। जो कई परस्पर विरोधी लक्ष्यों को ऑफसेट करते हैं। लोग किसके लिए भुगतान करेंगे निर्माण व्यय स्थानीय जलवायु पारंपरिक भवन निर्माण प्रथाएं और आराम के अलग-अलग मानक हीट हस्तांतरण और परत विश्लेषण दोनों बड़े औद्योगिक अनुप्रयोगों में किए जा सकते हैं। किन्तु घरेलू स्थितियों (उपकरणों और भवन इन्सुलेशन) में वायु रिसाव ( प्राकृतिक संवहन) के कारण हीट हस्तांतरण को कम करने में वायुरोधकता महत्वपूर्ण है। एक बार वायुरुद्धता प्राप्त हो जाने के बाद अंगूठे के नियमों के आधार पर इन्सुलेटिंग परत की मोटाई का चयन करना अधिकांशतः पर्याप्त होता है। इंसुलेटिंग परत के प्रत्येक क्रमिक दोहरीकरण के साथ ह्रासमान प्रतिफल प्राप्त किया जाता है।

यह दिखाया जा सकता है कि कुछ प्रणालियों के लिए सुधार के लिए न्यूनतम इन्सुलेशन मोटाई की आवश्यकता होती है।[8]


यह भी देखें

संदर्भ

  1. "थर्मल ब्रेक टेक्नोलॉजी - आईक्यू टेक्निकल". IQ Glass Technical (in British English). Retrieved 2019-10-16.
  2. Ashley, Jake. "अपने घर के लिए सही इंसुलेशन चुनना". Homaphy.{{cite web}}: CS1 maint: url-status (link)
  3. "17.2 Combined Conduction and Convection". web.mit.edu. Archived from the original on 19 October 2017. Retrieved 29 April 2018.
  4. Bergman, Lavine, Incropera and DeWitt, Introduction to Heat Transfer (sixth edition), Wiley, 2011.
  5. 5.0 5.1 Leroy, A.; Bhatia, B.; Kelsall, C.C.; Castillejo-Cuberos, A.M.; Capua H., Di; Zhang, L.; Guzman, A.M.; Wang, E.N. (October 2019). "वैकल्पिक रूप से चयनात्मक और तापीय रूप से इन्सुलेट पॉलीइथाइलीन एयरजेल द्वारा सक्षम उच्च-प्रदर्शन सबअम्बिएंट रेडिएटिव कूलिंग". Materials Science. 5 (10): eaat9480. doi:10.1126/sciadv.aat9480. PMC 6821464. PMID 31692957.
  6. Li, Tao; Sun, Haoyang; Yang, Meng; Zhang, Chentao; Lv, Sha; Li, Bin; Chen, Longhao; Sun, Dazhi (October 2022). "सबएम्बिएंट डेटाइम रेडिएटिव कूलिंग के लिए ऑल-सिरेमिक, कंप्रेसिबल और स्केलेबल नैनोफाइबर एरोगल्स". Chemical Engineering Journal – via Elsevier Science Direct.
  7. Keep your fridge-freezer clean and ice-free. BBC. 30 April 2008
  8. Frank P. Incroperation; David P. De Witt (1990). Fundamentals of Heat and Mass Transfer (3rd ed.). John Wiley & Sons. pp. 100–103. ISBN 0-471-51729-1.


अग्रिम पठन