टाइप II स्ट्रिंग थ्योरी: Difference between revisions

From Vigyanwiki
No edit summary
Line 41: Line 41:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 14:50, 25 April 2023

सैद्धांतिक भौतिकी में, प्ररूप II स्ट्रिंग सिद्धांत एक एकीकृत शब्द है जिसमें प्ररूप आईआईए स्ट्रिंग्स और प्ररूप आईआईबी स्ट्रिंग्स सिद्धांत दोनों सम्मिलित हैं। प्ररूप II स्ट्रिंग सिद्धांत दस आयामों में पाँच सुसंगत सुपरस्ट्रिंग सिद्धांत में से दो के लिए है। दोनों सिद्धांतों में दस आयामों में अधिकतम राशि में अति-समरूपता - अर्थात् 32 अत्यधिक प्रभावकारी हैं। दोनों सिद्धांत उन्मुख संवृत्त स्ट्रिंग्स पर आधारित हैं। विश्व पटल पर पर, वे केवल सामान्य सेवा संस्थान (जीएसओ) प्रक्षेपण के विकल्प में भिन्न हैं।

प्ररूप आईआईए स्ट्रिंग सिद्धांत

कम ऊर्जा पर, आईआईए स्ट्रिंग सिद्धांत का वर्णन प्ररूप आईआईए अतिगुरुत्वाकर्षण द्वारा दस आयामों में वर्णित है जो एक गैर-चिरत्व (भौतिकी) सिद्धांत अर्थात बाएं-दाएं सममित है (1,1) d=10 अति-समरूपता के साथ तथ्य यह है कि इस सिद्धांत में विसंगतियां (भौतिकी) अस्वीकृत करती हैं इसलिए सामान्य है।

1990 के दशक में एडवर्ड विट्टन (माइकल डफ, पॉल टाउनसेंड और अन्य द्वारा पूर्व अंतर्दृष्टि पर निर्माण) द्वारा यह अनुभव किया गया था कि प्ररूप आईआईए स्ट्रिंग सिद्धांत की सीमा जिसमें स्ट्रिंग युग्मन अनंत तक जाता है, एक नया 11-आयामी सिद्धांत बन जाता है। M-सिद्धांत कहा जाता है।[1]

प्ररूप आईआईए स्ट्रिंग सिद्धांत का गणितीय संशोधन सममिती सांस्थिति और बीजगणितीय ज्यामिति विशेष रूप से ग्रोमोव-विटन अचर से संबंधित है।

प्रकार आईआईबी स्ट्रिंग सिद्धांत

कम ऊर्जा पर, आईआईबी स्ट्रिंग सिद्धांत वर्णन प्ररूप आईआईबी अतिगुरुत्वाकर्षण द्वारा दस आयामों में वर्णित किया गया है जो कि (2,0) d=10 अति-समरूपता के साथ एक चिरल सिद्धांत (बाएं-दाएं असममित) है; तथ्य यह है कि इस सिद्धांत में विसंगतियां अस्वीकृत होती हैं इसलिए यह गैर-सामान्य है।

1990 के दशक में यह अनुभव किया गया था कि प्ररूप आईआईबी स्ट्रिंग सिद्धांत स्ट्रिंग युग्मन स्थिर g के साथ युग्मन 1/g के समान सिद्धांत के समतुल्य है। इस समानता को S-द्वैत के रूप में जाना जाता है।

प्ररूप आईआईबी स्ट्रिंग सिद्धांत का पूर्वाभिमुखीकरण प्ररूप I स्ट्रिंग सिद्धांत की ओर जाता है।

प्ररूप आईआईबी स्ट्रिंग सिद्धांत का गणितीय संशोधन बीजगणितीय ज्यामिति विशेष रूप से मूल रूप से कुनिहिको कोडैरा और डोनाल्ड सी स्पेंसर द्वारा अध्ययन की गई जटिल संरचनाओं का विरूपण सिद्धांत से संबंधित है।

1997 मेंजुआन मालडेसेना ने कुछ तर्क दिए जो दर्शाते हैं कि प्ररूप आईआईबी स्ट्रिंग सिद्धांत t हूफ्ट सीमा में N = 4 अति-समरूपता यांग-मिल्स सिद्धांत के समान है। यह एडीएस/सीएफटी पत्राचार से संबंधित पहला सुझाव था।[2]


प्ररूप II सिद्धांतों के बीच संबंध

1980 के दशक के उत्तरार्ध में, यह अनुभव किया गया कि प्ररूप आईआईए स्ट्रिंग सिद्धांत T-द्वैत द्वारा प्ररूप आईआईबी स्ट्रिंग सिद्धांत से संबंधित है।

यह भी देखें

संदर्भ

  1. Duff, Michael (1998). "सिद्धांत को पहले तार के रूप में जाना जाता था". Scientific American. 278 (2): 64–9. Bibcode:1998SciAm.278b..64D. doi:10.1038/scientificamerican0298-64.
  2. Maldacena, Juan M. (1999). "सुपरकॉन्फॉर्मल फील्ड थ्योरीज़ और सुपरग्रेविटी की बड़ी एन सीमा". International Journal of Theoretical Physics. 38 (4): 1113–1133. arXiv:hep-th/9711200. Bibcode:1999IJTP...38.1113M. doi:10.1023/A:1026654312961. S2CID 12613310.