बंधन-पृथक्करण ऊर्जा: Difference between revisions
No edit summary |
No edit summary |
||
Line 112: | Line 112: | ||
|- | |- | ||
| H−H | | H−H | ||
| | |हाइड्रोजन | ||
| 103 | | 103 | ||
| 431 | | 431 | ||
Line 119: | Line 119: | ||
|- | |- | ||
| H−F | | H−F | ||
| | |हाइड्रोजिन फ्लोराइड | ||
| 136 | | 136 | ||
| 569 | | 569 | ||
Line 126: | Line 126: | ||
|- | |- | ||
| O−H | | O−H | ||
| | |जल में | ||
| 119 | | 119 | ||
| 497 | | 497 | ||
Line 133: | Line 133: | ||
|- | |- | ||
| O−H | | O−H | ||
| | |मेथनॉल में | ||
| 105 | | 105 | ||
| 440 | | 440 | ||
Line 140: | Line 140: | ||
|- | |- | ||
| O−H | | O−H | ||
| | | α-[[टोकोफ़ेरल]](एक एंटीऑक्सीडेंट) में | ||
| 77 | | 77 | ||
| 323 | | 323 | ||
Line 147: | Line 147: | ||
|- | |- | ||
| C-O | | C-O | ||
| [[ | | [[Index.php?title=मेथनॉल|मेथनॉल]] | ||
| 92 | | 92 | ||
| 385 | | 385 | ||
Line 154: | Line 154: | ||
|- | |- | ||
| C≡O | | C≡O | ||
| [[ | | [[Index.php?title=कार्बन मोनोआक्साइड|कार्बन मोनोआक्साइड]] | ||
| 257 | | 257 | ||
| 1077 | | 1077 | ||
Line 161: | Line 161: | ||
|- | |- | ||
| O=CO | | O=CO | ||
| [[ | | [[Index.php?title=कार्बन डाईऑक्साइड|कार्बन डाईऑक्साइड]] | ||
| 127 | | 127 | ||
| 532 | | 532 | ||
Line 168: | Line 168: | ||
|- | |- | ||
| O=CH<sub>2</sub> | | O=CH<sub>2</sub> | ||
| [[ | | [[Index.php?title=फॉर्मोल्डिहाइड|फॉर्मोल्डिहाइड]] | ||
| 179 | | 179 | ||
| 748 | | 748 | ||
Line 175: | Line 175: | ||
|- | |- | ||
| O=O | | O=O | ||
| [[ | | [[Index.php?title=ऑक्सीजन|ऑक्सीजन]] | ||
| 119 | | 119 | ||
| 498 | | 498 | ||
Line 182: | Line 182: | ||
|- | |- | ||
| N≡N | | N≡N | ||
| [[ | | [[Index.php?title=नाइट्रोजन|नाइट्रोजन]] | ||
| 226 | | 226 | ||
| 945 | | 945 | ||
Line 202: | Line 202: | ||
|- | |- | ||
| H<sub>3</sub>C−H | | H<sub>3</sub>C−H | ||
| [[ | | [[Index.php?title=मेथिल|मेथिल]] C−H बंध | ||
| 105 | | 105 | ||
| 439 | | 439 | ||
Line 209: | Line 209: | ||
|- | |- | ||
| C<sub>2</sub>H<sub>5</sub>−H | | C<sub>2</sub>H<sub>5</sub>−H | ||
| [[Ethyl group| | | [[Ethyl group|एथिल]] C−H बंध | ||
| 101 | | 101 | ||
| 423 | | 423 | ||
Line 216: | Line 216: | ||
|- | |- | ||
| (CH<sub>3</sub>)<sub>2</sub>CH−H | | (CH<sub>3</sub>)<sub>2</sub>CH−H | ||
| | | आइसोप्रोपाइल C−H बंध | ||
| 99 | | 99 | ||
| 414 | | 414 | ||
Line 223: | Line 223: | ||
|- | |- | ||
| (CH<sub>3</sub>)<sub>3</sub>C−H | | (CH<sub>3</sub>)<sub>3</sub>C−H | ||
| ''t''- | | ''t''- ब्यूटिलC−H बंध | ||
| 96.5 | | 96.5 | ||
| 404 | | 404 | ||
Line 230: | Line 230: | ||
|- | |- | ||
| (CH<sub>3</sub>)<sub>2</sub>NCH<sub>2</sub>−H | | (CH<sub>3</sub>)<sub>2</sub>NCH<sub>2</sub>−H | ||
| C−H बंध α | | C−H बंध α अमीन के लिए | ||
| 91 | | 91 | ||
| 381 | | 381 | ||
Line 237: | Line 237: | ||
|- | |- | ||
| (CH<sub>2</sub>)<sub>3</sub>OCH−H | | (CH<sub>2</sub>)<sub>3</sub>OCH−H | ||
| C−H बंध | | C−H बंध ईथर के लिए | ||
| 92 | | 92 | ||
| 385 | | 385 | ||
Line 244: | Line 244: | ||
|- | |- | ||
| CH<sub>3</sub>C(=O)CH<sub>2</sub>−H | | CH<sub>3</sub>C(=O)CH<sub>2</sub>−H | ||
| C−H बंध α | | C−H बंध α से कीटोन | ||
| 96 | | 96 | ||
| 402 | | 402 | ||
Line 251: | Line 251: | ||
|- | |- | ||
| CH<sub>2</sub>CH−H | | CH<sub>2</sub>CH−H | ||
| [[ | | [[Index.php?title=विनाइल|विनाइल]] C−H बंध | ||
| 111 | | 111 | ||
| 464 | | 464 | ||
Line 258: | Line 258: | ||
|- | |- | ||
| HCC−H | | HCC−H | ||
| | | ऐसिटिलीनC−H बंध | ||
| 133 | | 133 | ||
| 556 | | 556 |
Revision as of 17:23, 22 March 2023
बंधन-पृथक्करण ऊर्जा (BDE, D0, या DH°) एक रासायनिक बंधन की बंधन शक्ति का एक माप है। इसे मानक एन्थैल्पी परिवर्तन के रूप में परिभाषित किया जा सकता है जब ए-बी को ए और बी के टुकड़े देने के लिए समलयन द्वारा विभाजित किया जाता है, जो सामान्यतः रेडिकल होते हैं।[1][2] एन्थैल्पी परिवर्तन तापमान पर निर्भर होता है, और बंधन-पृथक्करण ऊर्जा को अक्सर 0 केल्विन (पूर्ण शून्य) पर समलयन के एन्थैल्पी परिवर्तन के रूप में परिभाषित किया जाता है, सामान्यतः 298 के (मानक स्थितियों) पर एन्थैल्पी परिवर्तन भी एक प्रायः सामना किया जाने वाला मापदण्ड है | [3]
एक विशिष्ट उदाहरण के रूप में, [[Index.php?title=ईथेन|ईथेन (C2H6)]] में कार्बन-हाइड्रोजन बंधन में से एक के लिए बंधन-पृथक्करण ऊर्जा को प्रक्रिया के मानक एन्थैल्पी परिवर्तन के रूप में परिभाषित किया गया है
- CH3CH2−H → CH3CH2• + H•,
- DH°298(CH3CH2−H) = ΔH° = 101.1(4) kcal/mol = 423.0 ± 1.7 जूल प्रति मोल|kJ/mol = 4.40(2) इलेक्ट्रॉनवोल्ट (प्रति बॉन्ड)।[4]
एक ग्राम अणुक BDE को प्रति अणु बंधन को अलग करने के लिए आवश्यक ऊर्जा में परिवर्तित करने के लिए, प्रत्येक eV के लिए रूपांतरण कारक 23.060 kcal/mol (96.485 kJ/mol) का उपयोग किया जा सकता है।
ऊर्जा स्तरों के स्पेक्ट्रोमेट्रिक निर्धारण, तापीय अपघटन या प्रकाश अपघटन द्वारा रेडिकल्स के उत्पादन, रासायनिक गतिकी और रासायनिक संतुलन के माप, और विभिन्न उष्मामिति और वैद्युतरासायनिक विधियों सहित विभिन्न प्रकार की प्रयोगात्मक तकनीकों का उपयोग बंधन पृथक्करण ऊर्जा मूल्यों को मापने के लिए किया गया है। तथापि, बंधन पृथकरण ऊर्जा माप चुनौतीपूर्ण हैं और बहुत अधिक त्रुटि के अधीन हैं। वर्तमान में ज्ञात अधिकांश मान ±1 या 2 kcal/mol (4–10 kJ/mol) के भीतर सटीक हैं।[5] इसके अलावा, अतीत में मापे गए मान, विशेष रूप से 1970 के दशक से पहले, विशेष रूप से अविश्वसनीय हो सकते हैं और 10 kcal/mol (जैसे, बेंजीन C-H बंध, 1965 में 103 kcal/mol से लेकर आधुनिक तक) के क्रम में संशोधन के अधीन रहे हैं। 112.9(5) kcal/mol का स्वीकृत मान)। यहां तक कि आधुनिक समय में भी (1990 और 2004 के बीच), फिनोल का ओ−एच बंध 85.8 से 91.0 किलोकैलोरी/मोल के बीच कहीं भी होने की सूचना दी गई है।[6] दूसरी ओर, 298 K पर H2की बंध पृथक्करण ऊर्जा को उच्च परिशुद्धता और सटीकता के लिए मापा गया है: DH°298(एच-एच) = 104.1539(1) किलोकैलोरी/मोल या 435.780 किलोजूल/मोल।[5]
परिभाषाएं और संबंधित मापदंड
बंध-पृथक्करण ऊर्जा शब्द बंध-पृथक्करण एन्थैल्पी (या बंध एन्थैल्पी) की संबंधित धारणा के समान है, जिसे कभी-कभी एक दूसरे के स्थान पर प्रयोग किया जाता है। यद्यपि, कुछ लेखक यह भेद करते हैं कि बंधन-पृथक्करण ऊर्जा (D0) 0 K पर एन्थैल्पी परिवर्तन को संदर्भित करता है, जबकि बंध-पृथक्करण एन्थैल्पी शब्द का उपयोग 298 K पर एन्थैल्पी परिवर्तन के लिए किया जाता है (स्पष्ट रूप से DH° से निरूपित298)। पूर्व मापदंड सैद्धांतिक और संगणनात्मक काम के पक्षधर हैं, जबकि बाद वाला ऊष्मरासायनिक अध्ययन के लिए अधिक सुविधाजनक है। विशिष्ट रासायनिक प्रणालियों के लिए, मात्राओं के बीच संख्यात्मक अंतर छोटा होता है, और भेद को अक्सर अनदेखा किया जा सकता है। हाइड्रोकार्बन RH के लिए, जहां R H से बहुत बड़ा है, उदाहरण के लिए संबंध डी0(आर-एच) ≈ डीएच °298(आर−एच) - 1.5 किलोकैलोरी/मोल एक अच्छा अनुमान है।[7] कुछ पाठ्यपुस्तकें तापमान पर निर्भरता की उपेक्षा करती हैं,[8] जबकि अन्य ने बंध-पृथक्करण ऊर्जा को 298 K पर समलयन की अभिक्रिया एन्थैल्पी के रूप में परिभाषित किया है।[9][10][11]
बंध पृथक्करण ऊर्जा संबंधित है लेकिन इलेक्ट्रॉनिक ऊर्जा के रूप में जाना जाने वाले बंध , De के संबंधित संभावित ऊर्जा की गहराई से थोड़ा अलग है। यह कंपन जमीनी अवस्था के लिए शून्य-बिंदु ऊर्जा ε0 के अस्तित्व के कारण है, जो पृथक्करण सीमा तक पहुँचने के लिए आवश्यक ऊर्जा की मात्रा को कम करता है। इस प्रकार, D0 De से थोड़ा कम है, और संबंध D0 = De − ε0धारण करता है।[7]
बंध पृथक्करण ऊर्जा एक विशेष रासायनिक प्रक्रिया का एक एन्थैल्पी परिवर्तन है, अर्थात् समांगी बंध विदलन ,और बीडीई द्वारा मापी गई बंधन क्षमता को किसी विशेष बंध प्रकार की आंतरिक गुण के रूप में नहीं माना जाना चाहिए, बल्कि ऊर्जा परिवर्तन के रूप में माना जाना चाहिए जो रासायनिक संदर्भ पर निर्भर करता है। उदाहरण के लिए, ब्लैंक्सबी और एलिसन केटीन (H2C=CO)का उदाहरण देते हैं, जिसमें 79 kcal/mol की C=C बंध पृथक्करण ऊर्जा होती है, जबकि एथिलीन (H2C=CH2) में 174 kcal/mol की बंध पृथक्करण ऊर्जा होती है। इस विशाल अंतर को कार्बन मोनोऑक्साइड (CO) की उष्मागतिक स्थिरता के कारण माना जाता है, जो केटीन के C=C बंधन दरार पर बनता है।[7] विखंडन पर स्पिन अवस्थाओ की उपलब्धता में अंतर, शीर्ष से शीर्ष की तुलना के लिए बंधन शक्ति के एक माप के रूप में बीडीई के उपयोग को और जटिल बनाता है,और बल स्थिरांक को एक विकल्प के रूप में सुझाया गया है।[12]
ऐतिहासिक रूप से, सारणीबद्ध बंध ऊर्जा मूल्यों का विशाल बहुमत बंधन एन्थैल्पी हैं। हाल ही में, तथापि, बंधन-पृथक्करण एन्थैल्पी का मुक्त ऊर्जा अनुरूप, जिसे बंधन-पृथक्करण मुक्त ऊर्जा (BDFE) के रूप में जाना जाता है, रासायनिक साहित्य में अधिक प्रचलित हो गया है। एक बंधन ए-बी के बीडीएफई को उसी तरह से परिभाषित किया जा सकता है जैसे बीडीई मानक मुक्त ऊर्जा परिवर्तन (ΔG °) के साथ एबी के ए और बी में समांगी पृथक्करण के साथ होता है। तथापि, इसे प्राय: विषमअपघटनी बंध पृथक्करण (A–B → A+ + :B−) के मुक्त-ऊर्जा परिवर्तनों के योग के रूप में माना जाता है और गणना की जाती है, जिसके बाद A (A+ + e− → A•) की एक-इलेक्ट्रॉन कमी होती है और B का एक-इलेक्ट्रॉन ऑक्सीकरण B (:B− → •B + e−)[13] होता है। बीडीई के विपरीत, जिसे सामान्यतः परिभाषित किया जाता है और गैस चरण में मापा जाता है, बीडीएफई प्राय: डीएमएसओ जैसे विलायक के संबंध में विलायक चरण में निर्धारित होता है, क्योंकि उपर्युक्त ऊष्मरासायनिक चरणों के लिए मुक्त-ऊर्जा परिवर्तन मापदंडों से निर्धारित किया जा सकता है। अम्ल पृथक्करण स्थिरांक की तरह (pKa) और मानक रेडॉक्स विभव(ε°) जो विलयन में मापे जाते हैं[14]
बंधन ऊर्जा
द्विपरमाण्विक को छोड़कर, बंधन-पृथक्करण ऊर्जा बंधन ऊर्जा से भिन्न होती है। जबकि बंधन-पृथक्करण ऊर्जा एक रासायनिक बंधन की ऊर्जा है, बंधन ऊर्जा किसी दिए गए अणु के लिए एक ही प्रकार के बंधनों के सभी बंधन-पृथक्करण ऊर्जा का औसत है।[15] होमोलेप्टिक यौगिक EX के लिएn, ई-एक्स बंध ऊर्जा है (1/n) को अभिक्रिया EXn → E + nX के एन्थैल्पी परिवर्तन से गुणा किया जाता है।तालिका में दी गई औसत बंध ऊर्जा प्रजातियों के संग्रह की बंध ऊर्जाओं का औसत मान है, जिसमें प्रश्न में बंधन के विशिष्ट उदाहरण हैं।
उदाहरण के लिए, पानी के अणु के हाइड्रॉक्सिल-हाइड्रोजन बंधन का पृथक्करण (H2O) के लिए 118.8 kcal/mol (497.1 kJ/mol) की आवश्यकता होती है। शेष हाइड्रॉक्सिल रेडिकल के पृथक्करण के लिए 101.8 kcal/mol (425.9 kJ/mol) की आवश्यकता होती है। पानी में सहसंयोजक ऑक्सीजन-हाइड्रोजन बंधों की बंध ऊर्जा 110.3 kcal/mol (461.5 kJ/mol) बताई जाती है, जो इन मानों का औसत है।[16]
उसी तरह, मीथेन से लगातार हाइड्रोजन परमाणुओं को हटाने के लिए बंधन-पृथक्करण ऊर्जा D(CH3−H) के लिए 105 किलो कैलोरी/मोल (439 kJ/mol), डी (CH2−H) के लिए 110 किलो कैलोरी/मोल (460 केजे/मोल) हैं, D(CH−H) के लिए 101 kcal/mol (423 kJ/mol) और अंत में D(C−H) के लिए 81 kcal/mol (339 kJ/mol) हैं। इस प्रकार, बंधन ऊर्जा 99 kcal/mol, या 414 kJ/mol (बंध-पृथक्करण ऊर्जा का औसत) है। व्यक्तिगत बंधन-पृथक्करण ऊर्जा में से कोई भी 99 kcal/mol की बंधन ऊर्जा के बराबर नहीं है।[17][7]
सबसे मजबूत बंधन और सबसे कमजोर बंधन
बीडीई डेटा के मुताबिक, सबसे मजबूत एकल बंधन सी-एफ बंध हैं। एच के लिए बी.डी.ई3Si−F 152 kcal/mol है, जो H से लगभग 50% अधिक शक्तिशाली है3C−F बॉन्ड (110 किलो कैलोरी/मोल)। एफ के लिए बी.डी.ई3Si−F 166 kcal/mol पर और भी बड़ा है। इन आंकड़ों का एक परिणाम यह है कि कई अभिक्रियाएं सिलिकॉन फ्लोराइड्स उत्पन्न करती हैं, जैसे कांच की नक़्क़ाशी, कार्बनिक संश्लेषण में deprotect और ज्वालामुखी उत्सर्जन।[18] बंध की ताकत को सिलिकॉन और फ्लोरीन के बीच पर्याप्त इलेक्ट्रोनगेटिविटी अंतर के लिए जिम्मेदार ठहराया जाता है, जो बंध की समग्र ताकत के लिए आयनिक और सहसंयोजक बंधन दोनों से पर्याप्त योगदान देता है।[19] Diacetylene (HC≡C−C≡CH) का C−C सिंगल बॉन्ड दो एसपी-हाइब्रिड कार्बन परमाणुओं को जोड़ने वाला 160 kcal/mol पर सबसे मजबूत है।[5]एक तटस्थ यौगिक के लिए सबसे मजबूत बंधन, जिसमें कई बंधन शामिल हैं, कार्बन मोनोऑक्साइड में 257 किलो कैलोरी/मोल पर पाया जाता है। CO, HCN और N के प्रोटोनेटेड रूप2 कहा जाता है कि बंधन और भी मजबूत हैं, हालांकि एक अन्य अध्ययन का तर्क है कि इन मामलों में बंधन शक्ति के माप के रूप में बीडीई का उपयोग भ्रामक है।[12]
पैमाने के दूसरे छोर पर, एक बहुत कमजोर सहसंयोजक बंधन और एक अंतर-आणविक बातचीत के बीच कोई स्पष्ट सीमा नहीं है। ट्रांज़िशन मेटल फ़्रैगमेंट्स और नोबल गैसों के बीच लेविस एसिड-बेस कॉम्प्लेक्स पर्याप्त सहसंयोजक चरित्र के साथ सबसे कमज़ोर बंधों में से हैं, (सीओ) के साथ5W:Ar में 3.0 kcal/mol से कम W-Ar बंध पृथक्करण ऊर्जा है।[20] वैन डेर वाल्स बल, हीलियम डिमर, हे द्वारा पूरी तरह से एक साथ आयोजित किया गया2, केवल 0.021 kcal/mol की सबसे कम मापी गई बॉन्ड पृथक्करण ऊर्जा है।[21]
समलायी बनाम विषमअपघटनी पृथक्करण
बंध सममित या विषम रूप से तोड़े जा सकते हैं। पूर्व को समलयन कहा जाता है और यह सामान्य बीडीई का आधार है। एक बंधन के असममित विखंडन को विषमअपघटन कहा जाता है। आणविक हाइड्रोजन के लिए, विकल्प हैं:
सममितीय H2 → 2 H• ΔH° = 104.2 kcal/mol (see table below) असममित H2 → H+ + H− ΔH° = 400.4 kcal/mol (gas phase)[22] असममित H2 → H+ + H− ΔG° = 34.2 kcal/mol (in water)[23] (pKaaq = 25.1)
ध्यान दें कि गैस चरण में, विषम आवेशों को अलग करने की आवश्यकता के कारण,विषमअपघटन की एन्थैल्पी समलयन की तुलना में बड़ी होती है। सामान्यतः, विलायक की उपस्थिति में यह मान मूल रूप से कम हो जाता है।
प्रतिनिधि बंधन उत्साह
नीचे सारणीबद्ध डेटा दिखाता है कि आवर्त सारणी में बंध की ताकत कैसे भिन्न होती है।
बंध | बंध | 298 K पर बॉन्ड-वियोजन एन्थैल्पी | Comment | ||
---|---|---|---|---|---|
(kcal/mol) | (kJ/mol) | (eV/बंध) | |||
C−C | विशिष्ट अल्केन में | 83–90 | 347–377 | 3.60–3.90 | मजबूत, लेकिन सी-एच बंध से कमजोर |
C−F | in CH3F | 115 | 481 | 4.99 | बहुत मजबूत, टेफ्लॉन की जड़ता को युक्तिसंगत बनाता है |
C−Cl | in CH3Cl | 83.7 | 350 | 3.63 | मजबूत, लेकिन (C-F) बंध से काफी कमजोर |
F−F | 37 | 157 | 1.63 | बहुत कमजोर, मजबूत सी-एफ और एच-एफ बांड के संयोजन के साथ, हाइड्रोकार्बन के साथ एक विस्फोटक प्रतिक्रिया होती | |
Cl−Cl | क्लोरीन | 58 | 242 | 2.51 | फोटोकैमिकल क्लोरीनीकरण की सुविधा द्वारा संकेत दिया गया |
Br−Br | ब्रोमिन | 46 | 192 | 1.99 | फोटोकैमिकल ब्रोमिनेशन की सुविधा द्वारा संकेतित |
I−I | आयोडीन | 36 | 151 | 1.57 | सिस / ट्रांस समावयवन के उत्प्रेरण द्वारा इंगित किया गया |
H−H | हाइड्रोजन | 103 | 431 | 4.52 | मजबूत, गैर-ध्रुवीय बंधन |
H−F | हाइड्रोजिन फ्लोराइड | 136 | 569 | 5.90 | बहुत मजबूत |
O−H | जल में | 119 | 497 | 5.15 | बहुत मजबूत, हाइड्रॉक्सिल रेडिकल अभिक्रियाशील लगभग सभी कार्बनिक यौगिक के साथ H परमाणु पृथक्करण द्वारा ऊष्माक्षेपी रूप से |
O−H | मेथनॉल में | 105 | 440 | 4.56 | C−H बंध से थोड़ा मजबूत |
O−H | α-टोकोफ़ेरल(एक एंटीऑक्सीडेंट) में | 77 | 323 | 3.35 | O−H बंधन शक्ति दृढ़ता से O पर प्रतिस्थापन पर निर्भर करती है |
C-O | मेथनॉल | 92 | 385 | 3.99 | विशिष्ट शराब |
C≡O | कार्बन मोनोआक्साइड | 257 | 1077 | 11.16 | उदासीनअणु में सबसे मजबूत बंधन |
O=CO | कार्बन डाईऑक्साइड | 127 | 532 | 5.51 | C≡O की स्थिरता के कारण C−H बंधों की तुलना में थोड़ा मजबूत, आश्चर्यजनक रूप से कम |
O=CH2 | फॉर्मोल्डिहाइड | 179 | 748 | 7.75 | C−H बंधों से अधिक प्रबल होता है |
O=O | ऑक्सीजन | 119 | 498 | 5.15 | एकल-आबन्ध से मजबूत, कई अन्य द्वि-आबन्ध से कमजोर |
N≡N | नाइट्रोजन | 226 | 945 | 9.79 | सबसे मजबूत बंधनों में से एक, अमोनिया के उत्पादन में बड़ी सक्रियता ऊर्जा |
विशेष रूप से कार्बनिक रसायन विज्ञान में, यौगिकों के दिए गए समूह के भीतर बंधनों की सापेक्ष शक्ति के विषय में बहुत रुचि है, और सामान्य कार्बनिक यौगिकों के लिए प्रतिनिधि बंधन पृथक्करण ऊर्जा नीचे दिखाई गई है।[7][17]
बंध | बंध | 298 K पर बॉन्ड-वियोजन एन्थैल्पी | Comment | ||
---|---|---|---|---|---|
(kcal/mol) | (kJ/mol) | (eV/बंध) | |||
H3C−H | मेथिल C−H बंध | 105 | 439 | 4.550 | सबसे मजबूत वसीय C−H बंधनों में से एक |
C2H5−H | एथिल C−H बंध | 101 | 423 | 4.384 | H3C−H से थोड़ा कमजोर |
(CH3)2CH−H | आइसोप्रोपाइल C−H बंध | 99 | 414 | 4.293 | द्वितीयक मूलक स्थिर होते हैं |
(CH3)3C−H | t- ब्यूटिलC−H बंध | 96.5 | 404 | 4.187 | तृतीयक मूलक और भी अधिक स्थिर होते हैं |
(CH3)2NCH2−H | C−H बंध α अमीन के लिए | 91 | 381 | 3.949 | एकाकी-जोड़ी वाले विषम परमाणु C−H बंध को कमजोर करते हैं |
(CH2)3OCH−H | C−H बंध ईथर के लिए | 92 | 385 | 3.990 | एकाकी-जोड़ी वाले विषम परमाणु सी−एच बंध को कमजोर करते हैं। THF हाइड्रोपरॉक्साइड बनाने के लिए जाता है |
CH3C(=O)CH2−H | C−H बंध α से कीटोन | 96 | 402 | 4.163 | संयुग्मी इलेक्ट्रॉन-आकर्षी समूह C−H बंध को कमजोर करते हैं |
CH2CH−H | विनाइल C−H बंध | 111 | 464 | 4.809 | विनाइल रेडिकल असामान्य हैं |
HCC−H | ऐसिटिलीनC−H बंध | 133 | 556 | 5.763 | एसिटिलेनिक रेडिकल बहुत दुर्लभ हैं |
C6H5−H | Phenyl C−H बंध | 113 | 473 | 4.902 | विनाइल रेडिकल की तुलना में, असामान्य |
CH2CHCH2−H | Allylic C−H बंध | 89 | 372 | 3.856 | इस तरह के बंधन बढ़ी हुई अभिक्रियाशीलता दिखाते हैं, सुखाने वाला तेल देखें |
C6H5CH2−H | Benzylic C−H बंध | 90 | 377 | 3.907 | एलिलिक C−H बंध के समान हैं। इस तरह के बंधन बढ़ी हुई अभिक्रियाशीलता दिखाते हैं |
H3C−CH3 | Alkane C−C बंध | 83–90 | 347–377 | 3.60–3.90 | C−H बंध से बहुत कमजोर हैं। समलायी विदलन तब होता है जब H3C−CH3 >500 °C पर ताप – अपघटन हो जाता है |
H2C=CH2 | Alkene C=C बंध | ~170 | ~710 | ~7.4 | C−C एकल-आबन्ध से लगभग 2 गुना मजबूत; यद्यपि, π बांड (~65 kcal/mol) σ बंध से कमज़ोर है |
HC≡CH | Alkyne C≡C triple बंध | ~230 | ~960 | ~10.0 | C−C एकल बंधन से लगभग 2.5 गुना अधिक मजबूत |
यह भी देखें
संदर्भ
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Bond-dissociation energy". doi:10.1351/goldbook.B00699
- ↑ The value reported as the bond-dissociation energy (BDE) is generally the enthalpy of the homolytic dissociation of a gas-phase species. For instance, the BDE of diiodine is calculated as twice the heat of formation of iodine radical (25.5 kcal/mol) minus the heat of formation of diiodine gas (14.9 kcal/mol). This gives the accepted BDE of diiodine of 36.1 kcal/mol. (By definition, diiodine in the solid state has a heat of formation of 0.)
- ↑ The IUPAC Gold Book does not stipulate a temperature for its definition of bond-dissociation energy (ref. 1).
- ↑ The corresponding BDE at 0 K (D0) is 99.5(5) kcal/mol.
- ↑ 5.0 5.1 5.2 Luo, Y. R. (2007). रासायनिक बंधन ऊर्जा की व्यापक पुस्तिका. Boca Raton: CRC Press. ISBN 978-0-8493-7366-4. OCLC 76961295.
- ↑ Mulder P., Korth H. G., Pratt D. A., DiLabio G. A., Valgimigli L., Pedulli G. F., Ingold K. U. (March 2005). "Critical re-evaluation of the O−H bond dissociation enthalpy in phenol". The Journal of Physical Chemistry A. 109 (11): 2647–55. Bibcode:2005JPCA..109.2647M. doi:10.1021/jp047148f. PMID 16833571.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ 7.0 7.1 7.2 7.3 7.4 Blanksby S. J., Ellison G. B. (April 2003). "कार्बनिक अणुओं की बंधन पृथक्करण ऊर्जा". Accounts of Chemical Research. 36 (4): 255–63. CiteSeerX 10.1.1.616.3043. doi:10.1021/ar020230d. PMID 12693923.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ Anslyn, Eric V.; Dougherty, Dennis A. (2006). आधुनिक भौतिक कार्बनिक रसायन. Sausalito, CA: University Science. ISBN 978-1-891389-31-3. OCLC 55600610.
- ↑ Darwent, B. deB. (January 1970). सरल अणुओं में बंधन पृथक्करण ऊर्जा (PDF). NSRDS-NBS 31. Washington, DC: U.S. National Bureau of Standards. LCCN 70602101.
- ↑ Streitwieser, Andrew; Heathcock, Clayton H.; Kosower, Edward M. (2017). कार्बनिक रसायन विज्ञान का परिचय. New Delhi: Medtech (Scientific International, reprint of 4th revised edition, 1998, Macmillan). p. 101. ISBN 9789385998898.
- ↑ Carroll, Felix A. (2010). कार्बनिक रसायन विज्ञान में संरचना और तंत्र पर परिप्रेक्ष्य (2nd ed.). Hoboken, N.J.: John Wiley. ISBN 978-0-470-27610-5. OCLC 286483846.
- ↑ 12.0 12.1 Kalescky, Robert; Kraka, Elfi; Cremer, Dieter (2013-08-30). "रसायन विज्ञान में सबसे मजबूत बांड की पहचान". The Journal of Physical Chemistry A (in English). 117 (36): 8981–8995. Bibcode:2013JPCA..117.8981K. doi:10.1021/jp406200w. ISSN 1089-5639. PMID 23927609. S2CID 11884042.
- ↑ Miller D. C., Tarantino K. T., Knowles R. R. (June 2016). "Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities". Topics in Current Chemistry. 374 (3): 30. doi:10.1007/s41061-016-0030-6. PMC 5107260. PMID 27573270.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ Bordwell, F. G.; Cheng, Jin Pei; Harrelson, John A. (February 1988). "समतोल अम्लता और इलेक्ट्रोकेमिकल डेटा से समाधान में होमोलिटिक बंधन पृथक्करण ऊर्जा". Journal of the American Chemical Society. 110 (4): 1229–1231. doi:10.1021/ja00212a035.
- ↑ Norman, Richard O. C.; Coxon, James M. (2001). कार्बनिक संश्लेषण के सिद्धांत (3rd ed.). London: Nelson Thornes. p. 7. ISBN 978-0-7487-6162-3. OCLC 48595804.
- ↑ Lehninger, Albert L.; Nelson, David L.; Cox, Michael M. (2005). जैव रसायन के लेहिंगर सिद्धांत (4th ed.). W. H. Freeman. p. 48. ISBN 978-0-7167-4339-2. Retrieved May 20, 2016.
- ↑ 17.0 17.1 Streitwieser A.; Bergman R. G. (19 September 2018). "बॉन्ड पृथक्करण ऊर्जा की तालिका". University of California, Berkeley. Retrieved 13 March 2019.
- ↑ Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3.
- ↑ Gillespie, Ronald J. (July 1998). "Covalent and Ionic Molecules: Why Are BeF2 and AlF3 High Melting Point Solids whereas BF3 and SiF4 Are Gases?". Journal of Chemical Education (in English). 75 (7): 923. Bibcode:1998JChEd..75..923G. doi:10.1021/ed075p923. ISSN 0021-9584.
- ↑ Grills D. C.; George M. W. (2001), "Transition metal-noble gas complexes", Advances in Inorganic Chemistry, Elsevier, pp. 113–150, doi:10.1016/s0898-8838(05)52002-6, ISBN 9780120236527.
- ↑ Cerpa, Erick; Krapp, Andreas; Flores-Moreno, Roberto; Donald, Kelling J.; Merino, Gabriel (2009-02-09). "Influence of Endohedral Confinement on the Electronic Interaction between He atoms: A He2@C20H20 Case Study". Chemistry – A European Journal (in English). 15 (8): 1985–1990. doi:10.1002/chem.200801399. ISSN 0947-6539. PMID 19021178.
- ↑ Bartmess, John E.; Scott, Judith A.; McIver, Robert T. (September 1979). "Scale of acidities in the gas phase from methanol to phenol". Journal of the American Chemical Society. 101 (20): 6046–6056. doi:10.1021/ja00514a030.
- ↑ Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M. (2015-03-17). "Predicting the reactivity of hydride donors in water: thermodynamic constants for hydrogen". Dalton Transactions (in English). 44 (13): 5933–5938. doi:10.1039/C4DT03841J. ISSN 1477-9234. PMID 25697077.