मिक्समास्टर ब्रह्मांड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
मिक्समास्टर ब्रह्माण्ड (सनबीम मिक्समास्टर के नाम पर, [[ सनबीम उत्पाद ]] इलेक्ट्रिक किचन मिश्रक का एक ब्रांड)<ref>Barry R. Parker, ''Chaos in the Cosmos: The Stunning Complexity of the Universe'', Springer, 2013, p. 257.</ref> प्रारंभिक [[ब्रह्मांड]] की गतिशीलता को उत्तम विधि से समझने के प्रयास में [[चार्ल्स मिसनर]] द्वारा अध्ययन किए गए [[सामान्य सापेक्षता]] के आइंस्टीन क्षेत्र समीकरणों का एक समाधान है।<ref name="Misner1969">[[Charles W. Misner]], [http://astrophysics.fic.uni.lodz.pl/100yrs/pdf/07/036.pdf "Mixmaster Universe"], ''[[Physical Review Letters]]'', Vol. 22, Issue 20 (May 1969), pp. 1071-1074, {{doi|10.1103/PhysRevLett.22.1071}}, {{bibcode|1969PhRvL..22.1071M}}. [https://web.archive.org/web/20120304023018/http://astrophysics.fic.uni.lodz.pl/100yrs/pdf/07/036.pdf Mirror link]. Also available as [http://www.gravityresearchfoundation.org/pdf/awarded/1969/minner.pdf an entry] in the [[Gravity Research Foundation]]'s 1969 essay competition. [https://web.archive.org/web/20111001230134/http://www.gravityresearchfoundation.org/pdf/awarded/1969/minner.pdf Mirror link].</ref> उन्होंने क्षितिज की समस्या को प्राकृतिक विधि से यह दिखाते हुए हल करने की आशा की कि प्रारंभिक ब्रह्मांड एक दोलनशील, कैओस सिद्धांत युग से गुजरता है।
मिक्समास्टर ब्रह्माण्ड (सनबीम मिक्समास्टर के नाम पर, [[ सनबीम उत्पाद |सनबीम उत्पाद]] इलेक्ट्रिक किचन मिश्रक का एक ब्रांड)<ref>Barry R. Parker, ''Chaos in the Cosmos: The Stunning Complexity of the Universe'', Springer, 2013, p. 257.</ref> प्रारंभिक [[ब्रह्मांड]] की गतिशीलता को उत्तम विधि से समझने के प्रयास में [[चार्ल्स मिसनर]] द्वारा अध्ययन किए गए [[सामान्य सापेक्षता]] के आइंस्टीन क्षेत्र समीकरणों का एक समाधान है।<ref name="Misner1969">[[Charles W. Misner]], [http://astrophysics.fic.uni.lodz.pl/100yrs/pdf/07/036.pdf "Mixmaster Universe"], ''[[Physical Review Letters]]'', Vol. 22, Issue 20 (May 1969), pp. 1071-1074, {{doi|10.1103/PhysRevLett.22.1071}}, {{bibcode|1969PhRvL..22.1071M}}. [https://web.archive.org/web/20120304023018/http://astrophysics.fic.uni.lodz.pl/100yrs/pdf/07/036.pdf Mirror link]. Also available as [http://www.gravityresearchfoundation.org/pdf/awarded/1969/minner.pdf an entry] in the [[Gravity Research Foundation]]'s 1969 essay competition. [https://web.archive.org/web/20111001230134/http://www.gravityresearchfoundation.org/pdf/awarded/1969/minner.pdf Mirror link].</ref> उन्होंने क्षितिज की समस्या को प्राकृतिक विधि से यह दिखाते हुए हल करने की आशा की कि प्रारंभिक ब्रह्मांड एक दोलनशील, कैओस सिद्धांत युग से गुजरता है।


== विचार ==
== विचार ==


यह मॉडल बंद फ्रीडमैन-लेमेट्रे-रॉबर्टसन-वॉकर मीट्रिक के समान है। जिसमें स्थानिक स्लाइस सकारात्मक रूप से घुमावदार हैं और स्थैतिक रूप से तीन-गोले <math>S^3</math> हैं। और [[टोपोलॉजी]] तीन-गोले हैं . चूँकि, एफआरडब्ल्यू ब्रह्मांड में, <math>S^3</math> केवल विस्तार या अनुबंध कर सकता है: केवल गतिशील पैरामीटर <math>S^3</math> का समग्र आकार है ,जिसे स्केल अवयव <math>a(t)</math> (ब्रह्मांड विज्ञान) द्वारा परिचालित . मिक्समास्टर ब्रह्मांड में, <math>S^3</math> विस्तार या अनुबंध कर सकते हैं, किन्तु अनिसोट्रोपिक रूप से विकृत भी कर सकते हैं। इसके विकास को एक स्केल फैक्टर <math>a(t)</math> के साथ-साथ ही दो आकार के मापदंडों द्वारा <math>\beta_\pm(t)</math> द्वारा वर्णित किया गया है। आकृति पैरामीटर के मान <math>S^3</math> विकृतियों का वर्णन करते हैं जो इसके आयतन को बनाए रखता है और एक स्थिर रिक्की वक्रता अदिश को भी बनाए रखता है। इसलिए, तीन मापदंडों के रूप में <math>a,\beta_\pm</math> अलग-अलग मान लेते हैं, एकरूपता (भौतिकी) किन्तु [[आइसोट्रॉपी]] संरक्षित नहीं है।
यह मॉडल बंद फ्रीडमैन-लेमेट्रे-रॉबर्टसन-वॉकर मीट्रिक के समान है। जिसमें स्थानिक स्लाइस सकारात्मक रूप से घुमावदार हैं और स्थैतिक रूप से तीन-गोले <math>S^3</math> हैं। और [[टोपोलॉजी]] तीन-गोले हैं . चूँकि, एफआरडब्ल्यू ब्रह्मांड में, <math>S^3</math> केवल विस्तार या अनुबंध कर सकता है: केवल गतिशील पैरामीटर <math>S^3</math> का समग्र आकार है ,जिसे स्केल अवयव <math>a(t)</math> (ब्रह्मांड विज्ञान) द्वारा परिचालित . मिक्समास्टर ब्रह्मांड में, <math>S^3</math> विस्तार या अनुबंध कर सकते हैं, किन्तु अनिसोट्रोपिक रूप से विकृत भी कर सकते हैं। इसके विकास को एक स्केल फैक्टर <math>a(t)</math> के साथ-साथ ही दो आकार के मापदंडों द्वारा <math>\beta_\pm(t)</math> द्वारा वर्णित किया गया है। आकृति पैरामीटर के मान <math>S^3</math> विकृतियों का वर्णन करते हैं जो इसके आयतन को बनाए रखता है और एक स्थिर रिक्की वक्रता अदिश को भी बनाए रखता है। इसलिए, तीन मापदंडों के रूप में <math>a,\beta_\pm</math> अलग-अलग मान लेते हैं, एकरूपता (भौतिकी) किन्तु [[आइसोट्रॉपी]] संरक्षित नहीं है।


मॉडल में एक समृद्ध गतिशील संरचना है। मिस्नर ने दिखाया कि आकृति पैरामीटर <math>\beta_\pm(t)</math> घर्षण के साथ तेजी से बढ़ती दीवारों के साथ त्रिकोणीय क्षमता में गतिमान एक [[बिंदु कण]] के निर्देशांक की तरह कार्य करते है। इस बिंदु की गति का अध्ययन करके, मिस्नर ने दिखाया कि भौतिक ब्रह्मांड कुछ दिशाओं में विस्तार करेगा और दूसरों में अनुबंध करेगा, जिसमें विस्तार और संकुचन की दिशाएँ बार-बार बदलती रहेंगी। क्योंकि संभावित रूप से त्रिकोणीय है, मिस्नर ने सुझाव दिया कि विकास अराजक है।
मॉडल में एक समृद्ध गतिशील संरचना है। मिस्नर ने दिखाया कि आकृति पैरामीटर <math>\beta_\pm(t)</math> घर्षण के साथ तेजी से बढ़ती दीवारों के साथ त्रिकोणीय क्षमता में गतिमान एक [[बिंदु कण]] के निर्देशांक की तरह कार्य करते है। इस बिंदु की गति का अध्ययन करके, मिस्नर ने दिखाया कि भौतिक ब्रह्मांड कुछ दिशाओं में विस्तार करेगा और दूसरों में अनुबंध करेगा, जिसमें विस्तार और संकुचन की दिशाएँ बार-बार बदलती रहेंगी। क्योंकि संभावित रूप से त्रिकोणीय है, मिस्नर ने सुझाव दिया कि विकास अराजक है।
Line 23: Line 23:


:<math> \text{d}\sigma_i = \frac{1}{2}\epsilon_{ijk} \sigma_j \wedge \sigma_k</math>
:<math> \text{d}\sigma_i = \frac{1}{2}\epsilon_{ijk} \sigma_j \wedge \sigma_k</math>
जहाँ <math>\text{d}</math> [[बाहरी व्युत्पन्न]] है और <math>\wedge</math> विभेदक रूपों का [[कील उत्पाद|वेज उत्पाद]]। 1-रूप <math>\sigma_i</math> लाई समूह [[SU(2)]] पर एक बाएं-अपरिवर्तनीय सह-फ्रेम बनाते हैं, , जो 3-क्षेत्र <math>S^3</math> के लिए अलग-अलग है , इसलिए मिस्नर के मॉडल में स्थानिक मीट्रिक को संक्षेप में 3-क्षेत्र पर केवल एक बाएं-अपरिवर्तनीय मीट्रिक के रूप में वर्णित किया जा सकता है; वास्तव में, SU(2) की आसन्न क्रिया तक, यह वास्तव में है {{em|सामान्य}} वाम-अपरिवर्तनीय मीट्रिक है जैसा कि आइंस्टीन के समीकरण के माध्यम से मीट्रिक विकसित होता है, इसकी <math>S^3</math> ज्यामिति सामान्यतः अनिसोट्रोपिक रूप से विकृत करता है। मिस्नर मापदंडों <math>\Omega(t)</math> और <math>R(t)</math> को परिभाषित करता है जो स्थानिक स्लाइस, साथ ही आकार के मापदंडों <math>\beta_k</math> की मात्रा को मापते हैं |
जहाँ <math>\text{d}</math> [[बाहरी व्युत्पन्न]] है और <math>\wedge</math> विभेदक रूपों का [[कील उत्पाद|वेज उत्पाद]]। 1-रूप <math>\sigma_i</math> लाई समूह [[SU(2)]] पर एक बाएं-अपरिवर्तनीय सह-फ्रेम बनाते हैं, , जो 3-क्षेत्र <math>S^3</math> के लिए अलग-अलग है , इसलिए मिस्नर के मॉडल में स्थानिक मीट्रिक को संक्षेप में 3-क्षेत्र पर केवल एक बाएं-अपरिवर्तनीय मीट्रिक के रूप में वर्णित किया जा सकता है; वास्तव में, SU(2) की आसन्न क्रिया तक, यह वास्तव में है {{em|सामान्य}} वाम-अपरिवर्तनीय मीट्रिक है जैसा कि आइंस्टीन के समीकरण के माध्यम से मीट्रिक विकसित होता है, इसकी <math>S^3</math> ज्यामिति सामान्यतः अनिसोट्रोपिक रूप से विकृत करता है। मिस्नर मापदंडों <math>\Omega(t)</math> और <math>R(t)</math> को परिभाषित करता है जो स्थानिक स्लाइस, साथ ही आकार के मापदंडों <math>\beta_k</math> की मात्रा को मापते हैं |


:<math>R(t) = e^{-\Omega(t)} = (L_1(t) L_2(t) L_3(t))^{1/3}, \quad \sum_{k=1}^3 \beta_k(t) = 0</math>.
:<math>R(t) = e^{-\Omega(t)} = (L_1(t) L_2(t) L_3(t))^{1/3}, \quad \sum_{k=1}^3 \beta_k(t) = 0</math>.
Line 36: Line 36:
मिस्नर ने आशा व्यक्त की कि अराजकता प्रारंभिक ब्रह्मांड को मथेगी और सुचारू करेगी। साथ ही, उस अवधि के समय जिसमें एक दिशा स्थिर थी (उदाहरण के लिए, विस्तार से संकुचन की ओर जाना) औपचारिक रूप से ब्रह्माण्ड संबंधी_क्षितिज या हबल_क्षितिज <math>H^{-1}</math> उस दिशा में अनंत है, जिसका उन्होंने सुझाव दिया कि क्षितिज समस्या को हल किया जा सकता है। चूँकि विस्तार और संकुचन की दिशाएँ अलग-अलग थीं, संभवतः पर्याप्त समय दिया गया तो क्षितिज समस्या हर दिशा में हल हो जाएगी।
मिस्नर ने आशा व्यक्त की कि अराजकता प्रारंभिक ब्रह्मांड को मथेगी और सुचारू करेगी। साथ ही, उस अवधि के समय जिसमें एक दिशा स्थिर थी (उदाहरण के लिए, विस्तार से संकुचन की ओर जाना) औपचारिक रूप से ब्रह्माण्ड संबंधी_क्षितिज या हबल_क्षितिज <math>H^{-1}</math> उस दिशा में अनंत है, जिसका उन्होंने सुझाव दिया कि क्षितिज समस्या को हल किया जा सकता है। चूँकि विस्तार और संकुचन की दिशाएँ अलग-अलग थीं, संभवतः पर्याप्त समय दिया गया तो क्षितिज समस्या हर दिशा में हल हो जाएगी।


जबकि गुरुत्वाकर्षण अराजकता का एक दिलचस्प उदाहरण है, यह व्यापक रूप से मान्यता प्राप्त है कि मिक्समास्टर ब्रह्मांड को हल करने का प्रयास करने वाली ब्रह्माण्ड संबंधी समस्याओं को ब्रह्मांडीय मुद्रास्फीति द्वारा अधिक सुंदरता से निपटाया जाता है। अध्ययन किए गए मीट्रिक मिस्नर को [[बियांची वर्गीकरण]] IX मीट्रिक के रूप में भी जाना जाता है।
जबकि गुरुत्वाकर्षण अराजकता का एक दिलचस्प उदाहरण है, यह व्यापक रूप से मान्यता प्राप्त है कि मिक्समास्टर ब्रह्मांड को हल करने का प्रयास करने वाली ब्रह्माण्ड संबंधी समस्याओं को ब्रह्मांडीय मुद्रास्फीति द्वारा अधिक सुंदरता से निपटाया जाता है। अध्ययन किए गए मीट्रिक मिस्नर को [[बियांची वर्गीकरण]] IX मीट्रिक के रूप में भी जाना जाता है।


'''धी समस्याओं को ब्रह्मांडीय मुद्रास्फीति द्वारा अधिक सुंदरता से निपटाया जाता है। अध्ययन किए गए मीट्रिक मिस्नर को [[बियांची वर्गीकरण]] IX मीट्रिक के रूप में भी जाना'''  
'''धी समस्याओं को ब्रह्मांडीय मुद्रास्फीति द्वारा अधिक सुंदरता से निपटाया जाता'''


== यह भी देखें ==
== यह भी देखें ==

Revision as of 10:43, 22 April 2023

मिक्समास्टर ब्रह्माण्ड (सनबीम मिक्समास्टर के नाम पर, सनबीम उत्पाद इलेक्ट्रिक किचन मिश्रक का एक ब्रांड)[1] प्रारंभिक ब्रह्मांड की गतिशीलता को उत्तम विधि से समझने के प्रयास में चार्ल्स मिसनर द्वारा अध्ययन किए गए सामान्य सापेक्षता के आइंस्टीन क्षेत्र समीकरणों का एक समाधान है।[2] उन्होंने क्षितिज की समस्या को प्राकृतिक विधि से यह दिखाते हुए हल करने की आशा की कि प्रारंभिक ब्रह्मांड एक दोलनशील, कैओस सिद्धांत युग से गुजरता है।

विचार

यह मॉडल बंद फ्रीडमैन-लेमेट्रे-रॉबर्टसन-वॉकर मीट्रिक के समान है। जिसमें स्थानिक स्लाइस सकारात्मक रूप से घुमावदार हैं और स्थैतिक रूप से तीन-गोले हैं। और टोपोलॉजी तीन-गोले हैं . चूँकि, एफआरडब्ल्यू ब्रह्मांड में, केवल विस्तार या अनुबंध कर सकता है: केवल गतिशील पैरामीटर का समग्र आकार है ,जिसे स्केल अवयव (ब्रह्मांड विज्ञान) द्वारा परिचालित . मिक्समास्टर ब्रह्मांड में, विस्तार या अनुबंध कर सकते हैं, किन्तु अनिसोट्रोपिक रूप से विकृत भी कर सकते हैं। इसके विकास को एक स्केल फैक्टर के साथ-साथ ही दो आकार के मापदंडों द्वारा द्वारा वर्णित किया गया है। आकृति पैरामीटर के मान विकृतियों का वर्णन करते हैं जो इसके आयतन को बनाए रखता है और एक स्थिर रिक्की वक्रता अदिश को भी बनाए रखता है। इसलिए, तीन मापदंडों के रूप में अलग-अलग मान लेते हैं, एकरूपता (भौतिकी) किन्तु आइसोट्रॉपी संरक्षित नहीं है।

मॉडल में एक समृद्ध गतिशील संरचना है। मिस्नर ने दिखाया कि आकृति पैरामीटर घर्षण के साथ तेजी से बढ़ती दीवारों के साथ त्रिकोणीय क्षमता में गतिमान एक बिंदु कण के निर्देशांक की तरह कार्य करते है। इस बिंदु की गति का अध्ययन करके, मिस्नर ने दिखाया कि भौतिक ब्रह्मांड कुछ दिशाओं में विस्तार करेगा और दूसरों में अनुबंध करेगा, जिसमें विस्तार और संकुचन की दिशाएँ बार-बार बदलती रहेंगी। क्योंकि संभावित रूप से त्रिकोणीय है, मिस्नर ने सुझाव दिया कि विकास अराजक है।

मीट्रिक

मिस्नर द्वारा अध्ययन किया गया मीट्रिक (सामान्य सापेक्षता) (उनके अंकन से बहुत थोड़ा संशोधित) द्वारा दिया गया है,

जहाँ

और यह , विभेदक रूप के रूप में माना जाता है, द्वारा परिभाषित किया गया है

निर्देशांक के संदर्भ में . ये संतुष्ट करते हैं

जहाँ बाहरी व्युत्पन्न है और विभेदक रूपों का वेज उत्पाद। 1-रूप लाई समूह SU(2) पर एक बाएं-अपरिवर्तनीय सह-फ्रेम बनाते हैं, , जो 3-क्षेत्र के लिए अलग-अलग है , इसलिए मिस्नर के मॉडल में स्थानिक मीट्रिक को संक्षेप में 3-क्षेत्र पर केवल एक बाएं-अपरिवर्तनीय मीट्रिक के रूप में वर्णित किया जा सकता है; वास्तव में, SU(2) की आसन्न क्रिया तक, यह वास्तव में है सामान्य वाम-अपरिवर्तनीय मीट्रिक है जैसा कि आइंस्टीन के समीकरण के माध्यम से मीट्रिक विकसित होता है, इसकी ज्यामिति सामान्यतः अनिसोट्रोपिक रूप से विकृत करता है। मिस्नर मापदंडों और को परिभाषित करता है जो स्थानिक स्लाइस, साथ ही आकार के मापदंडों की मात्रा को मापते हैं |

.

चूँकि तीन पर एक नियम है, केवल दो मुक्त कार्य होने चाहिए, जिसे मिस्नर के रूप में परिभाषित करता है

फिर को के कार्यों के रूप में खोजकर ब्रह्मांड के विकास का वर्णन किया गया है।

ब्रह्माण्ड विज्ञान के लिए अनुप्रयोग

मिस्नर ने आशा व्यक्त की कि अराजकता प्रारंभिक ब्रह्मांड को मथेगी और सुचारू करेगी। साथ ही, उस अवधि के समय जिसमें एक दिशा स्थिर थी (उदाहरण के लिए, विस्तार से संकुचन की ओर जाना) औपचारिक रूप से ब्रह्माण्ड संबंधी_क्षितिज या हबल_क्षितिज उस दिशा में अनंत है, जिसका उन्होंने सुझाव दिया कि क्षितिज समस्या को हल किया जा सकता है। चूँकि विस्तार और संकुचन की दिशाएँ अलग-अलग थीं, संभवतः पर्याप्त समय दिया गया तो क्षितिज समस्या हर दिशा में हल हो जाएगी।

जबकि गुरुत्वाकर्षण अराजकता का एक दिलचस्प उदाहरण है, यह व्यापक रूप से मान्यता प्राप्त है कि मिक्समास्टर ब्रह्मांड को हल करने का प्रयास करने वाली ब्रह्माण्ड संबंधी समस्याओं को ब्रह्मांडीय मुद्रास्फीति द्वारा अधिक सुंदरता से निपटाया जाता है। अध्ययन किए गए मीट्रिक मिस्नर को बियांची वर्गीकरण IX मीट्रिक के रूप में भी जाना जाता है।

धी समस्याओं को ब्रह्मांडीय मुद्रास्फीति द्वारा अधिक सुंदरता से निपटाया जाता

यह भी देखें

  • बियांची वर्गीकरण
  • बीकेएल विलक्षणता

संदर्भ

  1. Barry R. Parker, Chaos in the Cosmos: The Stunning Complexity of the Universe, Springer, 2013, p. 257.
  2. Charles W. Misner, "Mixmaster Universe", Physical Review Letters, Vol. 22, Issue 20 (May 1969), pp. 1071-1074, doi:10.1103/PhysRevLett.22.1071, Bibcode:1969PhRvL..22.1071M. Mirror link. Also available as an entry in the Gravity Research Foundation's 1969 essay competition. Mirror link.