इलेक्ट्रॉन घनत्व: Difference between revisions

From Vigyanwiki
(Created page with "{{Use British English|date = August 2021}} {{Short description|Probability density of electrons being somewhere}} {{About|the quantum mechanical probability density of an elec...")
 
No edit summary
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Use British English|date = August 2021}}
{{Short description|Probability density of electrons being somewhere}}
{{Short description|Probability density of electrons being somewhere}}
{{About|the quantum mechanical probability density of an electron|the number density of electrons in a plasma, also called "electron density"|Plasma (physics)}}
[[इलेक्ट्रॉन]] घनत्व या इलेक्ट्रॉनिक घनत्व किसी दिए गए बिंदु के आस-पास अंतरिक्ष के एक अतिसूक्ष्म तत्व पर एक इलेक्ट्रॉन के मौजूद होने की [[संभावना]] का माप है। यह तीन स्थानिक चर के आधार पर एक अदिश राशि है और इसे सामान्यतः <math>\rho(\textbf r)</math> या <math>n(\textbf r)</math>के रूप में दर्शाया जाता है घनत्व, परिभाषा के माध्यम से सामान्यीकृत द्वारा <math>N</math>-इलेक्ट्रॉन [[तरंग क्रिया]] निर्धारित किया जाता है जो खुद <math>4N</math> चर (<math display="inline">3N</math> स्थानिक और <math>N</math> [[स्पिन (भौतिकी)|चक्रण (भौतिकी)]] निर्देशांक) पर निर्भर करता है। इसके विपरीत, घनत्व एक चरण कारक तक तरंग फ़ंक्शन मॉड्यूल को निर्धारित करता है, जो घनत्व कार्यात्मक सिद्धांत की औपचारिक नींव प्रदान करता है।
[[इलेक्ट्रॉन]] घनत्व या इलेक्ट्रॉनिक घनत्व किसी दिए गए बिंदु के आस-पास अंतरिक्ष के एक अतिसूक्ष्म तत्व पर एक इलेक्ट्रॉन के मौजूद होने की [[संभावना]] का माप है। यह तीन स्थानिक चर के आधार पर एक अदिश राशि है और इसे आमतौर पर या तो के रूप में दर्शाया जाता है <math>\rho(\textbf r)</math> या <math>n(\textbf r)</math>. घनत्व निर्धारित किया जाता है, परिभाषा के माध्यम से, सामान्यीकृत द्वारा <math>N</math>-इलेक्ट्रॉन [[तरंग क्रिया]] जो खुद पर निर्भर करता है <math>4N</math> चर (<math display="inline">3N</math> स्थानिक और <math>N</math> [[स्पिन (भौतिकी)]] निर्देशांक)इसके विपरीत, घनत्व एक चरण कारक तक तरंग फ़ंक्शन मॉड्यूल को निर्धारित करता है, जो घनत्व कार्यात्मक सिद्धांत की औपचारिक नींव प्रदान करता है।


[[क्वांटम यांत्रिकी]] के अनुसार, परमाणु पैमाने पर अनिश्चितता सिद्धांत के कारण एक इलेक्ट्रॉन के सटीक स्थान की भविष्यवाणी नहीं की जा सकती है, केवल इसके दिए गए स्थान पर होने की संभावना है; इसलिए परमाणुओं और अणुओं में इलेक्ट्रॉन ऐसे कार्य करते हैं मानो वे अंतरिक्ष में बिखर गए हों। एक-इलेक्ट्रॉन प्रणालियों के लिए, किसी भी बिंदु पर इलेक्ट्रॉन घनत्व वेवफंक्शन के वर्ग परिमाण के समानुपाती होता है।
[[क्वांटम यांत्रिकी|आणविक यांत्रिकी]] के अनुसार, परमाणु पैमाने पर अनिश्चितता सिद्धांत के कारण एक इलेक्ट्रॉन के सटीक स्थान की भविष्यवाणी नहीं की जा सकती है, केवल इसके दिए गए स्थान पर होने की संभावना है; इसलिए परमाणुओं और अणुओं में इलेक्ट्रॉन ऐसे कार्य करते हैं मानो वे अंतरिक्ष में बिखर गए हों। एक-इलेक्ट्रॉन प्रणालियों के लिए, किसी भी बिंदु पर इलेक्ट्रॉन घनत्व तरंग क्रिया के वर्ग परिमाण के समानुपाती होता है।


== परिभाषा ==
== परिभाषा ==
एक सामान्यीकृत के अनुरूप इलेक्ट्रॉनिक घनत्व <math>N</math>-इलेक्ट्रॉन वेवफंक्शन <math>\Psi</math> (साथ <math>\textbf r</math> और <math>s</math> क्रमशः स्थानिक और स्पिन चर को दर्शाते हुए) के रूप में परिभाषित किया गया है<ref>{{cite book|last1=Parr|first1=Robert G.|last2=Yang | first2= Weitao|title=Density-Functional Theory of Atoms and Molecules|publisher=Oxford University Press|location=New York|year=1989|isbn=978-0-19-509276-9}}</ref>
एक सामान्यीकृत एन-इलेक्ट्रॉन तरंग क्रिया <math>\Psi</math> (क्रमशः r और s एक निरूपित स्थानिक और चक्रण चर के साथ) के अनुरूप इलेक्ट्रॉनिक घनत्व को परिभाषित किया गया है<ref>{{cite book|last1=Parr|first1=Robert G.|last2=Yang | first2= Weitao|title=Density-Functional Theory of Atoms and Molecules|publisher=Oxford University Press|location=New York|year=1989|isbn=978-0-19-509276-9}}</ref>
:<math>
:<math>
\rho(\mathbf{r}) = \langle\Psi|\hat{\rho}(\mathbf{r})|\Psi\rangle,
\rho(\mathbf{r}) = \langle\Psi|\hat{\rho}(\mathbf{r})|\Psi\rangle,
Line 14: Line 12:


:<math>\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N}\ \delta(\mathbf{r}-\mathbf{r}_{i}).</math>
:<math>\hat{\rho}(\mathbf{r}) = \sum_{i=1}^{N}\ \delta(\mathbf{r}-\mathbf{r}_{i}).</math>
कम्प्यूटिंग <math>\rho(\mathbf r)</math> जैसा कि ऊपर परिभाषित किया गया है, हम निम्नानुसार अभिव्यक्ति को सरल बना सकते हैं।
ऊपर परिभाषित p(r) की गणना करके हम व्यंजक को इस प्रकार सरल बना सकते हैं।


<math>
<math>
Line 22: Line 20:
\end{align}
\end{align}
</math>
</math>
शब्दों में: स्थिति में अभी भी एक इलेक्ट्रॉन धारण करना <math>\textbf r</math> हम अन्य इलेक्ट्रॉनों की सभी संभावित व्यवस्थाओं का योग करते हैं। कारक एन उत्पन्न होता है क्योंकि सभी इलेक्ट्रॉन अप्रभेद्य होते हैं, और इसलिए सभी अभिन्न एक ही मूल्य का मूल्यांकन करते हैं।


हार्ट्री-फॉक और घनत्व कार्यात्मक सिद्धांत सिद्धांतों में, तरंग फ़ंक्शन को आम तौर पर एकल [[स्लेटर निर्धारक]] के रूप में दर्शाया जाता है <math>N</math> कक्षीय, <math>\varphi_k</math>, संबंधित व्यवसायों के साथ <math>n_k</math>. इन स्थितियों में, घनत्व सरल हो जाता है
शब्दों में: स्थिति आर में अभी भी एक इलेक्ट्रॉन को पकड़कर हम अन्य इलेक्ट्रॉनों की सभी संभावित व्यवस्थाओं का योग करते हैं। कारक एन उत्पन्न होता है क्योंकि सभी इलेक्ट्रॉन अप्रभेद्य होते हैं, और इसलिए सभी अभिन्न एक ही मूल्य का मूल्यांकन करते हैं।
 
हार्ट्री-फॉक और घनत्व कार्यात्मक सिद्धांत सिद्धांतों में, तरंग फ़ंक्शन को आम तौर पर <math>N</math> कक्षीय <math>\varphi_k</math>से संबंधित व्यवसायों <math>n_k</math> के साथ निर्मित एकल [[स्लेटर निर्धारक]] के रूप में दर्शाया जाता है। इन स्थितियों में, घनत्व सरल हो जाता है


:<math>\rho(\mathbf{r})=\sum_{k=1}^N n_{k}|\varphi_k(\mathbf{r})|^2.</math>
:<math>\rho(\mathbf{r})=\sum_{k=1}^N n_{k}|\varphi_k(\mathbf{r})|^2.</math>


 
<br />
== सामान्य गुण ==
== सामान्य गुण ==
इसकी परिभाषा से, इलेक्ट्रॉन घनत्व इलेक्ट्रॉनों की कुल संख्या को एकीकृत करने वाला एक गैर-नकारात्मक कार्य है। इसके अलावा, गतिज ऊर्जा टी वाले सिस्टम के लिए, घनत्व असमानताओं को संतुष्ट करता है<ref name="lieb83">{{cite journal|last=Lieb|first=Elliott H.|year=1983|journal=International Journal of Quantum Chemistry|volume=24|issue=3|pages=243–277|title=Density functionals for coulomb systems|doi=10.1002/qua.560240302}}</ref>
परिभाषा से, इलेक्ट्रॉन घनत्व इलेक्ट्रॉनों की कुल संख्या को एकीकृत करने वाला एक गैर-नकारात्मक कार्य है। इसके अलावा, गतिज ऊर्जा t के साथ एक प्रणाली के लिए, घनत्व असमानताओं को संतुष्ट करता है<ref name="lieb83">{{cite journal|last=Lieb|first=Elliott H.|year=1983|journal=International Journal of Quantum Chemistry|volume=24|issue=3|pages=243–277|title=Density functionals for coulomb systems|doi=10.1002/qua.560240302}}</ref>
:<math>\frac{1}{2}\int\mathrm{d}\mathbf{r}\ \big(\nabla\sqrt{\rho(\mathbf{r})}\big)^{2} \leq T.</math>
:<math>\frac{1}{2}\int\mathrm{d}\mathbf{r}\ \big(\nabla\sqrt{\rho(\mathbf{r})}\big)^{2} \leq T.</math>
:<math>\frac{3}{2}\left(\frac{\pi}{2}\right)^{4/3}\left(\int\mathrm{d}\mathbf{r}\ \rho^{3}(\mathbf{r})\right)^{1/3}  \leq T.</math>
:<math>\frac{3}{2}\left(\frac{\pi}{2}\right)^{4/3}\left(\int\mathrm{d}\mathbf{r}\ \rho^{3}(\mathbf{r})\right)^{1/3}  \leq T.</math>
Line 42: Line 41:
\right.\right\}.
\right.\right\}.
</math>
</math>
दूसरी असमानता घनत्व को Lp स्पेस|L में रखती है<sup>3</sup> स्थान। सामान्यीकरण संपत्ति के साथ एल के चौराहे के भीतर स्वीकार्य घनत्व रखता है<sup>1</sup> और एल<sup>3</sup> – का सुपरसेट <math>\mathcal{J}_{N}</math>.
दूसरी असमानता घनत्व को एल<sup>3</sup>स्थान  में रखती है। सामान्यीकरण संपत्ति के साथ मिलकर L<sup>1</sup> और L<sup>3</sup> के एक सुपरसेट <math>\mathcal{J}_{N}</math> के चौराहे के भीतर स्वीकार्य घनत्व रखता है|


== टोपोलॉजी ==
== टोपोलॉजी ==
एक परमाणु की जमीनी स्थिति इलेक्ट्रॉनिक घनत्व को [[परमाणु नाभिक]] से दूरी के एक [[मोनोटोनिक फ़ंक्शन]] क्षयकारी फ़ंक्शन के रूप में माना जाता है।<ref>{{cite journal|last1=Ayers|first1=Paul W.|last2=Parr | first2= Robert G.|year=2003|title=Sufficient condition for monotonic electron density decay in many-electron systems|journal=International Journal of Quantum Chemistry|volume=95|issue=6|pages=877–881|doi=10.1002/qua.10622}}</ref>
एक परमाणु की जमीनी स्थिति इलेक्ट्रॉनिक घनत्व को [[परमाणु नाभिक]] से दूरी के एक नीरस क्षयकारी कार्य के रूप में माना जाता है।<ref>{{cite journal|last1=Ayers|first1=Paul W.|last2=Parr | first2= Robert G.|year=2003|title=Sufficient condition for monotonic electron density decay in many-electron systems|journal=International Journal of Quantum Chemistry|volume=95|issue=6|pages=877–881|doi=10.1002/qua.10622}}</ref>
 


<br />
=== परमाणु पुच्छल स्थिति ===
=== परमाणु पुच्छल स्थिति ===
असीमित इलेक्ट्रॉन-नाभिक कूलम्ब क्षमता के परिणामस्वरूप इलेक्ट्रॉनिक घनत्व एक अणु में प्रत्येक नाभिक पर क्यूप्स प्रदर्शित करता है। गोलाकार औसत घनत्व के संदर्भ में तैयार किए गए काटो पुच्छल स्थिति द्वारा इस व्यवहार की मात्रा निर्धारित की जाती है, <math>\bar{\rho}</math>, किसी दिए गए नाभिक के बारे में<ref>{{cite journal|last=Kato|first=Tosio |year=1957|title=On the eigenfunctions of many-particle systems in quantum mechanics|journal=Communications on Pure and Applied Mathematics|volume=10|issue=2|pages=151–177|doi=10.1002/cpa.3160100201}}</ref>
असीमित इलेक्ट्रॉन-नाभिक कूलम्ब क्षमता के परिणामस्वरूप एक अणु में प्रत्येक नाभिक पर इलेक्ट्रॉनिक घनत्व क्यूप्स प्रदर्शित करता है। गोलाकार औसत घनत्व के संदर्भ में तैयार किए गए काटो पुच्छल स्थिति द्वारा इस व्यवहार की मात्रा निर्धारित की जाती है,किसी दिए गए नाभिक के बारे में <math>\bar{\rho}</math>,<ref>{{cite journal|last=Kato|first=Tosio |year=1957|title=On the eigenfunctions of many-particle systems in quantum mechanics|journal=Communications on Pure and Applied Mathematics|volume=10|issue=2|pages=151–177|doi=10.1002/cpa.3160100201}}</ref>
:<math>\left.\frac{\partial}{\partial r_{\alpha}}\bar{\rho}(r_{\alpha})\right|_{r_{\alpha}=0} = -2Z_{\alpha}\bar{\rho}(0).</math>
:<math>\left.\frac{\partial}{\partial r_{\alpha}}\bar{\rho}(r_{\alpha})\right|_{r_{\alpha}=0} = -2Z_{\alpha}\bar{\rho}(0).</math>
अर्थात्, गोलाकार रूप से औसत घनत्व का रेडियल व्युत्पन्न, किसी भी नाभिक पर मूल्यांकन किया जाता है, उस नाभिक पर घनत्व के दोगुने के बराबर होता है जो [[परमाणु संख्या]] के ऋणात्मक से गुणा होता है (<math>Z</math>).
अर्थात्, गोलाकार रूप से औसत घनत्व का रेडियल व्युत्पन्न, किसी भी नाभिक पर मूल्यांकन किया जाता है, उस नाभिक पर घनत्व के दोगुने के बराबर होता है जो [[परमाणु संख्या]] (<math>Z</math>) के ऋणात्मक से गुणा होता है |


=== स्पर्शोन्मुख व्यवहार ===
=== स्पर्शोन्मुख व्यवहार ===
परमाणु पुच्छल स्थिति निकट-परमाणु प्रदान करती है (छोटा <math>r</math>) घनत्व व्यवहार के रूप में
परमाणु पुच्छल स्थिति निकट-परमाणु प्रदान करती है (छोटा r) घनत्व व्यवहार के रूप में


:<math>\rho(r) \sim e^{-2Z_{\alpha}r}\,.</math>
:<math>\rho(r) \sim e^{-2Z_{\alpha}r}\,.</math>
लंबी दूरी (बड़ा <math>r</math>) घनत्व का व्यवहार रूप लेते हुए भी जाना जाता है<ref>{{cite journal|last1=Morrell|first1=Marilyn M.|last2=Parr|first2=Robert. G.|last3=Levy|first3=Mel|year=1975|title=Calculation of ionization potentials from density matrices and natural functions, and the long-range behavior of natural orbitals and electron density|journal=Journal of Chemical Physics|volume=62|issue=2|pages=549–554|doi=10.1063/1.430509|bibcode = 1975JChPh..62..549M }}</ref>
लंबी दूरी (बड़ा r ) घनत्व का व्यवहार रूप लेते हुए भी जाना जाता है<ref>{{cite journal|last1=Morrell|first1=Marilyn M.|last2=Parr|first2=Robert. G.|last3=Levy|first3=Mel|year=1975|title=Calculation of ionization potentials from density matrices and natural functions, and the long-range behavior of natural orbitals and electron density|journal=Journal of Chemical Physics|volume=62|issue=2|pages=549–554|doi=10.1063/1.430509|bibcode = 1975JChPh..62..549M }}</ref>
:<math>\rho(r) \sim e^{-2\sqrt{2\mathrm{I}}r}\,.</math>
:<math>\rho(r) \sim e^{-2\sqrt{2\mathrm{I}}r}\,.</math>
जहाँ I निकाय की आयनन ऊर्जा है।
जहाँ I निकाय की आयनन ऊर्जा है।


== प्रतिक्रिया घनत्व ==
== प्रतिक्रिया घनत्व ==
घनत्व की एक और अधिक सामान्य परिभाषा रैखिक-प्रतिक्रिया घनत्व है।<ref>{{cite journal |doi = 10.1063/1.447489 |title = On the evaluation of analytic energy derivatives for correlated wave functions |year = 1984 |last1 = Handy |first1 = Nicholas C. |last2 = Schaefer |first2 = Henry F. |journal = The Journal of Chemical Physics |volume = 81 |pages = 5031–5033|bibcode = 1984JChPh..81.5031H |issue = 11 }}</ref><ref>{{cite journal | doi = 10.1021/j100181a030 | title = Analysis of the effect of electron correlation on charge density distributions | year = 1992 | last1 = Wiberg | first1 = Kenneth B. | last2 = Hadad | first2 = Christopher M. | last3 = Lepage | first3 = Teresa J. | last4 = Breneman | first4 = Curt M. | last5 = Frisch | first5 = Michael J. | journal = The Journal of Physical Chemistry | volume = 96 | pages = 671–679 | issue = 2}}</ref> यह घनत्व है कि जब अनुबंधित होता है
घनत्व की एक और अधिक सामान्य परिभाषा रैखिक-प्रतिक्रिया घनत्व है।<ref>{{cite journal |doi = 10.1063/1.447489 |title = On the evaluation of analytic energy derivatives for correlated wave functions |year = 1984 |last1 = Handy |first1 = Nicholas C. |last2 = Schaefer |first2 = Henry F. |journal = The Journal of Chemical Physics |volume = 81 |pages = 5031–5033|bibcode = 1984JChPh..81.5031H |issue = 11 }}</ref><ref>{{cite journal | doi = 10.1021/j100181a030 | title = Analysis of the effect of electron correlation on charge density distributions | year = 1992 | last1 = Wiberg | first1 = Kenneth B. | last2 = Hadad | first2 = Christopher M. | last3 = Lepage | first3 = Teresa J. | last4 = Breneman | first4 = Curt M. | last5 = Frisch | first5 = Michael J. | journal = The Journal of Physical Chemistry | volume = 96 | pages = 671–679 | issue = 2}}</ref> यह घनत्व है कि जब किसी भी चक्रण-मुक्त, एक-इलेक्ट्रॉन ऑपरेटर के साथ अनुबंधित किया जाता है, तो ऊर्जा के व्युत्पन्न के रूप में परिभाषित संबंधित संपत्ति का उत्पादन करता है। उदाहरण के लिए, एक द्विध्रुवीय पल बाहरी चुंबकीय क्षेत्र के संबंध में ऊर्जा का व्युत्पन्न होता है और तरंग समारोह पर ऑपरेटर का अपेक्षित मूल्य नहीं होता है। कुछ सिद्धांतों के लिए वे समान होते हैं जब तरंग क्रिया अभिसरण होता है। व्यवसाय संख्या शून्य से दो की सीमा तक सीमित नहीं है, और इसलिए कभी-कभी अंतरिक्ष के कुछ क्षेत्रों में प्रतिक्रिया घनत्व भी नकारात्मक हो सकता है।<ref>{{cite journal
किसी भी स्पिन-मुक्त के साथ, एक-इलेक्ट्रॉन ऑपरेटर ऊर्जा के व्युत्पन्न के रूप में परिभाषित संबंधित संपत्ति का उत्पादन करता है।
उदाहरण के लिए, एक द्विध्रुवीय क्षण बाहरी चुंबकीय क्षेत्र के संबंध में ऊर्जा का व्युत्पन्न होता है और
वेवफंक्शन पर ऑपरेटर का अपेक्षित मूल्य नहीं है। कुछ सिद्धांतों के लिए वे वही हैं जब
वेवफंक्शन अभिसरित है। व्यवसाय संख्या शून्य से दो तक सीमित नहीं है, और इसलिए
कभी-कभी अंतरिक्ष के कुछ क्षेत्रों में प्रतिक्रिया घनत्व भी नकारात्मक हो सकता है।<ref>{{cite journal
| last1 = Gordon | first1 = Mark S. | last2 = Schmidt | first2 = Michael W. | last3 = Chaban | first3 = Galina M.
| last1 = Gordon | first1 = Mark S. | last2 = Schmidt | first2 = Michael W. | last3 = Chaban | first3 = Galina M.
  | last4 = Glaesemann | first4 = Kurt R. | last5 = Stevens | first5 = Walter J. | last6 =  Gonzalez |first6 =  Carlos
  | last4 = Glaesemann | first4 = Kurt R. | last5 = Stevens | first5 = Walter J. | last6 =  Gonzalez |first6 =  Carlos
Line 78: Line 72:
  | doi = 10.1063/1.478301|bibcode = 1999JChPh.110.4199G | url = https://works.bepress.com/mark_gordon/216/download/}}</ref>
  | doi = 10.1063/1.478301|bibcode = 1999JChPh.110.4199G | url = https://works.bepress.com/mark_gordon/216/download/}}</ref>


<br />
== अवलोकन ==
[[अणु]]ओं में, बड़े इलेक्ट्रॉन घनत्व के क्षेत्र सामान्यतः परमाणु और उसके बंधनों के आसपास पाए जाते हैं। d-लोकलाइज्ड या संयुग्मित प्रणालियों में, जैसे कि [[फिनोल]], [[बेंजीन]] और [[हीमोग्लोबिन]] और [[क्लोरोफिल]] जैसे यौगिकों में, इलेक्ट्रॉन घनत्व पूरे क्षेत्र में महत्वपूर्ण होता है, यानी बेंजीन में वे योजनाकार वलय के ऊपर और नीचे पाए जाते हैं। इसे कभी-कभी आरेखीय रूप से वैकल्पिक एकल और द्विबंध की श्रृंखला के रूप में दिखाया जाता है। फिनोल और बेंजीन के मामले में, एक [[षट्भुज]] के अंदर एक चक्र यौगिक की विस्थानीकृत प्रकृति को दर्शाता है। यह नीचे दिखाया गया है:


== सिंहावलोकन ==
[[File:Phenol mesomeric structures.png|503px|center|फिनोल की मेसोमेरिक संरचनाएं]]कई वलय प्रणाली वाले यौगिकों में जो आपस में जुड़े हुए हैं, यह अब सटीक नहीं है, इसलिए बारी-बारी से एकल और द्विबंध का उपयोग किया जाता है। क्लोरोफिल और फिनोल जैसे यौगिकों में, कुछ आरेख उन क्षेत्रों के निरूपण का प्रतिनिधित्व करने के लिए एक बिंदीदार या धराशायी रेखा दिखाते हैं जहां एकल बंध के बगल में इलेक्ट्रॉन घनत्व अधिक होता है।<ref>e.g., the white line in the diagram on [http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Chlorophyll.html Chlorophylls and Carotenoids] {{Webarchive|url=https://web.archive.org/web/20170809120412/http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Chlorophyll.html |date=2017-08-09 }}</ref> संयुग्मित प्रणालियां कभी-कभी उन क्षेत्रों का प्रतिनिधित्व कर सकती हैं जहां विभिन्न तरंग दैर्ध्य पर [[विद्युत चुम्बकीय विकिरण]] अवशोषित होती है जिसके परिणामस्वरूप यौगिक रंगीन दिखाई देते हैं। [[पॉलीमर]] में, इन क्षेत्रों को क्रोमोफोरस के रूप में जाना जाता है।
[[अणु]]ओं में, बड़े इलेक्ट्रॉन घनत्व के क्षेत्र आमतौर पर परमाणु और उसके बंधनों के आसपास पाए जाते हैं। डी-लोकलाइज्ड या संयुग्मित प्रणालियों में, जैसे कि [[फिनोल]], [[बेंजीन]] और [[हीमोग्लोबिन]] और [[क्लोरोफिल]] जैसे यौगिकों में, इलेक्ट्रॉन घनत्व पूरे क्षेत्र में महत्वपूर्ण होता है, यानी बेंजीन में वे प्लानर रिंग के ऊपर और नीचे पाए जाते हैं। इसे कभी-कभी आरेखीय रूप से वैकल्पिक सिंगल और डबल बॉन्ड की श्रृंखला के रूप में दिखाया जाता है। फिनोल और बेंजीन के मामले में, एक [[षट्भुज]] के अंदर एक चक्र यौगिक की विस्थानीकृत प्रकृति को दर्शाता है। यह नीचे दिखाया गया है:
 
[[File:Phenol mesomeric structures.png|503px|center|फिनोल की मेसोमेरिक संरचनाएं]]कई रिंग सिस्टम वाले यौगिकों में जो आपस में जुड़े हुए हैं, यह अब सटीक नहीं है, इसलिए बारी-बारी से सिंगल और डबल बॉन्ड का उपयोग किया जाता है। क्लोरोफिल और फिनोल जैसे यौगिकों में, कुछ आरेख उन क्षेत्रों के निरूपण का प्रतिनिधित्व करने के लिए एक बिंदीदार या धराशायी रेखा दिखाते हैं जहां एकल बांड के बगल में इलेक्ट्रॉन घनत्व अधिक होता है।<ref>e.g., the white line in the diagram on [http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Chlorophyll.html Chlorophylls and Carotenoids] {{Webarchive|url=https://web.archive.org/web/20170809120412/http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Chlorophyll.html |date=2017-08-09 }}</ref> संयुग्मित प्रणालियां कभी-कभी उन क्षेत्रों का प्रतिनिधित्व कर सकती हैं जहां विभिन्न तरंग दैर्ध्य पर [[विद्युत चुम्बकीय विकिरण]] अवशोषित होता है जिसके परिणामस्वरूप यौगिक रंगीन दिखाई देते हैं। [[पॉलीमर]] में, इन क्षेत्रों को क्रोमोफोरस के रूप में जाना जाता है।


[[क्वांटम रसायन]] विज्ञान में, इलेक्ट्रॉन घनत्व, ρ(r), निर्देशांक r का एक कार्य है, इसलिए परिभाषित किया गया है कि ρ(r)dr एक छोटी मात्रा में इलेक्ट्रॉनों की संख्या है। [[खुला खोल]] | क्लोज्ड-शेल अणुओं के लिए, <math> \rho(\mathbf{r}) </math> आधार कार्यों के उत्पादों के योग के रूप में लिखा जा सकता है, φ:
[[क्वांटम रसायन|आणविक रासायनिक गणना]] में, इलेक्ट्रॉन घनत्व, p(r), निर्देशांक आर का एक कार्य है, इसलिए परिभाषित किया गया है कि p(r)dr एक छोटी मात्रा में इलेक्ट्रॉनों की संख्या है। बंद-खोल अणुओं के लिए, आधार कार्यों के उत्पादों के योग के रूप में लिखा जा सकता है, φ:
:<math> \rho(\mathbf{r}) = \sum_\mu \sum_\nu P_{\mu \nu} \phi_\mu(\mathbf{r}) \phi_\nu(\mathbf{r}) </math>
:<math> \rho(\mathbf{r}) = \sum_\mu \sum_\nu P_{\mu \nu} \phi_\mu(\mathbf{r}) \phi_\nu(\mathbf{r}) </math>
[[File:ElectronDensityAniline.PNG|300px|thumb|right|एनिलिन के लिए गणना की गई इलेक्ट्रॉन घनत्व, उच्च घनत्व मान परमाणु की स्थिति को इंगित करते हैं, मध्यवर्ती घनत्व मान [[रासायनिक बंध]]न पर जोर देते हैं, कम मान अणु के आकार और आकार के बारे में जानकारी प्रदान करते हैं।]]जहां पी [[घनत्व मैट्रिक्स]] है। इलेक्ट्रॉन घनत्व अक्सर चुने गए घनत्व के मान द्वारा निर्धारित सतह के आकार और आकार के साथ एक आइसोसफेस (एक आइसोडेनसिटी सतह) के संदर्भ में प्रस्तुत किया जाता है, या संलग्न कुल इलेक्ट्रॉनों के प्रतिशत के संदर्भ में।
[[File:ElectronDensityAniline.PNG|300px|thumb|right|एनिलिन के लिए गणना की गई इलेक्ट्रॉन घनत्व, उच्च घनत्व मान परमाणु की स्थिति को इंगित करते हैं, मध्यवर्ती घनत्व मान [[रासायनिक बंध]]न पर जोर देते हैं, कम मान अणु के आकार और आकार के बारे में जानकारी प्रदान करते हैं।]]जहां p घनत्व मैट्रिक्स है। इलेक्ट्रॉन घनत्व प्रायः चुने गए घनत्व के मान द्वारा निर्धारित सतह के आकार और आकार के साथ, या संलग्न कुल इलेक्ट्रॉनों के प्रतिशत के संदर्भ में एक आइसोसफेस (एक सघनता सतह) के संदर्भ में प्रदान किया जाता है।
 
[[क्वांटम रसायन विज्ञान और ठोस अवस्था भौतिकी सॉफ्टवेयर की सूची]] अक्सर इलेक्ट्रॉन घनत्व की चित्रमय छवियां प्रदान करती है। उदाहरण के लिए, एनिलिन में (दाईं ओर छवि देखें)। इलेक्ट्रॉन घनत्व सहित ग्राफिकल मॉडल, रसायन विज्ञान शिक्षा में आमतौर पर नियोजित उपकरण हैं।<ref>{{cite journal | title = Teaching Chemistry with Electron Density Models | authors = Alan J. Shusterman and Gwendolyn P. Shusterman | journal = The Journal of Chemical Education | volume = 74 |issue=7 | pages = 771–775 | year = 1997 | doi = 10.1021/ed074p771|bibcode = 1997JChEd..74..771S}}</ref> ध्यान दें कि एनिलिन की सबसे बाईं ओर की छवि में, उच्च इलेक्ट्रॉन घनत्व [[कार्बन]] और [[नाइट्रोजन]] से जुड़े हैं, लेकिन उनके नाभिक में केवल एक प्रोटॉन वाले [[हाइड्रोजन]] दिखाई नहीं दे रहे हैं। यही कारण है कि एक्स-रे विवर्तन में हाइड्रोजन की स्थिति का पता लगाने में मुश्किल होती है।


अधिकांश आणविक मॉडलिंग सॉफ़्टवेयर पैकेज उपयोगकर्ता को इलेक्ट्रॉन घनत्व के लिए एक मान चुनने की अनुमति देते हैं, जिसे अक्सर आइसोवैल्यू कहा जाता है। कुछ सॉफ्टवेयर<ref>[http://www.wavefun.com/products/Sp_Comp.pdf or example, the Spartan program from Wavefunction, Inc.]</ref> संलग्न कुल इलेक्ट्रॉनों के प्रतिशत के संदर्भ में इलेक्ट्रॉन घनत्व के विनिर्देशन की भी अनुमति देता है। आइसोवैल्यू के आधार पर (प्रति घन [[बोह्र त्रिज्या]] में विशिष्ट इकाइयां इलेक्ट्रॉन हैं), या संलग्न कुल इलेक्ट्रॉनों का प्रतिशत, इलेक्ट्रॉन घनत्व सतह का उपयोग परमाणुओं का पता लगाने के लिए किया जा सकता है, रासायनिक बंधों से जुड़े इलेक्ट्रॉन घनत्व पर जोर दिया जा सकता है, या समग्र आणविक आकार और आकार को इंगित करने के लिए .<ref>{{cite book | authors = Warren J. Hehre, Alan J. Shusterman, Janet E. Nelson | title = The Molecular Modeling Workbook for Organic Chemistry | publisher = Wavefunction | year = 1998  | location = Irvine, California | pages = 61–86  | isbn = 978-1-890661-18-2}}</ref>
[[क्वांटम रसायन|आणविक]] मॉडलिंग सॉफ्टवेयर प्रायः इलेक्ट्रॉन घनत्व की चित्रमय छवियां प्रदान करता है। उदाहरण के लिए, एनिलिन में (दाईं ओर छवि देखें)इलेक्ट्रॉन घनत्व सहित ग्राफिकल मॉडल, रसायन विज्ञान शिक्षा में सामान्यतः इस्तेमाल किया जाने वाला उपकरण है।<ref>{{cite journal | title = Teaching Chemistry with Electron Density Models | authors = Alan J. Shusterman and Gwendolyn P. Shusterman | journal = The Journal of Chemical Education | volume = 74 |issue=7 | pages = 771–775 | year = 1997 | doi = 10.1021/ed074p771|bibcode = 1997JChEd..74..771S}}</ref> ध्यान दें कि एनिलिन की सबसे बाईं ओर की छवि में, उच्च इलेक्ट्रॉन घनत्व [[कार्बन]] और [[नाइट्रोजन]] से जुड़े हैं, लेकिन उनके नाभिक में केवल एक प्रोटॉन वाले [[हाइड्रोजन]] दिखाई नहीं दे रहे हैं। यही कारण है कि एक्स-रे विवर्तन में हाइड्रोजन की स्थिति का पता लगाने में मुश्किल होती है।
ग्राफिक रूप से, इलेक्ट्रॉन घनत्व सतह एक कैनवास के रूप में भी कार्य करती है जिस पर अन्य इलेक्ट्रॉनिक गुण प्रदर्शित किए जा सकते हैं। [[इलेक्ट्रोस्टैटिक क्षमता]] मैप (इलेक्ट्रॉन घनत्व पर मैप किए गए इलेक्ट्रोस्टैटिक पोटेंशियल का गुण) एक अणु में चार्ज वितरण के लिए एक संकेतक प्रदान करता है। स्थानीय आयनीकरण संभावित नक्शा (इलेक्ट्रॉन घनत्व पर मैप किए गए [[आयनीकरण ऊर्जा]] की संपत्ति) इलेक्ट्रोफिलिसिटी का एक संकेतक प्रदान करता है। और [[LUMO]] मानचित्र (लूमो इलेक्ट्रॉन घनत्व पर मैप किया गया) न्यूक्लियोफिलिसिटी के लिए एक संकेतक प्रदान कर सकता है।<ref>{{cite book | last = Hehre | first = Warren J. | title = A Guide to Molecular Mechanics and Quantum Chemical Calculations | publisher = Wavefunction, Inc. | year = 2003  | location = Irvine, California | pages =  85–100 | isbn = 978-1-890661-06-9}}</ref>


अधिकांश आणविक मॉडलिंग प्रक्रिया सामग्री (सॉफ़्टवेयर) पैकेज उपयोगकर्ता को इलेक्ट्रॉन घनत्व के लिए एक मान चुनने की अनुमति देते हैं, जिसे प्रायः आइसोवैल्यू कहा जाता है। <ref>[http://www.wavefun.com/products/Sp_Comp.pdf or example, the Spartan program from Wavefunction, Inc.]</ref> कुछ प्रक्रिया सामग्री (सॉफ़्टवेयर) संलग्न कुल इलेक्ट्रॉनों के प्रतिशत के संदर्भ में इलेक्ट्रॉन घनत्व के विनिर्देशन की भी अनुमति देता है। आइसोवैल्यू के आधार पर (सामान्य इकाइयां इलेक्ट्रॉन प्रति क्यूबिक बोह्र हैं), या संलग्न कुल इलेक्ट्रॉनों का प्रतिशत, परमाणुओं का पता लगाने के लिए इलेक्ट्रॉन घनत्व सतह का उपयोग किया जा सकता है, रासायनिक बंधों से जुड़े इलेक्ट्रॉन घनत्व पर जोर दिया जा सकता है, या समग्र आणविक आकार को इंगित किया जा सकता है।<ref>{{cite book | authors = Warren J. Hehre, Alan J. Shusterman, Janet E. Nelson | title = The Molecular Modeling Workbook for Organic Chemistry | publisher = Wavefunction | year = 1998  | location = Irvine, California | pages =  61–86  | isbn = 978-1-890661-18-2}}</ref>  ग्राफिक रूप से, इलेक्ट्रॉन घनत्व सतह एक कैनवास के रूप में भी कार्य करती है जिस पर अन्य इलेक्ट्रॉनिक गुण प्रदर्शित किए जा सकते हैं। [[इलेक्ट्रोस्टैटिक क्षमता]] मानचित्र (इलेक्ट्रॉन घनत्व परमानचित्र किए गए इलेक्ट्रोस्टैटिक सशक्त का गुण) एक अणु में आवेश वितरण के लिए एक संकेतक प्रदान करता है। स्थानीय आयनीकरण संभावित नक्शा (इलेक्ट्रॉन घनत्व परमानचित्र किए गए [[आयनीकरण ऊर्जा]] की संपत्ति) इलेक्ट्रोफिलिसिटी का एक संकेतक प्रदान करता है। और LUMO मानचित्र (इलेक्ट्रॉन घनत्व पर सबसे कम खाली आणविक कक्षीय मानचित्रण) न्यूक्लियोफिलिसिटी के लिए एक संकेतक प्रदान कर सकता है।<ref>{{cite book | last = Hehre | first = Warren J. | title = A Guide to Molecular Mechanics and Quantum Chemical Calculations | publisher = Wavefunction, Inc. | year = 2003  | location = Irvine, California | pages =  85–100 | isbn = 978-1-890661-06-9}}</ref>


<br />
== प्रयोग ==
== प्रयोग ==
कई प्रायोगिक तकनीकें इलेक्ट्रॉन घनत्व को माप सकती हैं। उदाहरण के लिए, एक्स-रे विवर्तन स्कैनिंग के माध्यम से [[क्वांटम क्रिस्टलोग्राफी]], जहां एक उपयुक्त तरंग दैर्ध्य की एक्स-रे को एक नमूने की ओर लक्षित किया जाता है और समय के साथ मापन किया जाता है, इलेक्ट्रॉनों के स्थानों का एक संभाव्य प्रतिनिधित्व देता है। इन स्थितियों से, आणविक संरचनाओं, साथ ही सटीक चार्ज घनत्व वितरण, अक्सर क्रिस्टलीकृत सिस्टम के लिए निर्धारित किए जा सकते हैं। [[क्वांटम इलेक्ट्रोडायनामिक्स]] और [[क्वांटम क्षेत्र सिद्धांत]] की कुछ शाखाएँ भी इलेक्ट्रॉन [[सुपरपोजिशन सिद्धांत]] और अन्य संबंधित घटनाओं का अध्ययन और विश्लेषण करती हैं, जैसे [[गैर-सहसंयोजक इंटरैक्शन इंडेक्स]] जो इलेक्ट्रॉन घनत्व का उपयोग करके गैर-सहसंयोजक इंटरैक्शन के अध्ययन की अनुमति देता है। [[मुल्लिकेन जनसंख्या विश्लेषण]] अणुओं में इलेक्ट्रॉन घनत्व पर आधारित है और परमाणु आवेशों का अनुमान देने के लिए परमाणुओं के बीच घनत्व को विभाजित करने का एक तरीका है।
कई प्रायोगिक तकनीकें इलेक्ट्रॉन घनत्व को माप सकती हैं। उदाहरण के लिए, एक्स-रे विवर्तन स्कैनिंग के माध्यम से [[क्वांटम क्रिस्टलोग्राफी|आणविक क्रिस्टलोग्राफी]], जहां एक उपयुक्त तरंग दैर्ध्य की एक्स-रे को एक नमूने की ओर लक्षित किया जाता है और समय के साथ मापन किया जाता है, इलेक्ट्रॉनों के स्थानों का एक संभाव्य प्रतिनिधित्व देता है। इन स्थितियों से, आणविक संरचनाओं, साथ ही सटीक आवेश घनत्व वितरण, प्रायः क्रिस्टलीकृतप्रणाली के लिए निर्धारित किए जा सकते हैं। [[क्वांटम इलेक्ट्रोडायनामिक्स|आणविक इलेक्ट्रोडायनामिक्स]] और [[क्वांटम क्षेत्र सिद्धांत|आणविक क्षेत्र सिद्धांत]] की कुछ शाखाएँ भी इलेक्ट्रॉन [[सुपरपोजिशन सिद्धांत]] और अन्य संबंधित घटनाओं का अध्ययन और विश्लेषण करती हैं, जैसे [[गैर-सहसंयोजक इंटरैक्शन इंडेक्स]] जो इलेक्ट्रॉन घनत्व का उपयोग करके गैर-सहसंयोजक इंटरैक्शन के अध्ययन की अनुमति देता है। [[मुल्लिकेन जनसंख्या विश्लेषण]] अणुओं में इलेक्ट्रॉन घनत्व पर आधारित है और परमाणु आवेशों का अनुमान देने के लिए परमाणुओं के बीच घनत्व को विभाजित करने का एक तरीका है।
 
[[ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी]] (टीईएम) और गहरे अप्रत्यास्थ बिखरने के साथ-साथ अन्य [[उच्च ऊर्जा कण]] प्रयोगों में, उच्च ऊर्जा इलेक्ट्रॉन इलेक्ट्रॉन घनत्व के प्रत्यक्ष प्रतिनिधित्व देने के लिए इलेक्ट्रॉन क्लाउड के साथ संपर्क करते हैं। टीईएम, [[स्कैनिंग टनलिंग माइक्रोस्कोप]] (एसटीएम) और परमाणु-बल माइक्रोस्कोपी (एएफएम) का उपयोग विशिष्ट व्यक्तिगत परमाणुओं के इलेक्ट्रॉन घनत्व की जांच के लिए किया जा सकता है।{{Citation needed|date=February 2017}}


[[ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी]] (TEM) और गहरे अप्रत्यास्थ बिखरने के साथ-साथ अन्य [[उच्च ऊर्जा कण]] प्रयोगों में, उच्च ऊर्जा इलेक्ट्रॉन, इलेक्ट्रॉन घनत्व के प्रत्यक्ष प्रतिनिधित्व देने के लिए इलेक्ट्रॉन बादल के साथ संपर्क करते हैं। TEM, [[स्कैनिंग टनलिंग माइक्रोस्कोप]] (STM) और परमाणु-बल माइक्रोस्कोपी (AFM) का उपयोग विशिष्ट व्यक्तिगत परमाणुओं के इलेक्ट्रॉन घनत्व की जांच के लिए किया जा सकता है।


== स्पिन घनत्व ==
<br />
स्पिन घनत्व इलेक्ट्रॉन घनत्व है जो मुक्त कणों पर लागू होता है। इसे एक स्पिन माइनस के इलेक्ट्रॉनों के कुल इलेक्ट्रॉन घनत्व के रूप में परिभाषित किया जाता है, जो दूसरे स्पिन के इलेक्ट्रॉनों के कुल इलेक्ट्रॉन घनत्व का होता है। प्रयोगात्मक रूप से इसे मापने के तरीकों में से एक [[इलेक्ट्रॉन स्पिन अनुनाद]] है,<ref>{{GoldBookRef|file=S05864|title=spin density}}</ref> न्यूट्रॉन विवर्तन 3डी-स्पेस में स्पिन घनत्व के प्रत्यक्ष मानचित्रण की अनुमति देता है।
== चक्रण घनत्व ==
चक्रण घनत्व इलेक्ट्रॉन घनत्व है जो मुक्त कणों पर लागू होता है। इसे एक चक्रण ऋण के इलेक्ट्रॉनों के कुल इलेक्ट्रॉन घनत्व के रूप में परिभाषित किया जाता है, जो दूसरे चक्रण के इलेक्ट्रॉनों के कुल इलेक्ट्रॉन घनत्व का होता है। प्रयोगात्मक रूप से इसे मापने के तरीकों में से एक [[इलेक्ट्रॉन स्पिन अनुनाद|इलेक्ट्रॉन चक्रण अनुनाद]] है,<ref>{{GoldBookRef|file=S05864|title=spin density}}</ref> न्यूट्रॉन विवर्तन 3d-स्पेस में चक्रण घनत्व के प्रत्यक्ष मानचित्रण की अनुमति देता है।


== यह भी देखें ==
== यह भी देखें ==
Line 108: Line 101:
* [[ऋणावेशित सूक्ष्म अणु का विन्यास]]
* [[ऋणावेशित सूक्ष्म अणु का विन्यास]]
* [[संकल्प (इलेक्ट्रॉन घनत्व)]]
* [[संकल्प (इलेक्ट्रॉन घनत्व)]]
* [[चार्ज का घनत्व]]
* [[चार्ज का घनत्व|आवेश का घनत्व]]
*सघनता व्यावहारिक सिद्धांत
*सघनता व्यावहारिक सिद्धांत
* संभावना वर्तमान
* संभावना वर्तमान
Line 114: Line 107:
== संदर्भ ==
== संदर्भ ==
{{reflist}}
{{reflist}}
[[Category: इलेक्ट्रॉन]] [[Category: परमाणु भौतिकी]] [[Category: क्वांटम रसायन]] [[Category: सघनता व्यावहारिक सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Created On 08/02/2023]]
[[Category:Created On 08/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:इलेक्ट्रॉन]]
[[Category:क्वांटम रसायन]]
[[Category:परमाणु भौतिकी]]
[[Category:सघनता व्यावहारिक सिद्धांत]]

Latest revision as of 20:15, 26 April 2023

इलेक्ट्रॉन घनत्व या इलेक्ट्रॉनिक घनत्व किसी दिए गए बिंदु के आस-पास अंतरिक्ष के एक अतिसूक्ष्म तत्व पर एक इलेक्ट्रॉन के मौजूद होने की संभावना का माप है। यह तीन स्थानिक चर के आधार पर एक अदिश राशि है और इसे सामान्यतः या के रूप में दर्शाया जाता है घनत्व, परिभाषा के माध्यम से सामान्यीकृत द्वारा -इलेक्ट्रॉन तरंग क्रिया निर्धारित किया जाता है जो खुद चर ( स्थानिक और चक्रण (भौतिकी) निर्देशांक) पर निर्भर करता है। इसके विपरीत, घनत्व एक चरण कारक तक तरंग फ़ंक्शन मॉड्यूल को निर्धारित करता है, जो घनत्व कार्यात्मक सिद्धांत की औपचारिक नींव प्रदान करता है।

आणविक यांत्रिकी के अनुसार, परमाणु पैमाने पर अनिश्चितता सिद्धांत के कारण एक इलेक्ट्रॉन के सटीक स्थान की भविष्यवाणी नहीं की जा सकती है, केवल इसके दिए गए स्थान पर होने की संभावना है; इसलिए परमाणुओं और अणुओं में इलेक्ट्रॉन ऐसे कार्य करते हैं मानो वे अंतरिक्ष में बिखर गए हों। एक-इलेक्ट्रॉन प्रणालियों के लिए, किसी भी बिंदु पर इलेक्ट्रॉन घनत्व तरंग क्रिया के वर्ग परिमाण के समानुपाती होता है।

परिभाषा

एक सामान्यीकृत एन-इलेक्ट्रॉन तरंग क्रिया (क्रमशः r और s एक निरूपित स्थानिक और चक्रण चर के साथ) के अनुरूप इलेक्ट्रॉनिक घनत्व को परिभाषित किया गया है[1]

जहां देखने योग्य घनत्व के अनुरूप ऑपरेटर है

ऊपर परिभाषित p(r) की गणना करके हम व्यंजक को इस प्रकार सरल बना सकते हैं।

शब्दों में: स्थिति आर में अभी भी एक इलेक्ट्रॉन को पकड़कर हम अन्य इलेक्ट्रॉनों की सभी संभावित व्यवस्थाओं का योग करते हैं। कारक एन उत्पन्न होता है क्योंकि सभी इलेक्ट्रॉन अप्रभेद्य होते हैं, और इसलिए सभी अभिन्न एक ही मूल्य का मूल्यांकन करते हैं।

हार्ट्री-फॉक और घनत्व कार्यात्मक सिद्धांत सिद्धांतों में, तरंग फ़ंक्शन को आम तौर पर कक्षीय से संबंधित व्यवसायों के साथ निर्मित एकल स्लेटर निर्धारक के रूप में दर्शाया जाता है। इन स्थितियों में, घनत्व सरल हो जाता है


सामान्य गुण

परिभाषा से, इलेक्ट्रॉन घनत्व इलेक्ट्रॉनों की कुल संख्या को एकीकृत करने वाला एक गैर-नकारात्मक कार्य है। इसके अलावा, गतिज ऊर्जा t के साथ एक प्रणाली के लिए, घनत्व असमानताओं को संतुष्ट करता है[2]

परिमित गतिज ऊर्जाओं के लिए, पहली (मजबूत) असमानता सोबोलिव अंतरिक्ष में घनत्व के वर्गमूल को रखती है . सामान्यीकरण और गैर-नकारात्मकता के साथ यह शारीरिक रूप से स्वीकार्य घनत्व वाले स्थान को परिभाषित करता है

दूसरी असमानता घनत्व को एल3स्थान में रखती है। सामान्यीकरण संपत्ति के साथ मिलकर L1 और L3 के एक सुपरसेट के चौराहे के भीतर स्वीकार्य घनत्व रखता है|

टोपोलॉजी

एक परमाणु की जमीनी स्थिति इलेक्ट्रॉनिक घनत्व को परमाणु नाभिक से दूरी के एक नीरस क्षयकारी कार्य के रूप में माना जाता है।[3]


परमाणु पुच्छल स्थिति

असीमित इलेक्ट्रॉन-नाभिक कूलम्ब क्षमता के परिणामस्वरूप एक अणु में प्रत्येक नाभिक पर इलेक्ट्रॉनिक घनत्व क्यूप्स प्रदर्शित करता है। गोलाकार औसत घनत्व के संदर्भ में तैयार किए गए काटो पुच्छल स्थिति द्वारा इस व्यवहार की मात्रा निर्धारित की जाती है,किसी दिए गए नाभिक के बारे में ,[4]

अर्थात्, गोलाकार रूप से औसत घनत्व का रेडियल व्युत्पन्न, किसी भी नाभिक पर मूल्यांकन किया जाता है, उस नाभिक पर घनत्व के दोगुने के बराबर होता है जो परमाणु संख्या () के ऋणात्मक से गुणा होता है |

स्पर्शोन्मुख व्यवहार

परमाणु पुच्छल स्थिति निकट-परमाणु प्रदान करती है (छोटा r) घनत्व व्यवहार के रूप में

लंबी दूरी (बड़ा r ) घनत्व का व्यवहार रूप लेते हुए भी जाना जाता है[5]

जहाँ I निकाय की आयनन ऊर्जा है।

प्रतिक्रिया घनत्व

घनत्व की एक और अधिक सामान्य परिभाषा रैखिक-प्रतिक्रिया घनत्व है।[6][7] यह घनत्व है कि जब किसी भी चक्रण-मुक्त, एक-इलेक्ट्रॉन ऑपरेटर के साथ अनुबंधित किया जाता है, तो ऊर्जा के व्युत्पन्न के रूप में परिभाषित संबंधित संपत्ति का उत्पादन करता है। उदाहरण के लिए, एक द्विध्रुवीय पल बाहरी चुंबकीय क्षेत्र के संबंध में ऊर्जा का व्युत्पन्न होता है और तरंग समारोह पर ऑपरेटर का अपेक्षित मूल्य नहीं होता है। कुछ सिद्धांतों के लिए वे समान होते हैं जब तरंग क्रिया अभिसरण होता है। व्यवसाय संख्या शून्य से दो की सीमा तक सीमित नहीं है, और इसलिए कभी-कभी अंतरिक्ष के कुछ क्षेत्रों में प्रतिक्रिया घनत्व भी नकारात्मक हो सकता है।[8]


अवलोकन

अणुओं में, बड़े इलेक्ट्रॉन घनत्व के क्षेत्र सामान्यतः परमाणु और उसके बंधनों के आसपास पाए जाते हैं। d-लोकलाइज्ड या संयुग्मित प्रणालियों में, जैसे कि फिनोल, बेंजीन और हीमोग्लोबिन और क्लोरोफिल जैसे यौगिकों में, इलेक्ट्रॉन घनत्व पूरे क्षेत्र में महत्वपूर्ण होता है, यानी बेंजीन में वे योजनाकार वलय के ऊपर और नीचे पाए जाते हैं। इसे कभी-कभी आरेखीय रूप से वैकल्पिक एकल और द्विबंध की श्रृंखला के रूप में दिखाया जाता है। फिनोल और बेंजीन के मामले में, एक षट्भुज के अंदर एक चक्र यौगिक की विस्थानीकृत प्रकृति को दर्शाता है। यह नीचे दिखाया गया है:

फिनोल की मेसोमेरिक संरचनाएं

कई वलय प्रणाली वाले यौगिकों में जो आपस में जुड़े हुए हैं, यह अब सटीक नहीं है, इसलिए बारी-बारी से एकल और द्विबंध का उपयोग किया जाता है। क्लोरोफिल और फिनोल जैसे यौगिकों में, कुछ आरेख उन क्षेत्रों के निरूपण का प्रतिनिधित्व करने के लिए एक बिंदीदार या धराशायी रेखा दिखाते हैं जहां एकल बंध के बगल में इलेक्ट्रॉन घनत्व अधिक होता है।[9] संयुग्मित प्रणालियां कभी-कभी उन क्षेत्रों का प्रतिनिधित्व कर सकती हैं जहां विभिन्न तरंग दैर्ध्य पर विद्युत चुम्बकीय विकिरण अवशोषित होती है जिसके परिणामस्वरूप यौगिक रंगीन दिखाई देते हैं। पॉलीमर में, इन क्षेत्रों को क्रोमोफोरस के रूप में जाना जाता है।

आणविक रासायनिक गणना में, इलेक्ट्रॉन घनत्व, p(r), निर्देशांक आर का एक कार्य है, इसलिए परिभाषित किया गया है कि p(r)dr एक छोटी मात्रा में इलेक्ट्रॉनों की संख्या है। बंद-खोल अणुओं के लिए, आधार कार्यों के उत्पादों के योग के रूप में लिखा जा सकता है, φ:

एनिलिन के लिए गणना की गई इलेक्ट्रॉन घनत्व, उच्च घनत्व मान परमाणु की स्थिति को इंगित करते हैं, मध्यवर्ती घनत्व मान रासायनिक बंधन पर जोर देते हैं, कम मान अणु के आकार और आकार के बारे में जानकारी प्रदान करते हैं।

जहां p घनत्व मैट्रिक्स है। इलेक्ट्रॉन घनत्व प्रायः चुने गए घनत्व के मान द्वारा निर्धारित सतह के आकार और आकार के साथ, या संलग्न कुल इलेक्ट्रॉनों के प्रतिशत के संदर्भ में एक आइसोसफेस (एक सघनता सतह) के संदर्भ में प्रदान किया जाता है।

आणविक मॉडलिंग सॉफ्टवेयर प्रायः इलेक्ट्रॉन घनत्व की चित्रमय छवियां प्रदान करता है। उदाहरण के लिए, एनिलिन में (दाईं ओर छवि देखें)। इलेक्ट्रॉन घनत्व सहित ग्राफिकल मॉडल, रसायन विज्ञान शिक्षा में सामान्यतः इस्तेमाल किया जाने वाला उपकरण है।[10] ध्यान दें कि एनिलिन की सबसे बाईं ओर की छवि में, उच्च इलेक्ट्रॉन घनत्व कार्बन और नाइट्रोजन से जुड़े हैं, लेकिन उनके नाभिक में केवल एक प्रोटॉन वाले हाइड्रोजन दिखाई नहीं दे रहे हैं। यही कारण है कि एक्स-रे विवर्तन में हाइड्रोजन की स्थिति का पता लगाने में मुश्किल होती है।

अधिकांश आणविक मॉडलिंग प्रक्रिया सामग्री (सॉफ़्टवेयर) पैकेज उपयोगकर्ता को इलेक्ट्रॉन घनत्व के लिए एक मान चुनने की अनुमति देते हैं, जिसे प्रायः आइसोवैल्यू कहा जाता है। [11] कुछ प्रक्रिया सामग्री (सॉफ़्टवेयर) संलग्न कुल इलेक्ट्रॉनों के प्रतिशत के संदर्भ में इलेक्ट्रॉन घनत्व के विनिर्देशन की भी अनुमति देता है। आइसोवैल्यू के आधार पर (सामान्य इकाइयां इलेक्ट्रॉन प्रति क्यूबिक बोह्र हैं), या संलग्न कुल इलेक्ट्रॉनों का प्रतिशत, परमाणुओं का पता लगाने के लिए इलेक्ट्रॉन घनत्व सतह का उपयोग किया जा सकता है, रासायनिक बंधों से जुड़े इलेक्ट्रॉन घनत्व पर जोर दिया जा सकता है, या समग्र आणविक आकार को इंगित किया जा सकता है।[12] ग्राफिक रूप से, इलेक्ट्रॉन घनत्व सतह एक कैनवास के रूप में भी कार्य करती है जिस पर अन्य इलेक्ट्रॉनिक गुण प्रदर्शित किए जा सकते हैं। इलेक्ट्रोस्टैटिक क्षमता मानचित्र (इलेक्ट्रॉन घनत्व परमानचित्र किए गए इलेक्ट्रोस्टैटिक सशक्त का गुण) एक अणु में आवेश वितरण के लिए एक संकेतक प्रदान करता है। स्थानीय आयनीकरण संभावित नक्शा (इलेक्ट्रॉन घनत्व परमानचित्र किए गए आयनीकरण ऊर्जा की संपत्ति) इलेक्ट्रोफिलिसिटी का एक संकेतक प्रदान करता है। और LUMO मानचित्र (इलेक्ट्रॉन घनत्व पर सबसे कम खाली आणविक कक्षीय मानचित्रण) न्यूक्लियोफिलिसिटी के लिए एक संकेतक प्रदान कर सकता है।[13]


प्रयोग

कई प्रायोगिक तकनीकें इलेक्ट्रॉन घनत्व को माप सकती हैं। उदाहरण के लिए, एक्स-रे विवर्तन स्कैनिंग के माध्यम से आणविक क्रिस्टलोग्राफी, जहां एक उपयुक्त तरंग दैर्ध्य की एक्स-रे को एक नमूने की ओर लक्षित किया जाता है और समय के साथ मापन किया जाता है, इलेक्ट्रॉनों के स्थानों का एक संभाव्य प्रतिनिधित्व देता है। इन स्थितियों से, आणविक संरचनाओं, साथ ही सटीक आवेश घनत्व वितरण, प्रायः क्रिस्टलीकृतप्रणाली के लिए निर्धारित किए जा सकते हैं। आणविक इलेक्ट्रोडायनामिक्स और आणविक क्षेत्र सिद्धांत की कुछ शाखाएँ भी इलेक्ट्रॉन सुपरपोजिशन सिद्धांत और अन्य संबंधित घटनाओं का अध्ययन और विश्लेषण करती हैं, जैसे गैर-सहसंयोजक इंटरैक्शन इंडेक्स जो इलेक्ट्रॉन घनत्व का उपयोग करके गैर-सहसंयोजक इंटरैक्शन के अध्ययन की अनुमति देता है। मुल्लिकेन जनसंख्या विश्लेषण अणुओं में इलेक्ट्रॉन घनत्व पर आधारित है और परमाणु आवेशों का अनुमान देने के लिए परमाणुओं के बीच घनत्व को विभाजित करने का एक तरीका है।

ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी (TEM) और गहरे अप्रत्यास्थ बिखरने के साथ-साथ अन्य उच्च ऊर्जा कण प्रयोगों में, उच्च ऊर्जा इलेक्ट्रॉन, इलेक्ट्रॉन घनत्व के प्रत्यक्ष प्रतिनिधित्व देने के लिए इलेक्ट्रॉन बादल के साथ संपर्क करते हैं। TEM, स्कैनिंग टनलिंग माइक्रोस्कोप (STM) और परमाणु-बल माइक्रोस्कोपी (AFM) का उपयोग विशिष्ट व्यक्तिगत परमाणुओं के इलेक्ट्रॉन घनत्व की जांच के लिए किया जा सकता है।


चक्रण घनत्व

चक्रण घनत्व इलेक्ट्रॉन घनत्व है जो मुक्त कणों पर लागू होता है। इसे एक चक्रण ऋण के इलेक्ट्रॉनों के कुल इलेक्ट्रॉन घनत्व के रूप में परिभाषित किया जाता है, जो दूसरे चक्रण के इलेक्ट्रॉनों के कुल इलेक्ट्रॉन घनत्व का होता है। प्रयोगात्मक रूप से इसे मापने के तरीकों में से एक इलेक्ट्रॉन चक्रण अनुनाद है,[14] न्यूट्रॉन विवर्तन 3d-स्पेस में चक्रण घनत्व के प्रत्यक्ष मानचित्रण की अनुमति देता है।

यह भी देखें

संदर्भ

  1. Parr, Robert G.; Yang, Weitao (1989). Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press. ISBN 978-0-19-509276-9.
  2. Lieb, Elliott H. (1983). "Density functionals for coulomb systems". International Journal of Quantum Chemistry. 24 (3): 243–277. doi:10.1002/qua.560240302.
  3. Ayers, Paul W.; Parr, Robert G. (2003). "Sufficient condition for monotonic electron density decay in many-electron systems". International Journal of Quantum Chemistry. 95 (6): 877–881. doi:10.1002/qua.10622.
  4. Kato, Tosio (1957). "On the eigenfunctions of many-particle systems in quantum mechanics". Communications on Pure and Applied Mathematics. 10 (2): 151–177. doi:10.1002/cpa.3160100201.
  5. Morrell, Marilyn M.; Parr, Robert. G.; Levy, Mel (1975). "Calculation of ionization potentials from density matrices and natural functions, and the long-range behavior of natural orbitals and electron density". Journal of Chemical Physics. 62 (2): 549–554. Bibcode:1975JChPh..62..549M. doi:10.1063/1.430509.
  6. Handy, Nicholas C.; Schaefer, Henry F. (1984). "On the evaluation of analytic energy derivatives for correlated wave functions". The Journal of Chemical Physics. 81 (11): 5031–5033. Bibcode:1984JChPh..81.5031H. doi:10.1063/1.447489.
  7. Wiberg, Kenneth B.; Hadad, Christopher M.; Lepage, Teresa J.; Breneman, Curt M.; Frisch, Michael J. (1992). "Analysis of the effect of electron correlation on charge density distributions". The Journal of Physical Chemistry. 96 (2): 671–679. doi:10.1021/j100181a030.
  8. Gordon, Mark S.; Schmidt, Michael W.; Chaban, Galina M.; Glaesemann, Kurt R.; Stevens, Walter J.; Gonzalez, Carlos (1999). "A natural orbital diagnostic for multiconfigurational character in correlated wave functions". J. Chem. Phys. 110 (9): 4199–4207. Bibcode:1999JChPh.110.4199G. doi:10.1063/1.478301.
  9. e.g., the white line in the diagram on Chlorophylls and Carotenoids Archived 2017-08-09 at the Wayback Machine
  10. Alan J. Shusterman and Gwendolyn P. Shusterman (1997). "Teaching Chemistry with Electron Density Models". The Journal of Chemical Education. 74 (7): 771–775. Bibcode:1997JChEd..74..771S. doi:10.1021/ed074p771.{{cite journal}}: CS1 maint: uses authors parameter (link)
  11. or example, the Spartan program from Wavefunction, Inc.
  12. Warren J. Hehre, Alan J. Shusterman, Janet E. Nelson (1998). The Molecular Modeling Workbook for Organic Chemistry. Irvine, California: Wavefunction. pp. 61–86. ISBN 978-1-890661-18-2.{{cite book}}: CS1 maint: uses authors parameter (link)
  13. Hehre, Warren J. (2003). A Guide to Molecular Mechanics and Quantum Chemical Calculations. Irvine, California: Wavefunction, Inc. pp. 85–100. ISBN 978-1-890661-06-9.
  14. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "spin density". doi:10.1351/goldbook.S05864