टॉर्क: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 67: Line 67:


== परिभाषा और कोणीय गति से संबंध ==
== परिभाषा और कोणीय गति से संबंध ==
[[File:Torque, position, and force.svg|thumb|right|कण अपने घूर्णन अक्ष के सापेक्ष '''r''' स्थिति में स्थित होता है। जब बल '''F''' कण पर लगाया जाता है, तो केवल लंबवत घटक '''F'''<sub>⊥</sub> टॉर्क उत्पन्न करता है। यह टॉर्क {{math|1='''τ''' = '''r''' × '''F'''}} परिमाण है {{math|1=''τ'' = <nowiki>|</nowiki>'''r'''<nowiki>|&thinsp;|</nowiki>'''F'''<sub>⊥</sub><nowiki>|</nowiki> = <nowiki>|</nowiki>'''r'''<nowiki>|&thinsp;|</nowiki>'''F'''<nowiki>|</nowiki> sin ''θ''}} और पृष्ठ से बाहर की ओर निर्देशित है। ]][[ लीवर |लीवर के फुलक्रम]] ([[ लीवर आर्म |लीवर आर्म]] की लंबाई) से इसकी दूरी से गुणा करके लीवर पर लंबवत रूप से लगाया गया बल इसका टॉर्क है। तीन [[ न्यूटन (इकाई) |न्यूटन]] के बल ने फुलक्रम से दो [[ मीटर |मीटर]] सेकेंड लगाए, उदाहरण के लिए, न्यूटन के बल के रूप में एक ही टॉर्क को फुलक्रम से छह मीटर की दूरी पर लगाया जाता है। टॉर्क की दिशा [[ राइट हैंड ग्रिप नियम |राइट हैंड ग्रिप नियम]] का उपयोग करके निर्धारित की जा सकती है: यदि दाहिने हाथ की उंगलियों को लीवर आर्म की दिशा से बल की दिशा में घुमाया जाता है, तो अंगूठा किस दिशा में इंगित करता है टॉर्कः<ref>{{cite web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/tord.html|title=Right Hand Rule for Torque|access-date=2007-09-08}}</ref>
[[File:Torque, position, and force.svg|thumb|right|कण अपने घूर्णन अक्ष के सापेक्ष '''r''' स्थिति में स्थित होता है। जब बल '''F''' कण पर लगाया जाता है, तो केवल लंबवत घटक '''F'''<sub>⊥</sub> टॉर्क उत्पन्न करता है। यह टॉर्क {{math|1='''τ''' = '''r''' × '''F'''}} परिमाण है {{math|1=''τ'' = |'''r'''<nowiki>|&thinsp;|'''F'''<sub>⊥</sub>| '''r'''|&thinsp;|'''F'''|sin ''θ''}} और पृष्ठ से बाहर की ओर निर्देशित है। ]][[ लीवर |लीवर के फुलक्रम]] ([[ लीवर आर्म |लीवर आर्म]] की लंबाई) से इसकी दूरी से गुणा करके लीवर पर लंबवत रूप से लगाया गया बल इसका टॉर्क है। तीन [[ न्यूटन (इकाई) |न्यूटन]] के बल ने फुलक्रम से दो [[ मीटर |मीटर]] सेकेंड लगाए, उदाहरण के लिए, न्यूटन के बल के रूप में एक ही टॉर्क को फुलक्रम से छह मीटर की दूरी पर लगाया जाता है। टॉर्क की दिशा [[ राइट हैंड ग्रिप नियम |राइट हैंड ग्रिप नियम]] का उपयोग करके निर्धारित की जा सकती है: यदि दाहिने हाथ की उंगलियों को लीवर आर्म की दिशा से बल की दिशा में घुमाया जाता है, तो अंगूठा किस दिशा में इंगित करता है टॉर्क<ref>{{cite web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/tord.html|title=Right Hand Rule for Torque|access-date=2007-09-08}}</ref>


सामान्यतः, एक बिंदु कण पर टॉर्क (जिसकी स्थिति '''r''' कुछ संदर्भ फ्रेम में होती है) को [[ क्रॉस उत्पाद |क्रॉस गुणांक]] <math>\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F},</math> के रूप में परिभाषित किया जा सकता है:
सामान्यतः, एक बिंदु कण पर टॉर्क (जिसकी स्थिति '''r''' कुछ संदर्भ फ्रेम में होती है) को [[ क्रॉस उत्पाद |क्रॉस गुणांक]] <math>\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F},</math> के रूप में परिभाषित किया जा सकता है:
Line 77: Line 77:
जहां ''F'' प्रयुक्त बल का परिमाण है, और ''θ'' स्थिति और बल सदिशों के बीच का कोण है। वैकल्पिक रूप से, <math>\tau = rF_{\perp},</math>
जहां ''F'' प्रयुक्त बल का परिमाण है, और ''θ'' स्थिति और बल सदिशों के बीच का कोण है। वैकल्पिक रूप से, <math>\tau = rF_{\perp},</math>


जहाँ ''F''<sub>⊥</sub> कण की स्थिति के लिए लंबवत निर्देशित बल की मात्रा है। कण की स्थिति सदिश के समानांतर निर्देशित कोई भी बल टॉर्क उत्पन्न नहीं करता है<ref name="halliday_184-85{{cite book| last1=Halliday| first1=David|last2=Resnick|first2=Robert|title=Fundamentals of Physics|publisher=John Wiley & Sons, Inc.|year=1970|pages=184–85}}</ref"></ref><ref>{{Cite book|title=College Physics: A Strategic Approach|last1=Knight|first1=Randall|last2=Jones|first2=Brian| last3=Field|first3=Stuart| publisher=Pearson|others=Jones, Brian, 1960-, Field, Stuart, 1958-|year=2016|isbn=9780134143323| edition=Third edition, technology update|location=Boston|pages=199|oclc=922464227}}</ref>
जहाँ ''F''<sub>⊥</sub> कण की स्थिति के लिए लंबवत निर्देशित बल की मात्रा है। कण की स्थिति सदिश के समानांतर निर्देशित कोई भी बल टॉर्क उत्पन्न नहीं करता है<ref name="halliday_184-85">{{cite book| last1=Halliday| first1=David|last2=Resnick|first2=Robert|title=Fundamentals of Physics|publisher=John Wiley & Sons, Inc.|year=1970|pages=184–85}}</ref><ref>{{Cite book|title=College Physics: A Strategic Approach|last1=Knight|first1=Randall|last2=Jones|first2=Brian| last3=Field|first3=Stuart| publisher=Pearson|others=Jones, Brian, 1960-, Field, Stuart, 1958-|year=2016|isbn=9780134143323| edition=Third edition, technology update|location=Boston|pages=199|oclc=922464227}}</ref>


यह क्रॉस गुणांक के गुणों से इस प्रकार है कि टॉर्क सदिश स्थिति और बल दोनों सदिशों के लंबवत है। इसके विपरीत, टॉर्क सदिश उस विमान को परिभाषित करता है जिसमें स्थिति और बल सदिश झूठ बोलते हैं। परिणामी टॉर्क सदिश दिशा दाहिने हाथ के नियम द्वारा निर्धारित होती है<ref name="halliday_184-85" />
यह क्रॉस गुणांक के गुणों से इस प्रकार है कि टॉर्क सदिश स्थिति और बल दोनों सदिशों के लंबवत है। इसके विपरीत, टॉर्क सदिश उस विमान को परिभाषित करता है जिसमें स्थिति और बल सदिश झूठ बोलते हैं। परिणामी टॉर्क सदिश दिशा दाहिने हाथ के नियम द्वारा निर्धारित होती है<ref name="halliday_184-85" />
Line 117: Line 117:


उपरोक्त प्रमाण को प्रत्येक बिंदु कणों पर प्रयुक्त करके और फिर सभी बिंदु कणों को जोड़कर प्रमाण को बिंदु कणों की प्रणाली के लिए सामान्यीकृत किया जा सकता है। इसी तरह, द्रव्यमान के अन्दर प्रत्येक बिंदु पर उपरोक्त प्रमाण को प्रयुक्त करके प्रमाण को निरंतर द्रव्यमान के लिए सामान्यीकृत किया जा सकता है, और फिर [[ इंटीग्रल कैलकुस |पूरे द्रव्यमान पर]] को एकीकृत कर सकता है।
उपरोक्त प्रमाण को प्रत्येक बिंदु कणों पर प्रयुक्त करके और फिर सभी बिंदु कणों को जोड़कर प्रमाण को बिंदु कणों की प्रणाली के लिए सामान्यीकृत किया जा सकता है। इसी तरह, द्रव्यमान के अन्दर प्रत्येक बिंदु पर उपरोक्त प्रमाण को प्रयुक्त करके प्रमाण को निरंतर द्रव्यमान के लिए सामान्यीकृत किया जा सकता है, और फिर [[ इंटीग्रल कैलकुस |पूरे द्रव्यमान पर]] को एकीकृत कर सकता है।


== इकाइयां ==
== इकाइयां ==
Line 158: Line 169:


:<math qid=Q104145165> W = \int_{\theta_1}^{\theta_2} \tau\ \mathrm{d}\theta,</math>
:<math qid=Q104145165> W = \int_{\theta_1}^{\theta_2} \tau\ \mathrm{d}\theta,</math>
जहां ''τ'' टॉर्क है, और ''θ''<sub>1</sub> और ''θ''<sub>2</sub> प्रारंभिक और अंतिम [[ कोणीय स्थिति |कोणीय स्थिति]] s (क्रमशः) बॉडी का प्रतिनिधित्व करते हैं<ref name="kleppner_267-68{{cite book|last1=Kleppner |first1=Daniel |last2=Kolenkow |first2=Robert|title=An Introduction to Mechanics |url=https://archive.org/details/introductiontome00dani |url-access=registration|publisher=McGraw-Hill |year=1973|pages=[https://archive.org/details/introductiontome00dani/page/267 267–68]|isbn=9780070350489 }}</ref>
जहां ''τ'' टॉर्क है, और ''θ''<sub>1</sub> और ''θ''<sub>2</sub> प्रारंभिक और अंतिम [[ कोणीय स्थिति |कोणीय स्थिति]] s (क्रमशः) बॉडी का प्रतिनिधित्व करते हैं<ref name="kleppner_267-68">{{cite book|last1=Kleppner |first1=Daniel |last2=Kolenkow |first2=Robert|title=An Introduction to Mechanics |url=https://archive.org/details/introductiontome00dani |url-access=registration|publisher=McGraw-Hill |year=1973|pages=[https://archive.org/details/introductiontome00dani/page/267 267–268]|isbn=9780070350489 }}</ref>




Line 239: Line 250:
<math>{\displaystyle {\begin{aligned}{\text{power}}&={\frac {{\text{force}}\cdot {\text{linear distance}}}{\text{time}}}\\[6pt]&={\frac {\left({\dfrac {\text{torque}}{r}}\right)\cdot (r\cdot {\text{angular speed}}\cdot t)}{t}}\\[6pt]&={\text{torque}}\cdot {\text{angular speed}}.\end{aligned}}}</math>
<math>{\displaystyle {\begin{aligned}{\text{power}}&={\frac {{\text{force}}\cdot {\text{linear distance}}}{\text{time}}}\\[6pt]&={\frac {\left({\dfrac {\text{torque}}{r}}\right)\cdot (r\cdot {\text{angular speed}}\cdot t)}{t}}\\[6pt]&={\text{torque}}\cdot {\text{angular speed}}.\end{aligned}}}</math>


त्रिज्या ''r'' और समय ''t'' समीकरण से बाहर हो गए हैं। चूंकि, व्युत्पत्ति की शुरुआत में रैखिक गति और कोणीय गति के बीच प्रत्यक्ष संबंध के अनुसार, कोणीय गति समय की प्रति इकाई रेडियन में होनी चाहिए। यदि घूर्णन गति को प्रति इकाई समय में परिक्रमण में मापा जाता है, तो रैखिक गति और दूरी आनुपातिक रूप से बढ़ जाती है{{pi}} उपरोक्त व्युत्पत्ति में देने के लिए:
त्रिज्या ''r'' और समय ''t'' समीकरण से बाहर हो गए हैं। चूंकि, व्युत्पत्ति की शुरुआत में रैखिक गति और कोणीय गति के बीच प्रत्यक्ष संबंध के अनुसार, कोणीय गति समय की प्रति इकाई रेडियन में होनी चाहिए। यदि घूर्णन गति को प्रति इकाई समय में परिक्रमण में मापा जाता है, तो रैखिक गति और दूरी आनुपातिक रूप से बढ़ जाती है, उपरोक्त व्युत्पत्ति में {{pi}} देने के लिए:


: <math>\text{power} = \text{torque} \cdot 2 \pi \cdot \text{rotational speed}. \,</math>
: <math>\text{power} = \text{torque} \cdot 2 \pi \cdot \text{rotational speed}. \,</math>
Line 248: Line 259:


क्योंकि <math>5252.113122 \approx \frac {33,000} {2 \pi} \,</math> है।
क्योंकि <math>5252.113122 \approx \frac {33,000} {2 \pi} \,</math> है।


== क्षणों का सिद्धांत ==
== क्षणों का सिद्धांत ==
Line 294: Line 316:
{{Classical mechanics SI units}}
{{Classical mechanics SI units}}


[[Category:टॉर्क| ]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: भौतिक मात्रा]]
[[Category:Collapse templates]]
[[Category: रोटेशन]]
[[Category:Commons category link is locally defined]]
[[Category: बल]]
[[Category:Infobox templates|physical quantity]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mechanics templates]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using Math with unknown parameters|7 = sin <i>θ</i>]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages using duplicate arguments in template calls]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 11:25, 27 April 2023

Torque
Torque animation.gif
Relationship between force F, torque τ, linear momentum p, and angular momentum L in a system which has rotation constrained to only one plane (forces and moments due to gravity and friction not considered).
सामान्य प्रतीक
, M
Si   इकाईN⋅m
अन्य इकाइयां
pound-force-feet, lbf⋅inch, ozf⋅in
SI आधार इकाइयाँ मेंkg⋅m2⋅s−2
आयामM L2T−2

भौतिकी और यांत्रिकी में, टॉर्क रैखिक बल के घूर्णी समकक्ष है।[1] इसे अध्ययन के क्षेत्र के आधार पर क्षण,बल का क्षण,घूर्णन बल या मोड़ प्रअभिव्यक्ति के रूप में भी जाना जाता है। यह बॉडी की घूर्णी गति में परिवर्तन उत्पन्न करने के लिए बल की क्षमता का प्रतिनिधित्व करता है। अवधारणा की उत्पत्ति आर्किमिडीज द्वारा लीवर एस के उपयोग के अध्ययन के साथ हुई। जिस तरह रैखिक बल धक्का या खिंचाव है, उसी तरह टॉर्क को विशिष्ट अक्ष के चारों ओर वस्तु के लिए मोड़ के रूप में माना जा सकता है। टॉर्क को बल के परिमाण के गुणनफल के रूप में परिभाषित किया गया है और लाइन ऑफ एक्शन की लंबवत दूरी का घूर्णन अक्ष के चारों ओर घुमाया जाता है। टॉर्क के लिए प्रतीक सामान्यतः है, लोअरकेस ग्रीक अक्षर ताऊ। जब पल बल के रूप में संदर्भित किया जाता है,तो इसे सामान्यतः M द्वारा दर्शाया जाता है।

तीन आयामों में, टॉर्क स्यूडोसदिश है; बिंदु कण के लिए, यह स्थिति सदिश के क्रॉस गुणांक (दूरी सदिश) और बल सदिश द्वारा दिया गया है। कठोर बॉडी के बल आघूर्ण का परिमाण तीन मात्राओं पर निर्भर करता है: प्रयुक्त बल, लीवर आर्म सदिश[2] उस बिंदु को जोड़ना जिसके बारे में बल के अनुप्रयोग के बिंदु पर टॉर्क को मापा जा रहा है, और बल और लीवर आर्म सदिश के बीच का कोण। प्रतीकों में:

जहाँ पर, टॉर्क सदिश है और टॉर्क का परिमाण है, स्थिति सदिश है (उस बिंदु से सदिश जिसके बारे में टॉर्क को उस बिंदु तक मापा जा रहा है जहां बल लगाया जाता है), बल सदिश है, क्रॉस गुणांक को दर्शाता है, जो सदिश उत्पन्न करता है जो दोनों r और F के लिए दाहिने हाथ के नियम का पालन करते हुए लंबवत है, बल सदिश और लीवर आर्म सदिश के बीच का कोण है।

टॉर्क के लिए एसआई इकाई न्यूटन-मीटर (N⋅m) है। टॉर्क की इकाइयों के बारे में अधिक जानकारी के लिए देखें § इकाई.

शब्दावली परिभाषित करना

कहा जाता है कि टॉर्क (लैटिन टोरक्यूर टू ट्विस्ट) शब्द का सुझाव जेम्स थॉमसन द्वारा दिया गया था और प्रिंट में दिखाई दिया अप्रैल, 1884[3][4][5] उपयोग उसी वर्ष सिल्वेनस पी. थॉम्पसन द्वारा डायनेमो-इलेक्ट्रिक मशीनरी के पहले संस्करण में प्रमाणित किया गया है।[5] थॉम्पसन इस शब्द को निम्नानुसार प्रेरित करता है[4]

"जिस तरह बल की न्यूटोनियन परिभाषा वह है जो गति (एक रेखा के साथ) उत्पन्न करती है या उत्पन्न करती है, इसलिए टॉर्क को उस रूप में परिभाषित किया जा सकता है जो उत्पन्न करता है या झुकता है मरोड़ (एक धुरी के चारों ओर) उत्पन्न करने के लिए। ऐसे शब्द का उपयोग करना बेहतर है जो इस क्रिया को एक निश्चित इकाई के रूप में मानता है, अतिरिक्त इसके कि "युग्म" और "क्षण," जो अधिक जटिल विचारों का सुझाव देते हैं। शाफ्ट को घुमाने के लिए लगाए गए मोड़ की एकल धारणा रैखिक बल लगाने की अधिक जटिल धारणा से उत्तम है (या बलों की एक जोड़ी) एक निश्चित उत्तोलन के साथ।"

आज, भौगोलिक स्थिति और अध्ययन के क्षेत्र के आधार पर विभिन्न शब्दावली का उपयोग करने के लिए टॉर्क को संदर्भित किया जाता है। यह लेख 'टॉर्क' शब्द के उपयोग में अमेरिकी भौतिकी में प्रयुक्त परिभाषा का अनुसरण करता है।[6]

यूके और यूएस में मैकेनिकल इंजीनियरिंग में, टॉर्क को बल के क्षण के रूप में संदर्भित किया जाता है, जिसे सामान्यतः पल तक छोटा किया जाता है।[7] ये शब्द यूएस भौतिकी में विनिमेय हैं[6] और यूके भौतिकी शब्दावली, यूएस मैकेनिकल इंजीनियरिंग के विपरीत, जहां 'टॉर्क' शब्द का प्रयोग जोड़े के निकट से संबंधित परिणामी क्षण के लिए किया जाता है।[7]



यूएस मैकेनिकल इंजीनियरिंग शब्दावली में टॉर्क और क्षण

यूएस मैकेनिकल इंजीनियरिंग में, टॉर्क को गणितीय रूप से वस्तु के कोणीय गति के परिवर्तन की दर के रूप में परिभाषित किया गया है (भौतिकी में इसे नेट टॉर्क कहा जाता है)। टॉर्क की परिभाषा में कहा गया है कि किसी वस्तु के कोणीय वेग या जड़ता में से एक या दोनों बदल रहे हैं। क्षण सामान्य शब्द है जिसका प्रयोग एक या एक से अधिक बल एस की प्रवृत्ति के लिए किया जाता है जो किसी वस्तु को अक्ष के चारों ओर घुमाता है, लेकिन आवश्यक नहीं कि वस्तु के कोणीय गति को बदलने के लिए (अवधारणा जिसे टॉर्क कहा जाता है) घूमता है।[7]

उदाहरण के लिए, शाफ्ट पर लगाया गया घूर्णी बल त्वरण का कारण बनता है, जैसे कि ड्रिल बिट आराम से तेज हो रहा है, जिसके परिणामस्वरूप पल में टॉर्क कहा जाता है। इसके विपरीत, बीम पर पार्श्व बल क्षण उत्पन्न करता है (जिसे झुकने वाला क्षण कहा जाता है), लेकिन चूंकि बीम की कोणीय गति नहीं बदल रही है, इसलिए इस झुकने वाले क्षण को टॉर्क' नहीं कहा जाता है। इसी प्रकार किसी वस्तु पर कोई बल युग्म जिसके कोणीय संवेग में कोई परिवर्तन नहीं होता है, ऐसे क्षण को भी टॉर्क नहीं कहा जाता है।

परिभाषा और कोणीय गति से संबंध

कण अपने घूर्णन अक्ष के सापेक्ष r स्थिति में स्थित होता है। जब बल F कण पर लगाया जाता है, तो केवल लंबवत घटक F टॉर्क उत्पन्न करता है। यह टॉर्क τ = r × F परिमाण है r<nowiki> और पृष्ठ से बाहर की ओर निर्देशित है।

लीवर के फुलक्रम (लीवर आर्म की लंबाई) से इसकी दूरी से गुणा करके लीवर पर लंबवत रूप से लगाया गया बल इसका टॉर्क है। तीन न्यूटन के बल ने फुलक्रम से दो मीटर सेकेंड लगाए, उदाहरण के लिए, न्यूटन के बल के रूप में एक ही टॉर्क को फुलक्रम से छह मीटर की दूरी पर लगाया जाता है। टॉर्क की दिशा राइट हैंड ग्रिप नियम का उपयोग करके निर्धारित की जा सकती है: यदि दाहिने हाथ की उंगलियों को लीवर आर्म की दिशा से बल की दिशा में घुमाया जाता है, तो अंगूठा किस दिशा में इंगित करता है टॉर्क[8]

सामान्यतः, एक बिंदु कण पर टॉर्क (जिसकी स्थिति r कुछ संदर्भ फ्रेम में होती है) को क्रॉस गुणांक के रूप में परिभाषित किया जा सकता है:

जहाँ F कण पर लगने वाला बल है। टॉर्क का परिमाण τ द्वारा दिया जाता है

जहां F प्रयुक्त बल का परिमाण है, और θ स्थिति और बल सदिशों के बीच का कोण है। वैकल्पिक रूप से,

जहाँ F कण की स्थिति के लिए लंबवत निर्देशित बल की मात्रा है। कण की स्थिति सदिश के समानांतर निर्देशित कोई भी बल टॉर्क उत्पन्न नहीं करता है[9][10]

यह क्रॉस गुणांक के गुणों से इस प्रकार है कि टॉर्क सदिश स्थिति और बल दोनों सदिशों के लंबवत है। इसके विपरीत, टॉर्क सदिश उस विमान को परिभाषित करता है जिसमें स्थिति और बल सदिश झूठ बोलते हैं। परिणामी टॉर्क सदिश दिशा दाहिने हाथ के नियम द्वारा निर्धारित होती है[9]

एक बॉडी पर शुद्ध टॉर्क बॉडी के कोणीय गति के परिवर्तन की दर निर्धारित करता है,

जहां L कोणीय संवेग सदिश है और t समय है।

एक बिंदु कण की गति के लिए,

जहाँ पर I जड़ता का क्षण है और ω कक्षीय कोणीय वेग स्यूडोसदिश है। यह इस प्रकार है कि

जहां α कण का कोणीय त्वरण है, और p | | इसके रैखिक संवेग का रेडियल घटक है। यह समीकरण घूर्णन हैबिंदु कणों के लिए न्यूटन के दूसरे नियम का सामान्य एनालॉग, और किसी भी प्रकार के प्रक्षेपवक्र के लिए मान्य है। ध्यान दें कि यद्यपि बल और त्वरण हमेशा समानांतर और सीधे आनुपातिक होते हैं, टॉर्क τ को कोणीय त्वरण α के समानांतर या सीधे आनुपातिक होने की आवश्यकता नहीं है। यह इस तथ्य से उत्पन्न होता है कि यद्यपि द्रव्यमान हमेशा संरक्षित होता है, सामान्य रूप से जड़ता का क्षण नहीं होता है।

परिभाषाओं की तुल्यता का प्रमाण

एकल बिंदु कण के लिए कोणीय गति की परिभाषा है:

जहाँ p कण का रैखिक संवेग है और r मूल बिन्दु से स्थिति सदिश है। इसका समय-व्युत्पन्न है:

यह परिणाम सदिश को घटकों में विभाजित करके और गुणांक नियम को प्रयुक्त करके सरलता से सिद्ध किया जा सकता है। अब बल (द्रव्यमान स्थिर है या नहीं) की परिभाषा और वेग की परिभाषा का उपयोग करते हुए:

संवेग का इसके संबंधित वेग के साथ क्रॉस उत्पाद शून्य है क्योंकि वेग और संवेग समानांतर हैं, इसलिए दूसरा शब्द लुप्त हो जाता है।

परिभाषा के अनुसार, टॉर्क τ = r × F है। इसलिए, एक कण पर टॉर्क समय के संबंध में इसकी कोणीय गति के पहले व्युत्पन्न के बराबर है।

यदि कई बल लगाए जाते हैं, तो इसके अतिरिक्त न्यूटन का दूसरा नियम Fnet = ma पढ़ा जाता है, और यह इस प्रकार है:

यह बिंदु कणों के लिए सामान्य प्रमाण है।

उपरोक्त प्रमाण को प्रत्येक बिंदु कणों पर प्रयुक्त करके और फिर सभी बिंदु कणों को जोड़कर प्रमाण को बिंदु कणों की प्रणाली के लिए सामान्यीकृत किया जा सकता है। इसी तरह, द्रव्यमान के अन्दर प्रत्येक बिंदु पर उपरोक्त प्रमाण को प्रयुक्त करके प्रमाण को निरंतर द्रव्यमान के लिए सामान्यीकृत किया जा सकता है, और फिर पूरे द्रव्यमान पर को एकीकृत कर सकता है।







इकाइयां

टॉर्क में आयाम बल समय दूरी , प्रतीकात्मक रूप से T−2L2M है। चूंकि वे मौलिक आयाम ऊर्जा या कार्य के लिए समान हैं, आधिकारिक एसआई साहित्य इकाई न्यूटन मीटर (N⋅m) का उपयोग करने का सुझाव देता है और जूल कभी नहीं[11][12] इकाई न्यूटन मीटर को सही ढंग से N⋅m निरूपित किया जाता है।[12]

टॉर्क के लिए पारंपरिक इंपीरियल और यू.एस. प्रथागत इकाइयां पाउंड फुट (एलबीएफ-फीट), या छोटे मूल्यों के लिए पाउंड इंच (एलबीएफ-इन) हैं। अमेरिका में, टॉर्क को सामान्यतः फुट-पाउंड (एलबी-फीट या फीट-एलबी के रूप में चिह्नित) और इंच-पाउंड (इन-एलबी के रूप में चिह्नित) के रूप में जाना जाता है।[13][14] प्रैक्टिशनर यह जानने के लिए संदर्भ और संक्षिप्त नाम में हाइफ़न पर निर्भर करते हैं कि ये टॉर्क को संदर्भित करते हैं न कि ऊर्जा या द्रव्यमान के क्षण को (जैसा कि प्रतीकवाद ft-lb ठीक से इंगित करेगा)।

विशेष स्थिति और अन्य तथ्य

पल हाथ सूत्र

मोमेंट आर्म डायग्राम

बहुत ही उपयोगी विशेष स्थिति, जिसे अधिकांशतः भौतिकी के अतिरिक्त अन्य क्षेत्रों में टॉर्क की परिभाषा के रूप में दिया जाता है, इस प्रकार है:

आघूर्ण भुजा का निर्माण ऊपर उल्लिखित सदिश r और F के साथ दाईं ओर की आकृति में दिखाया गया है। इस परिभाषा के साथ समस्या यह है कि यह टॉर्क की दिशा नहीं बल्कि केवल परिमाण देता है, और इसलिए त्रि-आयामी स्थितियों में इसका उपयोग करना मुश्किल है। यदि बल विस्थापन सदिश r के लंबवत है, तो आघूर्ण भुजा केंद्र से दूरी के बराबर होगी, और दिए गए बल के लिए बल आघूर्ण अधिकतम होगा। लंबवत बल से उत्पन्न होने वाले टॉर्क के परिमाण के लिए समीकरण:

उदाहरण के लिए, यदि कोई व्यक्ति 0.5 मीटर लंबे रिंच के अंतिम छोर पर 10 N का बल लगाता है (या किसी भी लंबाई के रिंच के मोड़ बिंदु से ठीक 0.5 मीटर की दूरी पर 10 N का बल), तो टॉर्क होगा 5 N⋅m - यह मानते हुए कि व्यक्ति गति के विमान में बल लगाकर और रिंच के लंबवत होकर रिंच को हिलाता है।

दो विरोधी बलों Fg और −Fg के कारण उत्पन्न बलाघूर्ण उस बलाघूर्ण की दिशा में कोणीय संवेग L में परिवर्तन का कारण बनता है। यह शीर्ष को पूर्व का कारण बनता है।

स्थिर संतुलन

किसी वस्तु के स्थिर संतुलन में होने के लिए, न केवल बलों का योग शून्य होना चाहिए, बल्कि किसी भी बिंदु के बारे में टॉर्क (क्षण) का योग भी होना चाहिए। क्षैतिज और ऊर्ध्वाधर बलों के साथ द्वि-आयामी स्थिति के लिए, बलों की आवश्यकता का योग दो समीकरण H = 0 और ΣV = 0 है, और टॉर्क का तीसरा समीकरण: Σ = 0 है। अर्थात्, स्थिर रूप से निर्धारित संतुलन समस्याओं को दो आयामों में हल करने के लिए, तीन समीकरणों का उपयोग किया जाता है।

शुद्ध बल के विपरीत बलाघूर्ण

जब तंत्र पर कुल बल शून्य होता है, तो अंतरिक्ष में किसी भी बिंदु से मापा गया बल आघूर्ण समान होता है। उदाहरण के लिए, समान चुंबकीय क्षेत्र में वर्तमान-वाहक लूप पर टॉर्क संदर्भ के बिंदु की परवाह किए बिना समान है। यदि शुद्ध बल शून्य नहीं है, और , टॉर्क से मापा जाता है, तब से टॉर्क मापा जाता है:

मशीन टॉर्क

मोटरसाइकिल का टॉर्क कर्व (बीएमडब्लू के 1200 आर 2005)। क्षैतिज अक्ष गति दिखाता है (आरपीएम में) कि क्रैंकशाफ्ट मुड़ रहा है, और ऊर्ध्वाधर अक्ष टॉर्क है (न्यूटन मीटर सेकेंड में) जो इंजन उस गति से प्रदान करने में सक्षम है।

टॉर्क इंजन के मूलभूत विनिर्देश का हिस्सा है: विद्युत् इंजन के आउटपुट को इसके टॉर्क को धुरी की घूर्णी गति से गुणा करके व्यक्त किया जाता है। आंतरिक-दहन इंजन केवल सीमित घूर्णन गति (सामान्यतः छोटी कार के लिए लगभग 1,000-6,000 आरपीएम से) पर उपयोगी टॉर्क का गुणांकन करते हैं। डायनेमोमीटर के साथ उस सीमा पर अलग-अलग टॉर्क आउटपुट को माप सकता है, और इसे टॉर्क वक्र के रूप में दिखा सकता है।

स्टीम इंजन एस और इलेक्ट्रिक मोटर एस शून्य आरपीएम के करीब अधिकतम टॉर्क का गुणांकन करते हैं, साथ ही घूर्णी गति बढ़ने (बढ़ते घर्षण और अन्य बाधाओं के कारण) के साथ टॉर्क कम हो जाता है। पारस्परिक भाप-इंजन और इलेक्ट्रिक मोटर बिना क्लच के शून्य आरपीएम से भारी भार शुरू कर सकते हैं।

टॉर्क, शक्ति और ऊर्जा के बीच संबंध

यदि बल को दूर से कार्य करने की अनुमति दी जाती है, तो यह यांत्रिक कार्य कर रहा है। इसी तरह, यदि टॉर्क को घूर्णी दूरी के माध्यम से कार्य करने की अनुमति है, तो यह काम कर रहा है। गणितीय रूप से, द्रव्यमान के केंद्र के माध्यम से निश्चित अक्ष के परितः घूर्णन के लिए, कार्य W को इस प्रकार व्यक्त किया जा सकता है

जहां τ टॉर्क है, और θ1 और θ2 प्रारंभिक और अंतिम कोणीय स्थिति s (क्रमशः) बॉडी का प्रतिनिधित्व करते हैं[15]


प्रमाण

परिमित रैखिक विस्थापन पर कार्य करने वाले चर बल द्वारा किया गया कार्य मौलिक रैखिक विस्थापन के संबंध में बल को एकीकृत करके दिया जाता है

तथापि, अतिसूक्ष्म रैखिक विस्थापन संबंधित कोणीय विस्थापन d𝜃 और त्रिज्या सदिश से संबंधित है जैसा

काम के लिए उपरोक्त अभिव्यक्ति में प्रतिस्थापन देता है

अभिव्यक्ति द्वारा दिया गया स्केलर ट्रिपल गुणांक दिया गया है, समान अदिश त्रिगुण गुणांक के लिए वैकल्पिक व्यंजक है

लेकिन टॉर्क की परिभाषा के अनुसार,

कार्य की अभिव्यक्ति में संगत प्रतिस्थापन देता है,

चूंकि एकीकरण के पैरामीटर को रैखिक विस्थापन से कोणीय विस्थापन में परिवर्तित कर दिया गया है, इसलिए एकीकरण की सीमाएं भी तदनुसार बदलती हैं, जिससे

यदि बलाघूर्ण और कोणीय विस्थापन एक ही दिशा में हैं, तो अदिश गुणांक परिमाण के गुणांक तक कम हो जाता है; अर्थात, दे रही है

यह कार्य-ऊर्जा सिद्धांत से अनुसरण करता है कि W बॉडी की घूर्णी गतिज ऊर्जा Er में परिवर्तन का भी प्रतिनिधित्व करता है, जो किसके द्वारा दिया गया है

जहां I बॉडी की जड़ता का क्षण है और ω इसकी कोणीय गति है[15]

जहाँ P शक्ति है, τ टॉर्क है, ω कोणीय वेग है, और अदिश गुणांक का प्रतिनिधित्व करता है।

बीजगणितीय रूप से, समीकरण को किसी दिए गए कोणीय गति और विद्युत् गुणांकन के लिए टॉर्क की गणना करने के लिए पुनर्व्यवस्थित किया जा सकता है। ध्यान दें कि टॉर्क द्वारा इंजेक्ट की गई शक्ति केवल तात्कालिक कोणीय गति पर निर्भर करती है - इस पर नहीं कि टॉर्क प्रयुक्त होने के समय कोणीय गति बढ़ती है, घटती है, या स्थिर रहती है (यह रैखिक स्थिति के बराबर है जहां शक्ति बल द्वारा इंजेक्ट की जाती है केवल तात्कालिक गति पर निर्भर करता है - परिणामी त्वरण पर नहीं, यदि कोई हो)।

व्यवहार में, यह संबंध को साइकिल सेकेंड में देखा जा सकता है: साइकिलें सामान्यतः दो सड़क पहियों, आगे और पीछे के गियर (स्प्रोकेट के रूप में संदर्भित) से बनी होती हैं, जो चेन से जुड़ी होती हैं, और एक डिरेलियर मैकेनिज्म यदि साइकिल का ट्रांसमिशन प्रणाली कई गियर अनुपातों की अनुमति देता है प्रयुक्त (अर्थात् मल्टी-स्पीड साइकिल), जो सभी फ्रेम से जुड़ी हुई हैं। साइकिल चालक, जो व्यक्ति साइकिल की सवारी करता है, पैडल घुमाकर इनपुट शक्ति प्रदान करता है, जिससे सामने का स्प्रोकेट क्रैंक होता है (सामान्यतः चेनिंग कहा जाता है)। साइकिल चालक द्वारा प्रदान की गई इनपुट शक्ति ताल (अर्थात् प्रति मिनट पेडल रेवोलुशन की संख्या) के गुणांक के बराबर है और साइकिल के क्रैंकसेट के स्पिंडल पर टॉर्क है। साइकिल की ड्राइवट्रेन इनपुट विद्युत् को व्हील तक पहुंचाती है, जो बदले में साइकिल की आउटपुट विद्युत् के रूप में प्राप्त शक्ति को सड़क तक पहुंचाती है। साइकिल के गियर अनुपात के आधार पर, (टॉर्क, कोणीय गति)इनपुट जोड़ी को (टॉर्क, कोणीय गति)आउटपुट जोड़ी में बदल दिया जाता है। बड़े रियर गियर का उपयोग करके, या मल्टी-स्पीड साइकिल में निचले गियर पर स्विच करके, सड़क के पहियों की कोणीय गति कम हो जाती है, जबकि टॉर्क बढ़ जाता है, जिसका गुणांक (अर्थात् विद्युत्) नहीं बदलता है।

संगत इकाइयों का उपयोग किया जाना चाहिए। मीट्रिक एसआई इकाइयों के लिए, शक्ति वाट सेकेंड है, टॉर्क न्यूटन मीटर सेकेंड है और कोणीय गति रेडियन सेकेंड प्रति सेकेंड है (आरपीएम नहीं और प्रति सेकेंड क्रांति नहीं)।

इसके अतिरिक्त, इकाई न्यूटन मीटर आयामी से जूल के बराबर है, जो ऊर्जा की इकाई है। चूंकि, टॉर्क की स्थिति में, इकाई को सदिश को सौंपा गया है, जबकि ऊर्जा के लिए, इसे स्केलर को सौंपा गया है। इसका अर्थ है कि न्यूटन मीटर और जूल की विमीय तुल्यता पूर्व में प्रयुक्त की जा सकती है, लेकिन बाद की स्थिति में नहीं। इस समस्या को ओरिएंटेशनल विश्लेषण जो रेडियंस को आयाम रहित इकाई के अतिरिक्त आधार इकाई के रूप में मानता है[16]

अन्य इकाइयों में रूपांतरण

शक्ति या टॉर्क की विभिन्न इकाइयों का उपयोग करते समय रूपांतरण कारक आवश्यक हो सकता है। उदाहरण के लिए, यदि कोणीय गति (प्रति समय रेडियन) के स्थान पर घूर्णी गति (प्रति समय क्रांति) का उपयोग किया जाता है, तो हम कारक π प्रति क्रांति रेडियन से गुणा करते हैं। निम्नलिखित सूत्रों में, P शक्ति है, τ टॉर्क है, और ν (ग्रीक अक्षर nu) घूर्णन गति है।

इकाइयाँ दिखा रहा है:

प्रति मिनट 60 सेकंड से विभाजित करने पर हमें निम्नलिखित मिलता है।

जहां घूर्णन गति प्रति मिनट (आरपीएम) रेवोलुशन में है।

कुछ लोग (जैसे, अमेरिकी ऑटोमोटिव इंजीनियर) विद्युत् के लिए हॉर्स विद्युत् (मैकेनिकल), टॉर्क के लिए फुट-पाउंड (lbf⋅ft) और घूर्णी गति के लिए आरपीएम का उपयोग करते हैं। इसके परिणामस्वरूप सूत्र में परिवर्तन होता है:

अश्वशक्ति की परिभाषा के साथ नीचे स्थिरांक (फुट-पाउंड प्रति मिनट में) बदलता है; उदाहरण के लिए, मीट्रिक अश्वशक्ति का उपयोग करके, यह लगभग 32,550 हो जाता है।

अन्य इकाइयों के उपयोग (उदाहरण के लिए, विद्युत् के लिए बीटीयू प्रति घंटे) के लिए अलग कस्टम रूपांतरण कारक की आवश्यकता होगी।

व्युत्पत्ति

घूर्णन वस्तु के लिए, परिधि पर तय की गई रैखिक दूरी कवर किए गए कोण के साथ त्रिज्या का गुणनफल है। अर्थात्: रैखिक दूरी = त्रिज्या × कोणीय दूरी है और परिभाषा के अनुसार, रैखिक दूरी = रैखिक गति × समय = त्रिज्या × कोणीय गति × समय।

टॉर्क की परिभाषा के अनुसार: टॉर्क = त्रिज्या × बल। हम बल = टॉर्क त्रिज्या निर्धारित करने के लिए इसे पुनर्व्यवस्थित कर सकते हैं। इन दो मूल्यों को विद्युत् की परिभाषा में प्रतिस्थापित किया जा सकता है:

त्रिज्या r और समय t समीकरण से बाहर हो गए हैं। चूंकि, व्युत्पत्ति की शुरुआत में रैखिक गति और कोणीय गति के बीच प्रत्यक्ष संबंध के अनुसार, कोणीय गति समय की प्रति इकाई रेडियन में होनी चाहिए। यदि घूर्णन गति को प्रति इकाई समय में परिक्रमण में मापा जाता है, तो रैखिक गति और दूरी आनुपातिक रूप से बढ़ जाती है, उपरोक्त व्युत्पत्ति में π देने के लिए:

यदि बलाघूर्ण न्यूटन मीटर में हो और घूर्णन गति प्रति सेकंड रेवोलुशन में हो, तो उपरोक्त समीकरण न्यूटन मीटर प्रति सेकंड या वाट में शक्ति देता है। यदि इंपीरियल इकाइयों का उपयोग किया जाता है, और यदि टॉर्क पाउंड-फोर्स फीट में है और प्रति मिनट रेवोलुशन में घूर्णी गति है, तो उपरोक्त समीकरण फुट पाउंड-बल प्रति मिनट में शक्ति देता है। तब समीकरण का अश्वशक्ति रूप रूपांतरण कारक 33,000 ft⋅lbf/min प्रति अश्वशक्ति प्रयुक्त करके प्राप्त किया जाता है:

क्योंकि है।







क्षणों का सिद्धांत

पलों का सिद्धांत, जिसे वैरिग्नन की प्रमेय (एक ही नाम के ज्यामितीय प्रमेय के साथ भ्रमित नहीं होना) के रूप में भी जाना जाता है, में कहा गया है कि कई बलों के कारण परिणामी टॉर्क लगभग एक पर प्रयुक्त होते हैं। बिंदु योगदान देने वाले टॉर्क के योग के बराबर है:

इससे यह निष्कर्ष निकलता है कि किसी पिवट के चारों ओर कार्य करने वाले दो बलों से उत्पन्न बलाघूर्ण तब संतुलित होते हैं, जब

टॉर्क गुणक

टॉर्क को तीन विधियों से गुणा किया जा सकता है: फुलक्रम का पता लगाकर जैसे कि लीवर की लंबाई बढ़ जाती है; लंबे लीवर का उपयोग करके; या गति कम करने वाले गियरसेट या गियर बॉक्स के उपयोग से बढ़ जाती है। ऐसा तंत्र टॉर्क को गुणा करता है, क्योंकि घूर्णन दर कम हो जाती है।

See also

References

  1. सेरवे, आर.ए. और ज्वेट, जूनियर जे.डब्ल्यू. (2003)। वैज्ञानिकों और इंजीनियरों के लिए भौतिकी। 6 वां एड। ब्रूक्स कोल। ISBN 0-534-40842-7
  2. Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.). W. H. Freeman. ISBN 0-7167-0809-4.
  3. Thomson, James; Larmor, Joseph (1912). Collected Papers in Physics and Engineering. University Press. p. civ.
  4. 4.0 4.1 Thompson, Silvanus Phillips (1893). Dynamo-electric machinery: A Manual For Students Of Electrotechnics (4th ed.). New York, Harvard publishing co. p. 108.
  5. 5.0 5.1 "torque". Oxford English Dictionary. 1933.
  6. 6.0 6.1 हेंड्रिक्स, सुब्रमनी, और वैन ब्लर्क द्वारा फिजिक्स फॉर इंजीनियरिंग, चिनप्पी पृष्ठ 148, [https://books.google.com/books?id=8Kp-UwV4o0gC&pg=PA148 वेब लिंक
  7. 7.0 7.1 7.2 केन, टी.आर. केन और डी.ए. लेविंसन (1985)। गतिकी, सिद्धांत और अनुप्रयोग पीपी. 90-99: मुफ्त डाउनलोड
  8. "Right Hand Rule for Torque". Retrieved 2007-09-08.
  9. 9.0 9.1 Halliday, David; Resnick, Robert (1970). Fundamentals of Physics. John Wiley & Sons, Inc. pp. 184–85.
  10. Knight, Randall; Jones, Brian; Field, Stuart (2016). College Physics: A Strategic Approach. Jones, Brian, 1960-, Field, Stuart, 1958- (Third edition, technology update ed.). Boston: Pearson. p. 199. ISBN 9780134143323. OCLC 922464227.
  11. आधिकारिक एसआई वेबसाइट से, द इंटरनेशनल सिस्टम ऑफ यूनिट्स - 9वां संस्करण - अंग्रेजी में टेक्स्ट सेक्शन 2.3.4: ...के लिए उदाहरण के लिए, मात्रा टोक़ स्थिति वेक्टर और बल वेक्टर का क्रॉस उत्पाद है। SI मात्रक न्यूटन मीटर है। यद्यपि बलाघूर्ण का आयाम ऊर्जा के समान है (SI मात्रक .) जूल), टोक़ को व्यक्त करने के लिए जूल का उपयोग कभी नहीं किया जाता है।
  12. 12.0 12.1 "SI brochure Ed. 9, Section 2.3.4" (PDF). Bureau International des Poids et Mesures. 2019. Retrieved 2020-05-29.
  13. "Dial Torque Wrenches from Grainger". Grainger. 2020. प्रदर्शन है कि, जैसा कि अधिकांश अमेरिकी औद्योगिक सेटिंग्स में, टोक़ पर्वतमाला lbf-ft ​​के बजाय ft-lb में दी जाती है
  14. Erjavec, Jack (22 January 2010). Manual Transmissions & Transaxles: Classroom manual. p. 38. ISBN 978-1-4354-3933-7.
  15. 15.0 15.1 Kleppner, Daniel; Kolenkow, Robert (1973). An Introduction to Mechanics. McGraw-Hill. pp. 267–268. ISBN 9780070350489.
  16. Page, Chester H. (1979). "Rebuttal to de Boer's "Group properties of quantities and units"". American Journal of Physics. 47 (9): 820. Bibcode:1979AmJPh..47..820P. doi:10.1119/1.11704.

External links