ट्विस्टर सिद्धांत: Difference between revisions

From Vigyanwiki
(text)
Line 110: Line 110:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 10/04/2023]]
[[Category:Created On 10/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 10:26, 27 April 2023

सैद्धांतिक भौतिकी में, 1967 में रोजर पेनरोज़ द्वारा ट्विस्टर सिद्धांत [1] परिमाण गुरुत्व के संभावित पथ [2] के रूप में प्रस्तावित किया गया था और सैद्धांतिक और गणितीय भौतिकी की व्यापक रूप से अध्ययन की गई शाखा में विकसित हुआ है। पेनरोज़ का विचार था कि ट्विस्टर दिक् भौतिकी के लिए बुनियादी क्षेत्र होना चाहिए जिससे दिक्-समय स्वयं प्रकट होना चाहिए। इसने शक्तिशाली गणितीय उपकरण का नेतृत्व किया है जिसमें विभेदक ज्यामिति और अभिन्न ज्यामिति, गैर रेखीय अंतर समीकरण और प्रतिनिधित्व सिद्धांत, और भौतिक विज्ञान में सामान्य सापेक्षता, परिमाण क्षेत्र सिद्धांत और प्रकीर्णन दैर्ध्य के सिद्धांत के लिए अनुप्रयोग हैं। 1950 के दशक के अंत में और 1960 के दशक में आइंस्टीन के सामान्य सापेक्षता के सिद्धांत में तीव्रता से बढ़ते गणितीय विकास के संदर्भ में ट्विस्टर सिद्धांत उत्पन्न हुआ और उस अवधि से कई प्रभाव वहन करता है। विशेष रूप से, रोजर पेनरोज़ ने इवोर रॉबिन्सन (भौतिक विज्ञानी) को तथाकथित रॉबिन्सन सर्वांगसमताओं के अपने निर्माण के माध्यम से ट्विस्टर सिद्धांत के विकास में एक महत्वपूर्ण प्रारंभिक प्रभाव के रूप में श्रेय दिया है।[3]


समीक्षा

गणितीय रूप से, प्रक्षेपीय दिक् ट्विस्टर एक 3-आयामी जटिल बहुविध, प्रक्षेपीय 3-दिक् है। इसमें प्रचक्रण (भौतिकी) के साथ द्रव्यमान रहित कणों के स्थान की भौतिक व्याख्या है। यह एक 4-आयामी जटिल सदिश स्थल, गैर-प्रक्षेपीय ट्विस्टर दिक् का प्रक्षेपण है। मापीय हस्ताक्षर (2,2) के हर्मिटियन रूप और पूर्णसममितिक आयतन स्वरुप के साथ है। इसे मिंकोवस्की अंतरिक्ष के अनुरूप समूह के लिए चिरल (वेइल) स्पिनरों के स्थान के रूप में सबसे स्वाभाविक रूप से समझा जा सकता है; यह स्पाइन समूह का मौलिक प्रतिनिधित्व है। इस परिभाषा को स्वेच्छाचारी आयामों तक बढ़ाया जा सकता है, सिवाय इसके कि आयाम चार से परे, एक प्रक्षेपीय ट्विस्टर दिक् को अनुरूप समूह के लिए प्रक्षेपीय शुद्ध स्पाइनरों की जगह के रूप में परिभाषित करता है।[4][5]

अपने मूल रूप में, ट्विस्टर सिद्धांत मिन्कोस्की स्थल पर भौतिक क्षेत्रों को पेनरोज़ रूपांतरण के माध्यम से ट्विस्टर दिक् पर जटिल विश्लेषणात्मक वस्तुओं में कूटलेखन करता है। यह स्वेच्छाचारी स्पाइन (भौतिकी) के द्रव्यमान अल्प कण के लिए विशेष रूप से स्वाभाविक है। पहले उदाहरण में ये ट्विस्टर दिक् में क्षेत्रों पर मुक्त पूर्णसममितिक कार्यों के संदर्भ में समोच्च अभिन्न सूत्रों के माध्यम से प्राप्त किए जाते हैं। द्रव्यमान रहित क्षेत्र समीकरणों के समाधान को उत्पन्न करने वाले पूर्णसममितिक ट्विस्टर प्रकार्यों को में क्षेत्रों पर विश्लेषणात्मक सह समरूपता कक्षाओं के सेश प्रतिनिधियों के रूप में अधिक गहराई से समझा जा सकता है। इन पत्राचारों को कुछ अरेखीय क्षेत्रों तक विस्तारित किया गया है, जिसमें पेनरोज़ के अरैखिक ग्रेविटॉन निर्माण [6] में स्व-दोहरी गुरुत्वाकर्षण और तथाकथित प्रतिपाल्य निर्माण में स्व-दोहरी यांग-मिल्स क्षेत्र सम्मिलित हैं; [7] पूर्व के विकृतियों को में क्षेत्रों की अंतर्निहित जटिल संरचना, और बाद में में क्षेत्रों में कुछ पूर्णसममितिक सदिश समूह के लिए उत्पन्न करता है। इन निर्माणों में व्यापक अनुप्रयोग हैं, जिनमें अन्य बातों के साथ-साथ एकीकृत प्रणाली का सिद्धांत भी सम्मिलित है।[8][9][10]

स्व-द्वैत की स्थिति भौतिक सिद्धांतों की पूर्ण गैर-रैखिकताओं को सम्मिलित करने के लिए एक प्रमुख सीमा है, हालांकि यह यांग-मिल्स-हिग्स समीकरणों के लिए पर्याप्त है। यांग-मिल्स-हिग्स चुंबकीय एकध्रुवीय और इन्स्टैंटौन (एडीएचएम निर्माण देखें)।[11] इस प्रतिबंध को दूर करने का एक प्रारंभिक प्रयास एडवर्ड विटन और इसेनबर्ग, यास्किन और ग्रीन द्वारा द्वारा महत्वाकांक्षाओं का परिचय था।[12][13] एम्बिटविस्टर दिक् जटिल प्रकाश किरणों या द्रव्यमान रहित कणों का स्थान है और इसे मूल ट्विस्टर विवरण के एक जटिल या कोटेंगेंट समूह के रूप में माना जा सकता है। ये सामान्य क्षेत्रों पर लागू होते हैं लेकिन क्षेत्र समीकरण अब इतनी आसानी से व्यक्त नहीं किए जाते हैं।

स्व-द्वैत क्षेत्र से परे मौलिक अंतःक्रिया के लिए ट्विस्टोरियल सूत्र सबसे पहले विटन के ट्विस्टर तंतु सिद्धांत से उत्पन्न हुए।[14] यह रिमेंन सतह के पूर्णसममितिक मानचित्रों का ट्विस्टर दिक् में परिमाण सिद्धांत है। इसने यांग-मिल्स सिद्धांतों के वृक्ष-स्तर एस-आव्यूह के लिए उल्लेखनीय रूप से सघन आरएसवी (रोइबन, स्प्रेडलिन और वोलोविच) सूत्र को उत्पन्न किया,[15] लेकिन इसकी गुरुत्वाकर्षण की स्वतंत्रता की घात ने इसके प्रयोज्यता को सीमित करने वाले अनुरूप अतिगुरुत्वाकर्षण के एक संस्करण को उत्पन्न किया; अनुरूप गुरुत्व एक अभौतिक सिद्धांत है जिसमें प्रछन्न (भौतिकी) सम्मिलित है, लेकिन इसकी पारस्परिक प्रभाव ट्विस्टर तंतु सिद्धांत के माध्यम से गणना की गई परिपथ विपुलता में यांग-मिल्स सिद्धांत के साथ मिलती है।[16]

इसकी कमियां होने पर भी, ट्विस्टर तंतु सिद्धांत ने बिखरने वाले आयामों के अध्ययन में तीव्रता से विकास किया। एक तथाकथित एमएचवी औपचारिकतावाद था [17] शिथिल असंबद्ध तंतु पर आधारित है, लेकिन ट्विस्टर दिक् में पूर्ण यांग-मिल्स सिद्धांत के लिए ट्विस्टर क्रिया के संदर्भ में अधिक बुनियादी आधार दिया गया था।[18] एक अन्य महत्वपूर्ण विकास बीसीएफडब्ल्यू पुनरावर्तन का प्रारम्भ था। [19] ट्विस्टर दिक् में इसका प्राकृतिक सूत्रीकरण है [20][21] बदले में ग्रासमैन इंटीग्रल सूत्रों और बहुतलीय के संदर्भ में बिखरने वाले आयामों के उल्लेखनीय योगों का नेतृत्व किया।[22][23][24] ये विचार हाल ही में सकारात्मक ग्रासमानियन और आयाम में विकसित हुए हैं। [25]

आरएसवी यांग-मिल्स आयाम सूत्र को सामान्य करके और फिर अंतर्निहित तंतु सिद्धांत को खोजकर ट्विस्टर तंतु सिद्धांत को पहले बढ़ाया गया था। गुरुत्वाकर्षण का विस्तार कचाज़ो और स्किनर द्वारा दिया गया था,[26] और डेविड स्किनर द्वारा अधिकतम अतिगुरुत्वाकर्षण के लिए ट्विस्टर तंतु सिद्धांत के रूप में उपस्थित किया गया।[27] यांग-मिल्स सिद्धांत और गुरुत्वाकर्षण के लिए काचाज़ो, हे और युआन द्वारा सभी आयामों में अनुरूप सूत्र पाए गए।[28] और बाद में कई अन्य सिद्धांतों के लिए भी पाए गए।[29] तब उन्हें मेसन एंड स्किनर द्वारा एम्बिटविस्टर दिक् में तंतु सिद्धांत के रूप में समझा गया[30] एक सामान्य ढांचे में जिसमें मूल ट्विस्टर तंतु सम्मिलित है और कई नए प्रतिरूप और सूत्र देने के लिए विस्तारित है।[31][32][33] तंतु सिद्धांतों के रूप में उनके पारंपरिक तंतु सिद्धांत के समान महत्वपूर्ण आयाम हैं; उदाहरण के लिए प्रकार II तंतु सिद्धांत अति सममित संस्करण दस आयामों में महत्वपूर्ण हैं और दस आयामों में प्रकार II अतिगुरुत्वाकर्षण के पूर्ण क्षेत्र सिद्धांत के बराबर हैं (यह पारंपरिक तंतु सिद्धांतों से अलग है जिसमें बड़े मापक्रम पर उच्च स्पाइन स्तिथि का एक और अनंत पदानुक्रम है जो एक पराबैंगनी पूर्णता प्रदान करें)। वे परिपथ विपुलता के लिए सूत्र देने के लिए विस्तारित होते हैं[34][35] और घुमावदार पृष्ठभूमि पर परिभाषित किया जा सकता है।[36]



ट्विस्टर पत्राचार

मिन्कोवस्की स्थान को द्वारा निरूपित करें, निर्देशांक के साथ और लोरेंत्ज़ियन मीट्रिक हस्ताक्षर . 2-घटक स्पाइनर सूचकांकों का परिचय देते हैं और निम्न समुच्चय करें

गैर प्रक्षेपीय ट्विस्टर दिक् द्वारा निरूपित निर्देशांक के साथ एक चार आयामी जटिल सदिश स्थान है जहाँ और दो स्थिर वेइल स्पाइनर हैं। एक जटिल संयुग्मन को परिभाषित करके हर्मिटियन रूप को इसके दोहरे के लिए द्वारा व्यक्त किया जा सकता है ताकि हर्मिटियन रूप को निम्न रूप में व्यक्त किया जा सके

यह एक साथ पूर्णसममितिक मात्रा प्रपत्र के साथ समूह SU (2,2) के अंतर्गत अपरिवर्तनीय है, सघन मिन्कोव्स्की अवकाशकालीन के अनुरूप समूह C (1,3) का एक चौगुना आवरण है।

घटना संबंध के माध्यम से मिन्कोव्स्की स्थल में अंक ट्विस्टर स्थल के उप-स्थानों से संबंधित हैं

घटना संबंध को ट्विस्टर के समग्र पुन: प्रवर्धन के अंतर्गत संरक्षित किया जाता है, इसलिए सामान्यतः प्रक्षेपीय ट्विस्टर दिक् में काम करता है, जो एक जटिल बहुविध के रूप में समरूपी है। एक बिंदु इस प्रकार द्वारा पैरामिट्रीकृत में एक रेखा निर्धारित करता है। एक ट्विस्टर निर्देशांक के जटिल मूल्यों के लिए स्थल-समय में सबसे आसान समझा जाता है जहां यह पूरी तरह से शून्य दो-समतल को परिभाषित करता है जो स्व-द्वैत है। x को वास्तविक मानिए, तो अगर लुप्‍त हो जाता है, फिर एक प्रकाश किरण पर स्थित है, जबकि यदि कभी न लुप्‍त होने वाला है, यहाँ कोई समाधान नहीं है, और वास्तव में तब स्पाइन के साथ द्रव्यमान रहित कण से मेल खाता है जो वास्तविक स्थल-समय में स्थानीयकृत नहीं है।

विविधताएं

अतिट्विस्टर्स

अतिट्विस्टर्स 1978 में एलन फेरबर द्वारा प्रस्तुत किए गए ट्विस्टर्स का अतिसमरूपता विस्तारण हैं।[37] ग़ैर-प्रक्षेपीय ट्विस्टर दिक् को फर्मियन निर्देशांक द्वारा बढ़ाया जाता है विस्तारित अतिसमरूपता है जिससे अब एंटीकम्यूटिंग के साथ एक द्वारा ट्विस्टर दिया जाता है। अति अनुरूप समूह स्वाभाविक रूप से इस स्थान पर कार्य करता है और पेनरोज़ रूपांतरण का एक अति सममित संस्करण अति मिंकॉस्की दिक् पर बड़े मापक्रम पर अति सममित बहुक के लिए अतिटविस्टर दिक् पर सह समरूपता कक्षाएं लेता है। कारक पेनरोज़ के मूल ट्विस्टर तंतु के लिए लक्ष्य प्रदान करता है और कारक स्किनर के अतिगुरुत्वाकर्षण सामान्यीकरण के लिए है।

हाइपरकैहलर बहुविध

हाइपरकाहलर बहुविध आयाम जटिल आयाम के ट्विस्टर दिक् के साथ ट्विस्टर पत्राचार भी स्वीकार करें।[38]


भव्य ट्विस्टर सिद्धांत

अरैखिक ग्रेविटॉन निर्माण केवल आत्म-द्वैत विरोधी यानी बाएं हाथ के आधार का कूटलेखन करता है।[39] एक सामान्य गुरुत्वाकर्षण क्षेत्र को सांकेतिक शब्दों में बदलने के लिए ट्विस्टर दिक् को संशोधित करने की समस्या की दिशा में पहला कदम चिरलिटी (भौतिकी) के दाएं हाथ के क्षेत्र का कूटलेखन है। असीम रूप से, ये सजातीय फलन -6 के ट्विस्टर प्रकार्यों या सह-समरूपता कक्षाओं में कूटलेखन किए गए हैं। इस तरह के ट्विस्टर कार्यों का उपयोग पूरी तरह से गैर-रैखिक तरीके से करने का कार्य ताकि कुंडलता (कण भौतिकी) प्राप्त किया जा सके। क्रिकेट के खेल में दाएं हाथ से फेंकी गई गेंद के लिए प्रयोग किया जाता है, जिसमें स्पष्ट क्रिया का उपयोग किया जाता है जो सामान्यतः बाएं हाथ के कुंडलता को उत्पन्न करता है)।[40] 2015 में पेनरोज़ द्वारा इस दिशा में सबसे नवीन प्रस्ताव ट्विस्टर दिक् पर गैर-अनुवर्ती ज्यामिति पर आधारित था और इसे भव्य ट्विस्टर सिद्धांत के रूप में संदर्भित किया गया था।.[41] सिद्धांत का नाम बकिंघम महल के नाम पर रखा गया है, जहां माइकल अतियाह ने पेनरोज़ को एक प्रकार के गैर-अनुवर्ती बीजगणित के उपयोग का सुझाव दिया था, जो सिद्धांत का एक महत्वपूर्ण घटक है (पैलेटियल ट्विस्टर सिद्धांत में अंतर्निहित ट्विस्टर संरचना को ट्विस्टर दिक् पर नहीं बल्कि गैर-क्रम विनिमय पूर्णसममितिक ट्विस्टर परिमाण समूह पर आधारित प्रतिरूप किया गया था)।[42]


यह भी देखें

टिप्पणियाँ

  1. https://en.wikipedia.org/wiki/Journal_of_Mathematical_Physics. {{cite web}}: Missing or empty |title= (help)
  2. Twistor theory: An approach to the quantisation of fields and space-time". https://ui.adsabs.harvard.edu/abs/1973PhR.....6..241P/abstract. {{cite web}}: Missing or empty |title= (help)
  3. Roger Penrose, "On the Origins of Twistor Theory", in Gravitation and Geometry, a Volume in Honour of Ivor Robinson, edited by Wolfgang Rindler and Andrzej Trautman, Bibliopolis (1987).
  4. Penrose, Roger; Rindler, Wolfgang (1986). स्पिनर और स्पेस-टाइम (in English). Cambridge University Press. pp. Appendix. doi:10.1017/cbo9780511524486. ISBN 9780521252676.
  5. Hughston, L. P.; Mason, L. J. (1988). "एक सामान्यीकृत केर-रॉबिन्सन प्रमेय". Classical and Quantum Gravity (in English). 5 (2): 275. Bibcode:1988CQGra...5..275H. doi:10.1088/0264-9381/5/2/007. ISSN 0264-9381. S2CID 250783071.
  6. https://ui.adsabs.harvard.edu/abs/1976GReGr...7...31P/abstract. {{cite web}}: Missing or empty |title= (help)
  7. https://ui.adsabs.harvard.edu/abs/1977PhLA...61...81W/abstract. {{cite web}}: Missing or empty |title= (help)
  8. Ward, R. S. (1990). ट्विस्टर ज्यामिति और क्षेत्र सिद्धांत. Wells, R. O. (Raymond O'Neil), 1940-. Cambridge [England]: Cambridge University Press. ISBN 978-0521422680. OCLC 17260289.
  9. Mason, Lionel J; Woodhouse, Nicholas M J (1996). अखंडता, आत्म-द्वैत और ट्विस्टर सिद्धांत. Oxford: Clarendon Press. ISBN 9780198534983. OCLC 34545252.
  10. Dunajski, Maciej (2010). सॉलिटॉन, इंस्टेंटन और ट्विस्टर्स. Oxford: Oxford University Press. ISBN 9780198570622. OCLC 507435856.
  11. Atiyah, M.F.; Hitchin, N.J.; Drinfeld, V.G.; Manin, Yu.I. (1978). "इंस्टेंटन का निर्माण". Physics Letters A. 65 (3): 185–187. Bibcode:1978PhLA...65..185A. doi:10.1016/0375-9601(78)90141-x.
  12. Witten, Edward (1978). "An interpretation of classical Yang–Mills theory". Physics Letters B. 77 (4–5): 394–398. Bibcode:1978PhLB...77..394W. doi:10.1016/0370-2693(78)90585-3.
  13. Isenberg, James; Yasskin, Philip B.; Green, Paul S. (1978). "गैर-स्व-दोहरी गेज फ़ील्ड". Physics Letters B. 78 (4): 462–464. Bibcode:1978PhLB...78..462I. doi:10.1016/0370-2693(78)90486-0.
  14. Witten, Edward (6 October 2004). "ट्विस्टर स्पेस में स्ट्रिंग थ्योरी के रूप में पर्टुरबेटिव गेज थ्योरी". Communications in Mathematical Physics. 252 (1–3): 189–258. arXiv:hep-th/0312171. Bibcode:2004CMaPh.252..189W. doi:10.1007/s00220-004-1187-3. S2CID 14300396.
  15. Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia (2004-07-30). "Tree-level S matrix of Yang–Mills theory". Physical Review D. 70 (2): 026009. arXiv:hep-th/0403190. Bibcode:2004PhRvD..70b6009R. doi:10.1103/PhysRevD.70.026009. S2CID 10561912.
  16. Berkovits, Nathan; Witten, Edward (2004). "ट्विस्टर-स्ट्रिंग थ्योरी में अनुरूप सुपरग्रेविटी". Journal of High Energy Physics (in English). 2004 (8): 009. arXiv:hep-th/0406051. Bibcode:2004JHEP...08..009B. doi:10.1088/1126-6708/2004/08/009. ISSN 1126-6708. S2CID 119073647.
  17. Cachazo, Freddy; Svrcek, Peter; Witten, Edward (2004). "गेज थ्योरी में एमएचवी वर्टिकल और ट्री एम्पलीट्यूड". Journal of High Energy Physics (in English). 2004 (9): 006. arXiv:hep-th/0403047. Bibcode:2004JHEP...09..006C. doi:10.1088/1126-6708/2004/09/006. ISSN 1126-6708. S2CID 16328643.
  18. Adamo, Tim; Bullimore, Mathew; Mason, Lionel; Skinner, David (2011). "तितर-बितर आयाम और विल्सन लूप ट्विस्टर स्पेस में". Journal of Physics A: Mathematical and Theoretical. 44 (45): 454008. arXiv:1104.2890. Bibcode:2011JPhA...44S4008A. doi:10.1088/1751-8113/44/45/454008. S2CID 59150535.
  19. Britto, Ruth; Cachazo, Freddy; Feng, Bo; Witten, Edward (2005-05-10). "Direct Proof of the Tree-Level Scattering Amplitude Recursion Relation in Yang–Mills Theory". Physical Review Letters. 94 (18): 181602. arXiv:hep-th/0501052. Bibcode:2005PhRvL..94r1602B. doi:10.1103/PhysRevLett.94.181602. PMID 15904356. S2CID 10180346.
  20. Mason, Lionel; Skinner, David (2010-01-01). "बिखरने वाले आयाम और ट्विस्टर स्पेस में बीसीएफडब्ल्यू रिकर्सन". Journal of High Energy Physics (in English). 2010 (1): 64. arXiv:0903.2083. Bibcode:2010JHEP...01..064M. doi:10.1007/JHEP01(2010)064. ISSN 1029-8479. S2CID 8543696.
  21. Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "ट्विस्टर स्पेस में एस-मैट्रिक्स". Journal of High Energy Physics (in English). 2010 (3): 110. arXiv:0903.2110. Bibcode:2010JHEP...03..110A. doi:10.1007/JHEP03(2010)110. ISSN 1029-8479. S2CID 15898218.
  22. Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "एस मैट्रिक्स के लिए एक द्वंद्व". Journal of High Energy Physics (in English). 2010 (3): 20. arXiv:0907.5418. Bibcode:2010JHEP...03..020A. doi:10.1007/JHEP03(2010)020. ISSN 1029-8479. S2CID 5771375.
  23. Mason, Lionel; Skinner, David (2009). "डुअल सुपरकॉन्फॉर्मल इनवेरियन, मोमेंटम ट्विस्टर्स और ग्रासमैनियन". Journal of High Energy Physics (in English). 2009 (11): 045. arXiv:0909.0250. Bibcode:2009JHEP...11..045M. doi:10.1088/1126-6708/2009/11/045. ISSN 1126-6708. S2CID 8375814.
  24. Hodges, Andrew (2013-05-01). "गेज-सैद्धांतिक आयामों से नकली ध्रुवों को खत्म करना". Journal of High Energy Physics (in English). 2013 (5): 135. arXiv:0905.1473. Bibcode:2013JHEP...05..135H. doi:10.1007/JHEP05(2013)135. ISSN 1029-8479. S2CID 18360641.
  25. Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy; Goncharov, Alexander B.; Postnikov, Alexander; Trnka, Jaroslav (2012-12-21). "बिखरने वाले आयाम और सकारात्मक ग्रासमानियन". arXiv:1212.5605 [hep-th].
  26. Cachazo, Freddy; Skinner, David (2013-04-16). "ट्विस्टर स्पेस में रैशनल कर्व्स से ग्रेविटी". Physical Review Letters. 110 (16): 161301. arXiv:1207.0741. Bibcode:2013PhRvL.110p1301C. doi:10.1103/PhysRevLett.110.161301. PMID 23679592. S2CID 7452729.
  27. Skinner, David (2013-01-04). "Twistor Strings for N=8 Supergravity". arXiv:1301.0868 [hep-th].
  28. Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2014-07-01). "Scattering of massless particles: scalars, gluons and gravitons". Journal of High Energy Physics (in English). 2014 (7): 33. arXiv:1309.0885. Bibcode:2014JHEP...07..033C. doi:10.1007/JHEP07(2014)033. ISSN 1029-8479. S2CID 53685436.
  29. Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2015-07-01). "Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM". Journal of High Energy Physics (in English). 2015 (7): 149. arXiv:1412.3479. Bibcode:2015JHEP...07..149C. doi:10.1007/JHEP07(2015)149. ISSN 1029-8479. S2CID 54062406.
  30. Mason, Lionel; Skinner, David (2014-07-01). "एम्बिटविस्टर स्ट्रिंग्स और स्कैटरिंग इक्वेशन". Journal of High Energy Physics (in English). 2014 (7): 48. arXiv:1311.2564. Bibcode:2014JHEP...07..048M. doi:10.1007/JHEP07(2014)048. ISSN 1029-8479. S2CID 53666173.
  31. Berkovits, Nathan (2014-03-01). "शुद्ध स्पिनर सुपरस्ट्रिंग की अनंत तनाव सीमा". Journal of High Energy Physics (in English). 2014 (3): 17. arXiv:1311.4156. Bibcode:2014JHEP...03..017B. doi:10.1007/JHEP03(2014)017. ISSN 1029-8479. S2CID 28346354.
  32. Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel (2014-08-19). "एम्बिटविस्टर स्ट्रिंग्स इन फोर डायमेंशन्स". Physical Review Letters. 113 (8): 081602. arXiv:1404.6219. Bibcode:2014PhRvL.113h1602G. doi:10.1103/PhysRevLett.113.081602. PMID 25192087. S2CID 40855791.
  33. Casali, Eduardo; Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Roehrig, Kai A. (2015-11-01). "नई महत्वाकांक्षी स्ट्रिंग सिद्धांत". Journal of High Energy Physics (in English). 2015 (11): 38. arXiv:1506.08771. Bibcode:2015JHEP...11..038C. doi:10.1007/JHEP11(2015)038. ISSN 1029-8479. S2CID 118801547.
  34. Adamo, Tim; Casali, Eduardo; Skinner, David (2014-04-01). "एम्बिटविस्टर स्ट्रिंग्स और स्कैटरिंग इक्वेशन एक लूप पर". Journal of High Energy Physics (in English). 2014 (4): 104. arXiv:1312.3828. Bibcode:2014JHEP...04..104A. doi:10.1007/JHEP04(2014)104. ISSN 1029-8479. S2CID 119194796.
  35. Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr (2015-09-16). "रीमैन स्फीयर से स्कैटरिंग एम्प्लिट्यूड्स के लिए लूप इंटीग्रैंड्स". Physical Review Letters. 115 (12): 121603. arXiv:1507.00321. Bibcode:2015PhRvL.115l1603G. doi:10.1103/PhysRevLett.115.121603. PMID 26430983. S2CID 36625491.
  36. Adamo, Tim; Casali, Eduardo; Skinner, David (2015-02-01). "सुपरग्रेविटी के लिए एक वर्ल्डशीट सिद्धांत". Journal of High Energy Physics (in English). 2015 (2): 116. arXiv:1409.5656. Bibcode:2015JHEP...02..116A. doi:10.1007/JHEP02(2015)116. ISSN 1029-8479. S2CID 119234027.
  37. Ferber, A. (1978), "Supertwistors and conformal supersymmetry", Nuclear Physics B, 132 (1): 55–64, Bibcode:1978NuPhB.132...55F, doi:10.1016/0550-3213(78)90257-2.
  38. Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M. (1987). "Hyper-Kähler metrics and supersymmetry". Communications in Mathematical Physics. 108 (4): 535–589. Bibcode:1987CMaPh.108..535H. doi:10.1007/BF01214418. ISSN 0010-3616. MR 0877637. S2CID 120041594.
  39. Penrose, R (1976). "गैर-रैखिक गुरुत्वाकर्षण और घुमावदार ट्विस्टर सिद्धांत". Gen. Rel. Grav. 7 (1): 31–52. Bibcode:1976GReGr...7...31P. doi:10.1007/BF00762011. S2CID 123258136.
  40. Penrose 2004, p. 1000.
  41. Penrose, Roger (2015). "महलनुमा ट्विस्टर सिद्धांत और ट्विस्टर गुगली समस्या". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2047): 20140237. Bibcode:2015RSPTA.37340237P. doi:10.1098/rsta.2014.0237. PMID 26124255. S2CID 13038470.
  42. "Michael Atiyah's Imaginative State of Mind"Quanta Magazine.


संदर्भ

  • रोजर पेनरोस (2004), वास्तविकता का मार्ग,अल्फ्रेड ए. नोपफ, ch. 33, pp. 958–1009.
  • रोजर पेनरोस और वोल्फगैंग रिंडलर (1984), स्पाइनर और स्पेस-टाइम; vol. 1, Two-स्पाइनर कलन और सापेक्षतावादी क्षेत्र, कैम्ब्रिज यूनिवर्सिटी प्रेस, कैम्ब्रिज.
  • रोजर पेनरोस और वोल्फगैंग रिंडलर (1986), स्पाइनर और स्पेस-टाइम; vol. 2, स्पाइनर और स्पेस-टाइम ज्यामिति में ट्विस्टर विधियाँ, कैम्ब्रिज यूनिवर्सिटी प्रेस, कैम्ब्रिज.


अग्रिम पठन


बाहरी संबंध