द्विधातु पट्टी: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 107: | Line 107: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 05/04/2023]] | [[Category:Created On 05/04/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 10:30, 27 April 2023
यांत्रिक विस्थापन में तापमान परिवर्तन को परिवर्तित करने के लिए द्विधातु पट्टी का उपयोग किया जाता है। पट्टी में विभिन्न धातुओं की दो पट्टियाँ होती हैं जो ताप होने पर भिन्न-भिन्न दरों पर फैलती हैं। अतः भिन्न-भिन्न विस्तार सपाट पट्टी को ताप होने पर विशेष प्रकार से मोड़ने के लिए मजबूर करते हैं और विपरीत दिशा में यदि इसके प्रारंभिक तापमान से नीचे शीतल किया जाता है। इस प्रकार ऊष्मीय विस्तार के उच्च गुणांक वाली धातु पट्टी के ताप होने पर और ठंडी होने पर आंतरिक तरफ वक्र के बाहरी तरफ होती है।
द्विधातु पट्टी के आविष्कार का श्रेय सामान्यतः जॉन हैरिसन को दिया जाता है जो अठारहवीं शताब्दी के घड़ीसाज़ थे जिन्होंने इसे सन्न 1759 के अपने तीसरे समुद्री क्रोनोमीटर (H3) के लिए बनाया था जिससे कि संतुलन वसंत में तापमान-प्रेरित परिवर्तनों की भरपाई की जा सकती है।[1] अतः हैरिसन के आविष्कार को इंग्लैंड के वेस्टमिन्स्टर ऐबी में उनके स्मारक में मान्यता दी गई है।
इस प्रभाव का उपयोग यांत्रिक और विद्युत उपकरणों की श्रृंखला में किया जाता है।
विशेषताएँ
द्विधातु पट्टी में विभिन्न धातुओं की दो पट्टियाँ होती हैं जो ताप होने पर भिन्न-भिन्न दरों पर फैलती हैं सामान्यतः इस्पात और तांबा या कुछ स्थितियों में स्टील और पीतल, रिवेटिंग, ब्रेजिंग या वेल्डिंग द्वारा स्ट्रिप्स को उनकी पूर्ण लंबाई में साथ जोड़ा जाता है। इस प्रकार भिन्न-भिन्न विस्तार सपाट पट्टी को ताप होने पर पूर्ण प्रकार से मोड़ने के लिए प्रेरित करते हैं और विपरीत दिशा में यदि इसके प्रारंभिक तापमान से नीचे शीतल किया जाता है। अतः ऊष्मीय विस्तार के उच्च गुणांक वाली धातु पट्टी के ताप होने पर और शीतलन होने पर आंतरिक तरफ वक्र के बाहरी तरफ होती है। इस प्रकार पट्टी का बग़ल में विस्थापन दो धातुओं में से किसी में छोटे लंबाई के विस्तार से बहुत बड़ा है।
कुछ अनुप्रयोगों में बायमेटल पट्टी का उपयोग समतल रूप में किया जाता है। अतः दूसरों में इसे कॉम्पैक्टनेस के लिए कुंडल में लपेटा जाता है। कुंडलित संस्करण की अधिक लंबाई उत्तम संवेदनशीलता प्रदान करती है।
द्विधात्विक बीम की वक्रता को निम्नलिखित समीकरण द्वारा वर्णित किया जा सकता है।
जहाँ और वक्रता की त्रिज्या है, और सामग्री और की यंग के मापांक और ऊंचाई (मोटाई) हैं और सामग्री दो के यंग मापांक और ऊंचाई (मोटाई) हैं। मिसफिट स्ट्रेन है, जिसकी गणना निम्न द्वारा की जाती है।
जहां α1 सामग्री के थर्मल विस्तार का गुणांक है और α2 सामग्री दो के थर्मल विस्तार का गुणांक है। ΔT वर्तमान तापमान माइनस संदर्भ तापमान है (तापमान जहां बीम का कोई मोड़ नहीं है)।[2][3]
वक्रता की त्रिज्या की व्युत्पत्ति | |
---|---|
Let the layer on the concave side be layer 1 and on the convex side be layer 2, and let the thicknesses of each be and respectively. Layer 1 is in tension with a force outwards on each end of , while layer 2 is compressed with a force inwards on each end of . Because the system is in equilibrium . At each end of layer 1 there is a bending moment , and similarly for layer 2. If is the radius of curvature, then and where is the Flexural rigidity, is the Young's modulus and is the Second moment of area. For a rectangular cross-section of width , and . The couple produced by the forces acting along the mid-lines of each layer and separated by is , and again because the strip is in equilibrium and there are no external applied torques, . Hence
We now consider the contact surface between the two layers. The length of this surface for layer 1 is where is the temperature at which the strip is straight, is the length of the layer when the temperature (i.e. when it is straight and under no stress from layer 2), and is the coefficient of thermal expansion (the fractional increase in length per unit increase in temperature). The second term here is clearly the fractional change in length produced by the thermal expansion, the third term is the strain induced by the stress due to the force acting over the area of the end (positive because the force is tensile). The last term is the additional length of the contact surface relative to the mid-line of layer 1 (positive because the contact surface is the outer, convex surface). Similarly, the length of this surface for layer 2 is (minus signs because the force is compressive and the contact is on the inner surface). Since the surfaces are bonded,
Rearranging to extract , collecting terms and eliminating using the equation above produces the equation for in the main article. |
अंतर्दृष्टि प्राप्त की जा सकती है यदि अभी दिए गए परिणाम को ऊपर और नीचे से गुणा किया जाता है
जहाँ , और . तब से छोटे के लिए , जो असंवेदनशील है पहले आदेश की शर्तों की कमी के कारण, तब हम अनुमान लगा सकते हैं के लिए एकता के समीप (और असंवेदनशील ), और के लिए एकता के समीप (और असंवेदनशील ). इस प्रकार जब तक या एकता से बहुत दूर हैं जिसका हम अनुमान लगा सकते हैं .
इतिहास
सामान्यतः सबसे पुरानी जीवित द्विधात्विक पट्टी अठारहवीं शताब्दी के घड़ी निर्माता जॉन हैरिसन द्वारा बनाई गई थी जिसे सामान्यतः इसके आविष्कार का श्रेय दिया जाता है। उन्होंने इसे सन्न 1759 के अपने तीसरे समुद्री क्रोनोमीटर (H3) के लिए बनाया था जिससे कि संतुलन वसंत में तापमान-प्रेरित परिवर्तनों की भरपाई की जा सकती है।[4] इसे अपने ग्रिडिरॉन पेंडुलम में थर्मल विस्तार के लिए सही करने के लिए द्विपक्षीय तंत्र से भ्रमित नहीं होना चाहिए। उनके प्रारंभिक उदाहरणों में दो भिन्न-भिन्न धातु की पट्टियां रिवेट्स से जुड़ी थीं किन्तु उन्होंने स्टील सब्सट्रेट पर सीधे पिघले हुए पीतल को फ्यूज करने की पश्चात् की विधि का भी आविष्कार किया था। इस प्रकार की पट्टी उनके अंतिम टाइमकीपर H5 में फिट की गई थी। अतः हैरिसन के आविष्कार को इंग्लैंड के वेस्टमिंस्टर एब्बे में उनके स्मारक में मान्यता दी गई है।
अनुप्रयोग
इस प्रभाव का उपयोग यांत्रिक और विद्युत उपकरणों की श्रृंखला में किया जाता है।
घड़ियाँ
यांत्रिक घड़ी तंत्र तापमान परिवर्तन के प्रति संवेदनशील होते हैं जिससे कि प्रत्येक भाग में थोड़ी सहनशीलता होती है और यह समय निर्धारक में त्रुटियों की ओर जाता है। चूँकि कुछ समय के टुकड़े के तंत्र में इस घटना की भरपाई के लिए द्विधातु पट्टी का उपयोग किया जाता है। अतः संतुलन चक्र के वृत्ताकार रिम के लिए द्विधातु निर्माण का उपयोग करना सबसे सामान्य विधि है। यह क्या करता है वजन को रेडियल प्रकार से संतुलन पहिया द्वारा गोलाकार विमान को नीचे की ओर देखता है जो भिन्न-भिन्न होता है और संतुलन पहिया की जड़ता की गति की विधि पर कार्य करता है। चूंकि बढ़ते तापमान के साथ संतुलन को नियंत्रित करने वाला वसंत कमजोर हो जाता है, जड़ता की गति को कम करने और दोलन की अवधि (और इसलिए समय निर्धारक) को स्थिर रखने के लिए संतुलन व्यास में छोटा हो जाता है।
आजकल इस प्रणाली का उपयोग नहीं किया जाता है जिससे कि प्रत्येक ब्रांड के आधार पर निवारोक्स, पैराक्रोम और अनेक अन्य जैसे कम तापमान गुणांक मिश्र धातुओं की उपस्थिति होती है।
ऊष्मातापी
ताप और शीतलन के नियमन में, तापमान की विस्तृत श्रृंखला पर कार्य करने वाले ऊष्मातापी का उपयोग किया जाता है। इनमें द्विधात्विक पट्टी का सिरा यांत्रिक रूप से स्थिर होता है और विद्युत शक्ति स्रोत से जुड़ा होता है जिससे कि दूसरा (चलता हुआ) सिरा विद्युत संपर्क रखता है। अतः समायोज्य ऊष्मातापी में अन्य संपर्क विनियमन घुंडी या लीवर के साथ स्थित होता है। इस प्रकार संग्रह की गई स्थिति विनियमित तापमान को नियंत्रित करती है, जिसे निर्दिष्ट बिंदू कहा जाता है।
कुछ ऊष्मातापी दोनों विद्युत नेतृत्व से जुड़े पारा स्विच का उपयोग करते हैं। इस प्रकार ऊष्मातापी के निर्दिष्ट बिंदू को नियंत्रित करने के लिए पूर्ण तंत्र का कोण समायोज्य है।
अनुप्रयोग के आधार पर, उच्च तापमान संपर्क खोल सकता है (जैसे ताप नियंत्रण में) या यह संपर्क बंद कर सकता है (जैसे रेफ़्रिजरेटर (शीतक यंत्र) या एयर कंडीशनर (वातानुकूलक) में)।
विद्युत संपर्क विद्युत को सीधे (घरेलू लोहे में) या अप्रत्यक्ष रूप से नियंत्रित कर सकते हैं, विद्युत शक्ति को रिले के माध्यम से स्विच कर सकते हैं या विद्युत संचालित वाल्व के माध्यम से प्राकृतिक गैस या ईंधन तेल की आपूर्ति कर सकते हैं। चूँकि कुछ प्राकृतिक गैस तापक में थर्मोकपल के साथ विद्युत प्रदान की जा सकती है जो पायलट लाइट (छोटी, लगातार जलती हुई लौ) द्वारा ताप होती है। इग्निशन के लिए पायलट लाइट के बिना उपकरणों में (जैसा कि अधिकांश आधुनिक गैस वस्त्र सुखाने वालों और कुछ प्राकृतिक गैस ताप और सजावटी फायरप्लेस में) संपर्कों के लिए शक्ति कम घरेलू विद्युत शक्ति द्वारा प्रदान की जाती है जो इलेक्ट्रॉनिक इग्निटर को नियंत्रित करने वाले रिले को संचालित करती है, या तो प्रतिरोध ताप या विद्युत चालित चिंगारी पैदा करने वाला उपकरण होता है।
थर्मामीटर
प्रत्यक्ष संकेतक डायल थर्मामीटर, जो घरेलू उपकरणों में सामान्य है (जैसे कि पेटियो थर्मामीटर या मांस थर्मामीटर), अपने सबसे सामान्य डिजाइन में कुंडल में लिपटे द्विधातु पट्टी का उपयोग करता है। इस प्रकार कुंडल धातु के विस्तार के रैखिक आंदोलन को गोलाकार गति में परिवर्तित कर देता है जो कुण्डलाकार आकार के कारण होता है। कुंडल का सिरा नियत बिन्दु के रूप में उपकरण की आवास व्यवस्था से जुड़ा होता है और दूसरा गोलाकार संकेतक के अंदर दर्शाते हुए सुई चलाता है। रिकॉर्डिंग थर्मामीटर में द्विधात्विक पट्टी का भी उपयोग किया जाता है। इस प्रकार अधिक त्रुटिहीन परिणाम प्राप्त करने के लिए ब्रेगुएट के थर्मामीटर में त्रि-धात्विक कुंडलित वक्रता होती है।
ताप का इंजन
सामान्यतः ऊष्मा इंजन सबसे अधिक कुशल नहीं होते हैं और द्विधातु पट्टियों के उपयोग से ऊष्मा इंजन की दक्षता और भी कम हो जाती है जिससे कि ऊष्मा को रोकने के लिए कोई कक्ष नहीं होता है। इसके अतिरिक्त, बाइमेटेलिक स्ट्रिप्स अपनी चाल में शक्ति उत्पन्न नहीं कर सकती हैं, इसका कारण यह है कि उचित झुकने (आंदोलनों) को प्राप्त करने के लिए दोनों धातु स्ट्रिप्स को विस्तार के मध्य अंतर को ध्यान देने योग्य बनाने के लिए पतला होना पड़ता है। इसलिए ऊष्मा इंजनों में धातु की पट्टियों का उपयोग अधिकाशतः साधारण खिलौनों में होता है, जिन्हें यह प्रदर्शित करने के लिए बनाया गया है कि ताप इंजन को चलाने के लिए सिद्धांत का उपयोग कैसे किया जा सकता है।
विद्युत उपकरण
परिपथ को अतिरिक्त धारा से बचाने के लिए बायमेटल स्ट्रिप्स का उपयोग मिनिएचर परिपथ वियोजक में किया जाता है। तार की कुंडली का उपयोग द्विधात्विक पट्टी को ताप करने के लिए किया जाता है, जो लिंकेज को मोड़ती और संचालित करती है और स्प्रिंग-संचालित संपर्क को खोलती है। यह परिपथ को बाधित करता है और बायमेटल स्ट्रिप के शीतल होने पर इसे रीसेट किया जा सकता है।
बायमेटल स्ट्रिप्स का उपयोग समय-विलंब रिले, गैस - ओवन सुरक्षा वाल्व, पुराने ऑटोमोटिव लाइटिंग लैंप के लिए थर्मल फ्लैशर्स और फ्लोरोसेंट लैंप स्टार्टर्स में भी किया जाता है। कुछ उपकरणों में, बायमेटल स्ट्रिप के माध्यम से सीधी चलने वाली धारा इसे ताप करने और सीधे संपर्कों को संचालित करने के लिए पर्याप्त होता है। यह ऑटोमोटिव उपयोगों के लिए मैकेनिकल पीडब्लूएम वोल्टेज नियामकों में भी उपयोग किया गया है।[5]
यह भी देखें
संदर्भ
टिप्पणियाँ
- ↑ Sobel, Dava (1995). देशान्तर. London: Fourth Estate. p. 103. ISBN 0-00-721446-4.
One of the inventions Harrison introduced in H-3... is called... a bi-metallic strip.
- ↑ Clyne, TW. "Residual stresses in surface coatings and their effects on interfacial debonding." Key Engineering Materials (Switzerland). Vol. 116–117, pp. 307–330. 1996
- ↑ Timoshenko, J. Opt. Soc. Am. 11, 233 (1925)
- ↑ Sobel, Dava (1995). देशान्तर. London: Fourth Estate. p. 103. ISBN 0-00-721446-4.
One of the inventions Harrison introduced in H-3... is called... a bi-metallic strip.
- ↑ "Smiths Voltage Stabilizers - REVISED".