प्रभाव परिमाण: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 1: Line 1:
{{short description|Statistical measure of the magnitude of a phenomenon}}[[अंकशास्त्र|सांख्यिकी]] में, '''प्रभाव परिमाण''' एक जनसंख्या में दो चर के बीच संबंध की ताकत को मापने वाला मान है, या उस मात्रा का एक प्रतिरूप-आधारित अनुमान है। यह डेटा के प्रतिरूपों से आंकड़ों की गणना के मूल्य, एक काल्पनिक आबादी के लिए परिमाप का मान, या उस समीकरण को संदर्भित कर सकता है जो यह बताता है कि कैसे आंकड़े या परिमाप प्रभाव परिमाण मान को कैसे प्रभावित करता है।<ref name="Kelley2012">{{cite journal |last1=Kelley |first1=Ken |last2=Preacher |first2=Kristopher J. |s2cid=34152884 |title=प्रभाव आकार पर|year=2012 |journal=Psychological Methods |volume=17 |pages=137–152 |doi=10.1037/a0028086 |pmid=22545595 |issue=2}}</ref> प्रभाव परिमाण के उदाहरणों में दो चर के बीच [[सहसंबंध]] समिलित हैं,<ref>Rosenthal, Robert, H. Cooper, and L. Hedges. "Parametric measures of effect size." The handbook of research synthesis 621 (1994): 231–244. {{ISBN|978-0871541635}}</ref> एक [[समाश्रयण]] में समाश्रयण गुणांक , [[माध्य (सांख्यिकी)]] अंतर, या किसी विशेष घटना (जैसे दिल का दौरा) होने का खतरा। प्रभाव परिमाण [[सांख्यिकीय परिकल्पना परीक्षण]] के पूरक हैं, और [[सांख्यिकीय शक्ति]] विश्लेषण, प्रतिरूप आकार योजना और [[मेटा-विश्लेषण]] में महत्वपूर्ण भूमिका निभाते हैं। प्रभाव परिमाण से संबंधित डेटा-विश्लेषण विधियों के समूह को [[अनुमान सांख्यिकी]] कहा जाता है।
{{short description|Statistical measure of the magnitude of a phenomenon}}[[अंकशास्त्र|सांख्यिकी]] में, '''प्रभाव परिमाण''' एक जनसंख्या में दो चर के बीच संबंध की ताकत को मापने वाला मान है, या उस मात्रा का एक प्रतिरूप-आधारित अनुमान है। यह डेटा के प्रतिरूपों से आंकड़ों की गणना के मूल्य, एक काल्पनिक आबादी के लिए परिमाप का मान, या उस समीकरण को संदर्भित कर सकता है जो यह बताता है कि कैसे अंक-विवरन या परिमाप प्रभाव परिमाण मान को कैसे प्रभावित करता है।<ref name="Kelley2012">{{cite journal |last1=Kelley |first1=Ken |last2=Preacher |first2=Kristopher J. |s2cid=34152884 |title=प्रभाव आकार पर|year=2012 |journal=Psychological Methods |volume=17 |pages=137–152 |doi=10.1037/a0028086 |pmid=22545595 |issue=2}}</ref> प्रभाव परिमाण के उदाहरणों में दो चर के बीच [[सहसंबंध]] समिलित हैं,<ref>Rosenthal, Robert, H. Cooper, and L. Hedges. "Parametric measures of effect size." The handbook of research synthesis 621 (1994): 231–244. {{ISBN|978-0871541635}}</ref> एक [[समाश्रयण]] में समाश्रयण गुणांक , [[माध्य (सांख्यिकी)]] अंतर, या किसी विशेष घटना (जैसे दिल का दौरा) होने का खतरा। प्रभाव परिमाण [[सांख्यिकीय परिकल्पना परीक्षण]] के पूरक हैं, और [[सांख्यिकीय शक्ति]] विश्लेषण, प्रतिदर्श आमाप योजना और [[मेटा-विश्लेषण]] में महत्वपूर्ण भूमिका निभाते हैं। प्रभाव परिमाण से संबंधित डेटा-विश्लेषण विधियों के समूह को [[अनुमान सांख्यिकी]] कहा जाता है।


सांख्यिकीय मांग की ताकत का मूल्यांकन करते समय प्रभाव परिमाण एक आवश्यक घटक है, और यह MAGIC मानदंड में पहला अंश (परिमाण) है। प्रभाव के परिणाम का [[मानक विचलन]] महत्वपूर्ण महत्व का है, क्योंकि यह इंगित करता है कि माप में कितनी अनिश्चितता समिलित है। एक मानक विचलन जो बहुत बड़ा है वह माप को लगभग अर्थहीन बना देगा। मेटा-विश्लेषण में, जहां उद्देश्य कई प्रभाव परिमाणों को जोड़ना है, प्रभाव के परिणाम में अनिश्चितता का उपयोग प्रभाव के परिणाम को मापने के लिए किया जाता है, ताकि बड़े अध्ययनों को छोटे अध्ययनों से अधिक महत्वपूर्ण माना जा सके। प्रभाव परिमाण में अनिश्चितता की गणना प्रत्येक प्रकार के प्रभाव परिमाण के लिए अलग-अलग की जाती है, लेकिन समान्यतः केवल अध्ययन के प्रतिरूप आकार (N) , या प्रत्येक समूह में टिप्पणियों की संख्या (n) जानने की आवश्यकता होती है।
सांख्यिकीय मांग की ताकत का मूल्यांकन करते समय प्रभाव परिमाण एक आवश्यक घटक है, और यह MAGIC मानदंड में पहला अंश (परिमाण) है। प्रभाव के परिणाम का [[मानक विचलन]] महत्वपूर्ण महत्व का है, क्योंकि यह इंगित करता है कि माप में कितनी अनिश्चितता समिलित है। एक मानक विचलन जो बहुत बड़ा है वह माप को लगभग अर्थहीन बना देगा। मेटा-विश्लेषण में, जहां उद्देश्य कई प्रभाव परिमाणों को जोड़ना है, प्रभाव के परिणाम में अनिश्चितता का उपयोग प्रभाव के परिणाम को मापने के लिए किया जाता है, ताकि बड़े अध्ययनों को छोटे अध्ययनों से अधिक महत्वपूर्ण माना जा सके। प्रभाव परिमाण में अनिश्चितता की गणना प्रत्येक प्रकार के प्रभाव परिमाण के लिए अलग-अलग की जाती है, लेकिन समान्यतः केवल अध्ययन के प्रतिदर्श आमाप (N) , या प्रत्येक समूह में टिप्पणियों की संख्या (n) जानने की आवश्यकता होती है।


कई क्षेत्रों में अनुभवजन्य शोध निष्कर्ष प्रस्तुत करते समय प्रभाव के परिणाम या उसके अनुमानों (प्रभाव अनुमान [EE], प्रभाव का अनुमान) की सूचना करना अच्छा अभ्यास माना जाता है।<ref name="Wilkinson1999">{{cite journal |last=Wilkinson |first=Leland |title=Statistical methods in psychology journals: Guidelines and explanations |year=1999 |journal=American Psychologist |volume=54 |pages=594–604 |doi=10.1037/0003-066X.54.8.594 |issue=8|s2cid=428023 }}</ref><ref name="Nakagawa2007">{{cite journal |last=Nakagawa |first=Shinichi |author2=Cuthill, Innes C |year=2007 |title=Effect size, confidence interval and statistical significance: a practical guide for biologists |journal=Biological Reviews of the Cambridge Philosophical Society |volume=82 |pages=591–605 |doi=10.1111/j.1469-185X.2007.00027.x |pmid=17944619 |issue=4 |s2cid=615371 }}</ref> प्रभाव के परिणाम की सूचना इसके सांख्यिकीय महत्व के विपरीत, एक शोध परिणाम के महत्व की व्याख्या की सुविधा प्रदान करती है।<ref name="Ellis2010">{{cite book|last=Ellis|first=Paul D.|title=The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results | url=https://books.google.com/books?id=5obZnfK5pbsC&pg=PP1|year=2010|publisher=Cambridge University Press|isbn=978-0-521-14246-5}}{{page needed|date=August 2016}}</ref> प्रभाव परिमाण विशेष रूप से [[सामाजिक विज्ञान]] और [[चिकित्सा अनुसंधान]] में प्रमुख हैं (जहां [[औसत उपचार प्रभाव]] का आकार महत्वपूर्ण होता है)।
कई क्षेत्रों में अनुभवजन्य शोध निष्कर्ष प्रस्तुत करते समय प्रभाव के परिणाम या उसके अनुमानों (प्रभाव अनुमान [EE], प्रभाव का अनुमान) की सूचना करना अच्छा अभ्यास माना जाता है।<ref name="Wilkinson1999">{{cite journal |last=Wilkinson |first=Leland |title=Statistical methods in psychology journals: Guidelines and explanations |year=1999 |journal=American Psychologist |volume=54 |pages=594–604 |doi=10.1037/0003-066X.54.8.594 |issue=8|s2cid=428023 }}</ref><ref name="Nakagawa2007">{{cite journal |last=Nakagawa |first=Shinichi |author2=Cuthill, Innes C |year=2007 |title=Effect size, confidence interval and statistical significance: a practical guide for biologists |journal=Biological Reviews of the Cambridge Philosophical Society |volume=82 |pages=591–605 |doi=10.1111/j.1469-185X.2007.00027.x |pmid=17944619 |issue=4 |s2cid=615371 }}</ref> प्रभाव के परिणाम की सूचना इसके सांख्यिकीय महत्व के विपरीत, एक शोध परिणाम के महत्व की व्याख्या की सुविधा प्रदान करती है।<ref name="Ellis2010">{{cite book|last=Ellis|first=Paul D.|title=The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results | url=https://books.google.com/books?id=5obZnfK5pbsC&pg=PP1|year=2010|publisher=Cambridge University Press|isbn=978-0-521-14246-5}}{{page needed|date=August 2016}}</ref> प्रभाव परिमाण विशेष रूप से [[सामाजिक विज्ञान]] और [[चिकित्सा अनुसंधान]] में प्रमुख हैं (जहां [[औसत उपचार प्रभाव|औसत उपचार]] प्रभाव का परिणाम महत्वपूर्ण होता है)।


प्रभाव के परिणाम को सापेक्ष या निरपेक्ष रूप में मापा जा सकता है। सापेक्ष प्रभाव के परिणाम में, दो समूहों की सीधे एक दूसरे के साथ तुलना की जाती है, जैसे [[विषम अनुपात]] और [[सापेक्ष जोखिम|सापेक्ष खतरा]]। निरपेक्ष प्रभाव आकारों के लिए, एक बड़ा निरपेक्ष मान हमेशा एक मजबूत प्रभाव का संकेत देता है। कई प्रकार के मापों को निरपेक्ष या सापेक्ष के रूप में व्यक्त किया जा सकता है, और इनका एक साथ उपयोग किया जा सकता है क्योंकि वे अलग-अलग जानकारी देते हैं। मनोविज्ञान अनुसंधान समुदाय में एक प्रमुख कर्मी दल ने निम्नलिखित अभिशंसा की:
प्रभाव के परिणाम को सापेक्ष या निरपेक्ष रूप में मापा जा सकता है। सापेक्ष प्रभाव के परिणाम में, दो समूहों की सीधे एक दूसरे के साथ तुलना की जाती है, जैसे [[विषम अनुपात]] और [[सापेक्ष जोखिम|सापेक्ष खतरा]]। निरपेक्ष प्रभाव आकारों के लिए, एक बड़ा निरपेक्ष मान हमेशा एक मजबूत प्रभाव का संकेत देता है। कई प्रकार के मापों को निरपेक्ष या सापेक्ष के रूप में व्यक्त किया जा सकता है, और इनका एक साथ उपयोग किया जा सकता है क्योंकि वे अलग-अलग जानकारी देते हैं। मनोविज्ञान अनुसंधान समुदाय में एक प्रमुख कर्मी दल ने निम्नलिखित अभिशंसा की:
Line 12: Line 12:


=== जनसंख्या और प्रतिरूप प्रभाव परिमाण ===
=== जनसंख्या और प्रतिरूप प्रभाव परिमाण ===
जैसा कि [[सांख्यिकीय अनुमान]] में, वास्तविक प्रभाव परिमाण को प्रेक्षित प्रभाव परिमाण से अलग किया जाता है, उदाहरण, किसी आबादी में बीमारी के खतरा को मापने के लिए (जनसंख्या प्रभाव परिमाण) उस आबादी के प्रतिरूपों (प्रतिरूप प्रभाव परिमाण) के भीतर खतरे को माप सकते हैं। सही और प्रेक्षित प्रभाव आकारों का वर्णन करने के लिए मानक सांख्यिकीय कार्य प्रणाली का पालन करती है - एक सामान्य दृष्टिकोण जनसंख्या मापदंडों को दर्शाने के लिए ρ [rho] जैसे ग्रीक अक्षरों का उपयोग करना है और संबंधित आंकड़ों को दर्शाने के लिए r जैसे लैटिन अक्षरों का उपयोग करना है। वैकल्पिक रूप से, आँकड़ों को निरूपित करने के लिए जनसंख्या परिमाप पर एक "टोपी" लगाई जा सकती है, उदाहरण, <math>\hat\rho</math> के साथ परिमाप <math>\rho</math>. होने का अनुमान है।
जैसा कि [[सांख्यिकीय अनुमान]] में, वास्तविक प्रभाव परिमाण को प्रेक्षित प्रभाव परिमाण से अलग किया जाता है, उदाहरण, किसी आबादी में बीमारी के खतरा को मापने के लिए (जनसंख्या प्रभाव परिमाण) उस आबादी के प्रतिरूपों (प्रतिरूप प्रभाव परिमाण) के भीतर खतरे को माप सकते हैं। सही और प्रेक्षित प्रभाव आकारों का वर्णन करने के लिए मानक सांख्यिकीय कार्यप्रणाली का पालन करती है - एक सामान्य दृष्टिकोण जनसंख्या मापदंडों को दर्शाने के लिए ρ [rho] जैसे ग्रीक अक्षरों का उपयोग करते है और संबंधित आंकड़ों को दर्शाने के लिए r जैसे लैटिन अक्षरों का उपयोग करते है। वैकल्पिक रूप से, अंक-विवरन को निरूपित करने के लिए जनसंख्या परिमाप पर एक "टोपी" लगाई जा सकती है, उदाहरण, <math>\hat\rho</math> के साथ परिमाप <math>\rho</math>. होने का अनुमान है।


जैसा कि किसी भी सांख्यिकीय समायोजना में, प्रभाव के परिणाम का प्रतिरूप त्रुटि के साथ अनुमान लगाया जाता है, और पक्षपाती हो सकता है जब तक कि उपयोग किए जाने वाले प्रभाव परिमाण के अनुमानक उस तरीके के लिए उपयुक्त न हों जिसमें डेटा [[नमूनाकरण (सांख्यिकी)]] और जिस तरीके से माप किए गए थे। इसका एक उदाहरण [[प्रकाशन पूर्वाग्रह]] है, जो तब होता है जब वैज्ञानिक परिणामों की सूचना केवल तभी करते हैं जब अनुमानित प्रभाव परिमाण बड़े होते हैं या सांख्यिकीय रूप से महत्वपूर्ण होते हैं। नतीजतन, यदि कई शोधकर्ता कम सांख्यिकीय शक्ति के साथ अध्ययन करते हैं, तो सूचना किए गए प्रभाव का आकार सही (जनसंख्या) प्रभाव, यदि कोई हो, से बड़ा होगा।<ref name="Brand2008">{{Cite journal | vauthors = Brand A, Bradley MT, Best LA, Stoica G | year = 2008 | title = प्रकाशित मनोवैज्ञानिक अनुसंधान से प्रभाव के आकार के अनुमानों की सटीकता| journal = [[Perceptual and Motor Skills]] | volume = 106 | issue = 2 | pages = 645–649 | doi = 10.2466/PMS.106.2.645-649 | url = http://mtbradley.com/brandbradelybeststoicapdf.pdf | pmid = 18556917 | s2cid = 14340449 | access-date = 2008-10-31 | archive-url = https://web.archive.org/web/20081217175012/http://mtbradley.com/brandbradelybeststoicapdf.pdf | archive-date = 2008-12-17 | url-status=dead }}</ref> एक अन्य उदाहरण जहां प्रभाव परिमाण विकृत हो सकते हैं, एक बहु-परीक्षण प्रयोग में है, जहां प्रभाव परिमाण की गणना परीक्षणों में औसत या एकत्रित प्रतिक्रिया पर आधारित होती है।<ref name="Brand2011">{{Cite journal |vauthors=Brand A, Bradley MT, Best LA, Stoica G | year = 2011 | title = एकाधिक परीक्षण अतिरंजित प्रभाव आकार अनुमान प्राप्त कर सकते हैं| journal = [[The Journal of General Psychology]] | volume = 138 | issue = 1 | pages = 1–11 | doi=10.1080/00221309.2010.520360 | pmid = 21404946 | s2cid = 932324 | url = http://www.ipsychexpts.com/brand_et_al_(2011).pdf}}</ref>
जैसा कि किसी भी सांख्यिकीय समायोजना में, प्रभाव के परिणाम का [[प्रतिचयन त्रुटि]] के साथ अनुमान लगाया जाता है, और यह पक्षपाती हो सकता है जब तक कि उपयोग किए जाने वाले प्रभाव परिमाण के अनुमानक उस ढंग के लिए उपयुक्त नहीं है जिसमें डेटा [[नमूनाकरण (सांख्यिकी)]] लिया गया था और जिस ढंग से माप किए गए थे। इसका एक उदाहरण [[प्रकाशन पूर्वाग्रह|प्रकाशन पक्षपात]] है, जो तब होता है जब वैज्ञानिक परिणामों की सूचना केवल तभी करते हैं जब अनुमानित प्रभाव परिमाण बड़े होते हैं या सांख्यिकीय रूप से महत्वपूर्ण होते हैं। नतीजतन, यदि कई शोधकर्ता कम सांख्यिकीय शक्ति के साथ अध्ययन करते हैं, तो सूचना किए गए प्रभाव का परिणाम सही (जनसंख्या) प्रभाव, यदि कोई हो, से बड़ा होगा।<ref name="Brand2008">{{Cite journal | vauthors = Brand A, Bradley MT, Best LA, Stoica G | year = 2008 | title = प्रकाशित मनोवैज्ञानिक अनुसंधान से प्रभाव के आकार के अनुमानों की सटीकता| journal = [[Perceptual and Motor Skills]] | volume = 106 | issue = 2 | pages = 645–649 | doi = 10.2466/PMS.106.2.645-649 | url = http://mtbradley.com/brandbradelybeststoicapdf.pdf | pmid = 18556917 | s2cid = 14340449 | access-date = 2008-10-31 | archive-url = https://web.archive.org/web/20081217175012/http://mtbradley.com/brandbradelybeststoicapdf.pdf | archive-date = 2008-12-17 | url-status=dead }}</ref> एक अन्य उदाहरण जहां प्रभाव परिमाण विकृत हो सकते हैं, एक बहु-परीक्षण प्रयोग है, जहां प्रभाव परिमाण की गणना परीक्षणों में समान्य या संपूर्ण प्रतिक्रिया पर आधारित होती है।<ref name="Brand2011">{{Cite journal |vauthors=Brand A, Bradley MT, Best LA, Stoica G | year = 2011 | title = एकाधिक परीक्षण अतिरंजित प्रभाव आकार अनुमान प्राप्त कर सकते हैं| journal = [[The Journal of General Psychology]] | volume = 138 | issue = 1 | pages = 1–11 | doi=10.1080/00221309.2010.520360 | pmid = 21404946 | s2cid = 932324 | url = http://www.ipsychexpts.com/brand_et_al_(2011).pdf}}</ref>


छोटे अध्ययन कभी-कभी बड़े अध्ययनों की तुलना में भिन्न, प्रायः बड़े, प्रभाव परिमाण दिखाते हैं। इस घटना को लघु-अध्ययन प्रभाव के रूप में जाना जाता है, जो प्रकाशन पूर्वाग्रह को संकेत दे सकता है।<ref>{{Cite journal |last1=Sterne |first1=Jonathan A. C. |last2=Gavaghan |first2=David |last3=Egger |first3=Matthias |date=2000-11-01 |title=Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature |url=https://www.jclinepi.com/article/S0895-4356(00)00242-0/abstract |journal=Journal of Clinical Epidemiology |language=English |volume=53 |issue=11 |pages=1119–1129 |doi=10.1016/S0895-4356(00)00242-0 |issn=0895-4356 |pmid=11106885}}</ref>
छोटे अध्ययन कभी-कभी बड़े अध्ययनों की तुलना में भिन्न, प्रायः बड़े, प्रभाव परिमाण दिखाते हैं। इस घटना को लघु-अध्ययन प्रभाव के रूप में जाना जाता है, जो प्रकाशन पक्षपात को संकेत दे सकता है।<ref>{{Cite journal |last1=Sterne |first1=Jonathan A. C. |last2=Gavaghan |first2=David |last3=Egger |first3=Matthias |date=2000-11-01 |title=Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature |url=https://www.jclinepi.com/article/S0895-4356(00)00242-0/abstract |journal=Journal of Clinical Epidemiology |language=English |volume=53 |issue=11 |pages=1119–1129 |doi=10.1016/S0895-4356(00)00242-0 |issn=0895-4356 |pmid=11106885}}</ref>






=== परीक्षण आँकड़ों से संबंध ===
=== परीक्षण प्रतिदर्शन से संबंध ===
प्रतिरूप-आधारित प्रभाव परिमाण परिकल्पना परीक्षण में उपयोग किए जाने वाले परीक्षण आँकड़ों से अलग होते हैं, जिसमें वे एक सांख्यिकीय महत्व स्तर निर्दिष्ट करने के अतिरिक्त, उदाहरण के लिए, एक स्पष्ट संबंध की ताकत (परिमाण) का अनुमान लगाते हैं, यह दर्शाता है कि देखे गए संबंध का परिमाण हो सकता है। प्रभाव का आकार सीधे तरह से महत्व स्तर या इसके विपरीत निर्धारित नहीं करता है। पर्याप्त रूप से बड़ा प्रतिरूप आकार दिया गया है, एक गैर-शून्य सांख्यिकीय तुलना हमेशा सांख्यिकीय रूप से महत्वपूर्ण परिणाम दिखाएगी जब तक कि जनसंख्या प्रभाव का आकार बिल्कुल शून्य न हो (और वहां भी यह टाइप I त्रुटि की दर पर सांख्यिकीय महत्व दिखाएगा)। उदाहरण के लिए, यदि प्रतिरूप आकार 1000 है तो 0.01 का एक प्रतिरूप [[पियर्सन सहसंबंध]] गुणांक सांख्यिकीय रूप से महत्वपूर्ण है। इस विश्लेषण से केवल महत्वपूर्ण P-वैल्यू की सूचना करना भ्रामक हो सकता है यदि 0.01 का सहसंबंध किसी विशेष अनुप्रयोग में रुचि के लिए बहुत छोटा है।
प्रतिरूप-आधारित प्रभाव परिमाण परिकल्पना परीक्षण में उपयोग किए जाने वाले [[परीक्षण प्रतिदर्शन]] से अलग होते हैं, जिसमें वे ताकत (परिमाण) का अनुमान लगाते हैं, उदाहरण के लिए, एक स्पष्ट संबंध, महत्व स्तर निर्दिष्ट करने के विपरीत यह दर्शाता है कि देखे गए संबंध का परिमाण संयोग के कारण सकता है या नहीं। प्रभाव का परिणाम सीधे तरह से महत्व स्तर या इसके विपरीत निर्धारित नहीं करता है। पर्याप्त रूप से बड़ा प्रतिदर्श आमाप दिया गया है, एक गैर-शून्य सांख्यिकीय तुलना हमेशा सांख्यिकीय रूप से महत्वपूर्ण परिणाम दिखाएगी जब तक कि जनसंख्या प्रभाव का परिणाम पूरीतरह शून्य न हो (और वहां भी यह प्रकार I त्रुटि की दर पर सांख्यिकीय महत्व दिखाएगा)। उदाहरण के लिए, यदि प्रतिदर्श आमाप 1000 है तो 0.01 का एक प्रतिरूप [[पियर्सन सहसंबंध]] गुणांक सांख्यिकीय रूप से महत्वपूर्ण है। इस विश्लेषण से केवल महत्वपूर्ण [[P-मूल्य]] की सूचना करना भ्रामक हो सकता है यदि 0.01 का सहसंबंध किसी विशेष अनुप्रयोग में रुचि के लिए बहुत छोटा है।


=== मानकीकृत और अमानकीकृत प्रभाव परिमाण ===
=== मानकीकृत और अमानकीकृत प्रभाव परिमाण ===
शब्द प्रभाव परिमाण प्रभाव के एक मानकीकृत माप को संदर्भित कर सकता है (जैसे कि R, कोहेन का D, या बाधाओं का अनुपात), या एक अमानकीकृत माप (उदाहरण के लिए, समूह के बीच का अंतर या गैर-मानकीकृत समाश्रयण गुणांक) का उल्लेख कर सकता है। मानकीकृत प्रभाव परिमाण उपायों का समान्यतः उपयोग किया जाता है जब:
शब्द ''प्रभाव परिमाण,'' प्रभाव के एक मानकीकृत माप को संदर्भित कर सकता है (जैसे कि R, कोहेन का D, या विषम अनुपात), या एक अमानकीकृत माप (उदाहरण के लिए, समूह के बीच का अंतर या गैर-मानकीकृत समाश्रयण गुणांक) का उल्लेख कर सकता है। मानकीकृत प्रभाव परिमाण उपायों का समान्यतः तब उपयोग किया जाता है जब:
* अध्ययन किए जा रहे चर के मेट्रिक्स का आंतरिक अर्थ नहीं है (उदाहरण के लिए, एक मनमाने मानदंड पर व्यक्तित्व परीक्षण पर एक अंक),
* अध्ययन किए जा रहे चर के मिति का आंतरिक अर्थ नहीं है (उदाहरण के लिए, एक स्वेच्छ मापक्रम पर व्यक्तित्व परीक्षण पर एक अंक),
* अनेक अध्ययनों के परिणाम संयुक्त किए जा रहे हैं,
* अनेक अध्ययनों के परिणाम संयुक्त किए जा रहे हैं,
* कुछ या सभी अध्ययन अलग-अलग पैमानों का उपयोग करते हैं, या
* कुछ या सभी अध्ययन अलग-अलग मानदंडों का उपयोग करते हैं, या
* जनसंख्या में परिवर्तनशीलता के सापेक्ष एक प्रभाव के परिणाम को व्यक्त करना वांछित है।
* जनसंख्या में परिवर्तनशीलता के सापेक्ष एक प्रभाव के परिणाम को व्यक्त करना वांछित है।
मेटा-विश्लेषण में, मानकीकृत प्रभाव आकारों का उपयोग एक सामान्य माप के रूप में किया जाता है जिसे विभिन्न अध्ययनों के लिए गणना की जा सकती है और फिर समग्र सारांश में जोड़ा जा सकता है।
मेटा-विश्लेषण में, मानकीकृत प्रभाव आकारों का उपयोग एक सामान्य माप के रूप में किया जाता है जिससे विभिन्न अध्ययनों के लिए गणना की जा सकती है और फिर समग्र सारांश में जोड़ा जा सकता है।


== व्याख्या ==
== व्याख्या ==
Line 88: Line 88:
जनसंख्या में वर्णित प्रसरण का एक कम पक्षपाती अनुमानक ω<sup>2 है<ref name="Tabachnick 2007, p. 55">Tabachnick, B.G. & Fidell, L.S. (2007). Chapter 4: "Cleaning up your act. Screening data prior to analysis", p. 55 In B.G. Tabachnick & L.S. Fidell (Eds.), ''Using Multivariate Statistics'', Fifth Edition. Boston: Pearson Education, Inc. / Allyn and Bacon.</ref>
जनसंख्या में वर्णित प्रसरण का एक कम पक्षपाती अनुमानक ω<sup>2 है<ref name="Tabachnick 2007, p. 55">Tabachnick, B.G. & Fidell, L.S. (2007). Chapter 4: "Cleaning up your act. Screening data prior to analysis", p. 55 In B.G. Tabachnick & L.S. Fidell (Eds.), ''Using Multivariate Statistics'', Fifth Edition. Boston: Pearson Education, Inc. / Allyn and Bacon.</ref>
<math display="block">\omega^2 = \frac{\text{SS}_\text{treatment}-df_\text{treatment} \cdot \text{MS}_\text{error}}{\text{SS}_\text{total} + \text{MS}_\text{error}} .</math>
<math display="block">\omega^2 = \frac{\text{SS}_\text{treatment}-df_\text{treatment} \cdot \text{MS}_\text{error}}{\text{SS}_\text{total} + \text{MS}_\text{error}} .</math>
सूत्र का यह रूप सभी कक्षों में समान प्रतिरूप आकारों के बीच-विषयों के विश्लेषण तक सीमित है।<ref name="Tabachnick 2007, p. 55"/>चूंकि यह कम पक्षपाती है (हालांकि निष्पक्ष नहीं), ω<sup>2</sup> η<sup>2 से उच्च है</sup>; हालांकि, जटिल विश्लेषणों के लिए गणना करना अधिक असुविधाजनक हो सकता है। अनुमानक का एक सामान्यीकृत रूप बीच-विषयों और भीतर-विषयों के विश्लेषण, बार-बार माप, मिश्रित प्रारुपण और यादृच्छिक ब्लॉक प्रारुपण प्रयोगों के लिए प्रकाशित किया गया है।<ref name=OlejnikAlgina>{{cite journal | last1 = Olejnik | first1 = S. | last2 = Algina | first2 = J. | year = 2003 | title = Generalized Eta and Omega Squared Statistics: Measures of Effect Size for Some Common Research Designs | url = http://cps.nova.edu/marker/olejnik2003.pdf | journal = Psychological Methods | volume = 8 | issue = 4| pages = 434–447 | doi=10.1037/1082-989x.8.4.434| pmid = 14664681 }}</ref> इसके अतिरिक्त, आंशिक ω<sup>2</sup> की गणना करने के तरीके व्यक्तिगत गुणकों के लिए और प्रारुपण में संयुक्त गुणकों के लिए अधिकतम तीन स्वतंत्र चर प्रकाशित किए गए हैं।<ref name=OlejnikAlgina/>
सूत्र का यह रूप सभी कक्षों में समान प्रतिरूप आकारों के बीच-विषयों के विश्लेषण तक सीमित है।<ref name="Tabachnick 2007, p. 55"/>चूंकि यह कम पक्षपाती है (हालांकि निष्पक्ष नहीं), ω<sup>2</sup> η<sup>2 से उच्च है</sup>; हालांकि, जटिल विश्लेषणों के लिए गणना करना अधिक असुविधाजनक हो सकता है। अनुमानक का एक सामान्यीकृत रूप बीच-विषयों और भीतर-विषयों के विश्लेषण, बार-बार माप, मिश्रित प्रारुपण और यादृच्छिक ब्लॉक प्रारुपण प्रयोगों के लिए प्रकाशित किया गया है।<ref name=OlejnikAlgina>{{cite journal | last1 = Olejnik | first1 = S. | last2 = Algina | first2 = J. | year = 2003 | title = Generalized Eta and Omega Squared Statistics: Measures of Effect Size for Some Common Research Designs | url = http://cps.nova.edu/marker/olejnik2003.pdf | journal = Psychological Methods | volume = 8 | issue = 4| pages = 434–447 | doi=10.1037/1082-989x.8.4.434| pmid = 14664681 }}</ref> इसके अतिरिक्त, आंशिक ω<sup>2</sup> की गणना करने के ढंग व्यक्तिगत गुणकों के लिए और प्रारुपण में संयुक्त गुणकों के लिए अधिकतम तीन स्वतंत्र चर प्रकाशित किए गए हैं।<ref name=OlejnikAlgina/>




Line 108: Line 108:
कोहेन का <math>\hat{f}</math> विचरण (ANOVA) के तथ्यात्मक विश्लेषण के लिए भी पीछे की ओर काम करते हुए पाया जा सकता है:
कोहेन का <math>\hat{f}</math> विचरण (ANOVA) के तथ्यात्मक विश्लेषण के लिए भी पीछे की ओर काम करते हुए पाया जा सकता है:
<math display="block">\hat{f}_\text{effect} = {\sqrt{(F_\text{effect} df_\text{effect}/N)}}.</math>
<math display="block">\hat{f}_\text{effect} = {\sqrt{(F_\text{effect} df_\text{effect}/N)}}.</math>
एनोवा के एक संतुलित प्रारुपण (समूहों में समतुल्य प्रतिरूप आकार) में, संबंधित जनसंख्या परिमाप <math>f^2</math> है
एनोवा के एक संतुलित प्रारुपण (समूहों में समतुल्य प्रतिदर्श आमाप) में, संबंधित जनसंख्या परिमाप <math>f^2</math> है
<math display="block">{SS(\mu_1,\mu_2,\dots,\mu_K)}\over{K \times \sigma^2},</math>
<math display="block">{SS(\mu_1,\mu_2,\dots,\mu_K)}\over{K \times \sigma^2},</math>
जिसमें μ<sub>''j,''</sub> ''कुल K समूहों के''  j<sup>th</sup> सामूह के भीतर जनसंख्या माध्य और σ प्रत्येक समूह के भीतर समतुल्य जनसंख्या मानक विचलन को दर्शाता है। SS एनोवा में [[वर्ग योगफल]] है।
जिसमें μ<sub>''j,''</sub> ''कुल K समूहों के''  j<sup>th</sup> सामूह के भीतर जनसंख्या माध्य और σ प्रत्येक समूह के भीतर समतुल्य जनसंख्या मानक विचलन को दर्शाता है। SS एनोवा में [[वर्ग योगफल]] है।
Line 120: Line 120:
जहां n<sub>1</sub> और n<sub>2</sub> क्रमशः पहले और दूसरे समाश्रयण में डेटा बिंदुओं की संख्या है।
जहां n<sub>1</sub> और n<sub>2</sub> क्रमशः पहले और दूसरे समाश्रयण में डेटा बिंदुओं की संख्या है।


=== अंतर परिवार: साधनों के बीच अंतर के आधार पर प्रभाव का आकार ===
=== अंतर परिवार: साधनों के बीच अंतर के आधार पर प्रभाव का परिणाम ===
दो समूहों की तुलना से संबंधित अपरिष्कृत प्रभाव परिमाण की स्वाभाविक रूप से गणना दो साधनों के बीच के अंतर के रूप में की जाती है। हालांकि, व्याख्या की सुविधा के लिए प्रभाव के परिणाम को मानकीकृत करना आम बात है; सांख्यिकीय मानकीकरण के लिए विभिन्न सम्मेलनों को नीचे प्रस्तुत किया गया है।
दो समूहों की तुलना से संबंधित अपरिष्कृत प्रभाव परिमाण की स्वाभाविक रूप से गणना दो साधनों के बीच के अंतर के रूप में की जाती है। हालांकि, व्याख्या की सुविधा के लिए प्रभाव के परिणाम को मानकीकृत करना आम बात है; सांख्यिकीय मानकीकरण के लिए विभिन्न सम्मेलनों को नीचे प्रस्तुत किया गया है।


Line 130: Line 130:
व्यावहारिक समायोजना में जनसंख्या मूल्य समान्यतः ज्ञात नहीं होते हैं और प्रतिरूप आंकड़ों से अनुमान लगाया जाना चाहिए। साधनों के आधार पर प्रभाव आकारों के कई संस्करण अलग-अलग होते हैं, जिनके संबंध में सांख्यिकी का उपयोग किया जाता है।
व्यावहारिक समायोजना में जनसंख्या मूल्य समान्यतः ज्ञात नहीं होते हैं और प्रतिरूप आंकड़ों से अनुमान लगाया जाना चाहिए। साधनों के आधार पर प्रभाव आकारों के कई संस्करण अलग-अलग होते हैं, जिनके संबंध में सांख्यिकी का उपयोग किया जाता है।


प्रभाव परिमाण के लिए यह फॉर्म एक [[टी-परीक्षण]] सांख्यिकी के लिए गणना के समान है, महत्वपूर्ण अंतर के साथ टी-परीक्षण सांख्यिकी में <math>\sqrt{n}</math> का एक कारक समिलित है इसका अर्थ है कि किसी दिए गए प्रभाव परिमाण के लिए, प्रतिरूप आकार के साथ महत्व का स्तर बढ़ता है। टी-परीक्षण आँकड़ों के विपरीत, प्रभाव परिमाण का उद्देश्य जनसंख्या [[पैरामीटर|परिमाप]] का अनुमान लगाना है और जो प्रतिरूप आकार से प्रभावित नहीं होता है।
प्रभाव परिमाण के लिए यह फॉर्म एक [[टी-परीक्षण]] सांख्यिकी के लिए गणना के समान है, महत्वपूर्ण अंतर के साथ टी-परीक्षण सांख्यिकी में <math>\sqrt{n}</math> का एक कारक समिलित है इसका अर्थ है कि किसी दिए गए प्रभाव परिमाण के लिए, प्रतिदर्श आमाप के साथ महत्व का स्तर बढ़ता है। टी-परीक्षण प्रतिदर्शन के विपरीत, प्रभाव परिमाण का उद्देश्य जनसंख्या [[पैरामीटर|परिमाप]] का अनुमान लगाना है और जो प्रतिदर्श आमाप से प्रभावित नहीं होता है।


0.2 से 0.5 के SMD मूल्यों को छोटा माना जाता है, 0.5 से 0.8 को मध्यम माना जाता है, और 0.8 से अधिक को बड़ा माना जाता है।<ref name="Andrade2020">{{cite journal | last1 = Andrade | first1 = Chittaranjan | title = माध्य अंतर, मानकीकृत माध्य अंतर (एसएमडी), और मेटा-विश्लेषण में उनका उपयोग| journal = The Journal of Clinical Psychiatry | date = 22 September 2020 | volume = 81 | issue = 5 | eissn = 1555-2101 | doi = 10.4088/JCP.20f13681 | pmid = 32965803 | s2cid = 221865130 | url = | quote = SMD values of 0.2-0.5 are considered small, values of 0.5-0.8 are considered medium, and values > 0.8 are considered large. In psychopharmacology studies that compare independent groups, SMDs that are statistically significant are almost always in the small to medium range. It is rare for large SMDs to be obtained.| doi-access = free }}</ref>
0.2 से 0.5 के SMD मूल्यों को छोटा माना जाता है, 0.5 से 0.8 को मध्यम माना जाता है, और 0.8 से अधिक को बड़ा माना जाता है।<ref name="Andrade2020">{{cite journal | last1 = Andrade | first1 = Chittaranjan | title = माध्य अंतर, मानकीकृत माध्य अंतर (एसएमडी), और मेटा-विश्लेषण में उनका उपयोग| journal = The Journal of Clinical Psychiatry | date = 22 September 2020 | volume = 81 | issue = 5 | eissn = 1555-2101 | doi = 10.4088/JCP.20f13681 | pmid = 32965803 | s2cid = 221865130 | url = | quote = SMD values of 0.2-0.5 are considered small, values of 0.5-0.8 are considered medium, and values > 0.8 are considered large. In psychopharmacology studies that compare independent groups, SMDs that are statistically significant are almost always in the small to medium range. It is rare for large SMDs to be obtained.| doi-access = free }}</ref>
Line 187: Line 187:
और
और
<math display="block">d = \frac{\bar{X}_1 - \bar{X}_2}{\text{SD}} = \frac t {\sqrt N}</math>
<math display="block">d = \frac{\bar{X}_1 - \bar{X}_2}{\text{SD}} = \frac t {\sqrt N}</math>
सांख्यिकीय परीक्षण के लिए [[नमूना आकार का अनुमान|प्रतिरूप आकार का अनुमान]] लगाने में कोहेन के D का प्रायः उपयोग किया जाता है। एक निचला कोहेन का D बड़े प्रतिरूप आकार की आवश्यकता को इंगित करता है, और इसके विपरीत, जैसा कि वांछित महत्व स्तर और सांख्यिकीय शक्ति के अतिरिक्त मापदंडों के साथ बाद में निर्धारित किया जा सकता है।<ref>{{cite book|last=Kenny|first=David A.|title=सामाजिक और व्यवहार विज्ञान के लिए सांख्यिकी|url=https://books.google.com/books?id=EdqhQgAACAAJ&pg=PP1|year=1987|publisher=Little, Brown|isbn=978-0-316-48915-7|chapter=Chapter 13|chapter-url=http://davidakenny.net/doc/statbook/chapter_13.pdf}}</ref>
सांख्यिकीय परीक्षण के लिए [[नमूना आकार का अनुमान|प्रतिदर्श आमाप का अनुमान]] लगाने में कोहेन के D का प्रायः उपयोग किया जाता है। एक निचला कोहेन का D बड़े प्रतिदर्श आमाप की आवश्यकता को इंगित करता है, और इसके विपरीत, जैसा कि वांछित महत्व स्तर और सांख्यिकीय शक्ति के अतिरिक्त मापदंडों के साथ बाद में निर्धारित किया जा सकता है।<ref>{{cite book|last=Kenny|first=David A.|title=सामाजिक और व्यवहार विज्ञान के लिए सांख्यिकी|url=https://books.google.com/books?id=EdqhQgAACAAJ&pg=PP1|year=1987|publisher=Little, Brown|isbn=978-0-316-48915-7|chapter=Chapter 13|chapter-url=http://davidakenny.net/doc/statbook/chapter_13.pdf}}</ref>


युग्मित नमूनों के लिए कोहेन सुझाव देते हैं कि परिकलित D वास्तव में a d' है, जो परीक्षण की शक्ति प्राप्त करने के लिए सही उत्तर प्रदान नहीं करता है, और प्रदान की गई तालिकाओं में मानों को देखने से पहले, निम्नलिखित सूत्र से इसे r के लिए ठीक किया जाना चाहिए :{{sfn|Cohen|1988|p=49}}
युग्मित नमूनों के लिए कोहेन सुझाव देते हैं कि परिकलित D वास्तव में a d' है, जो परीक्षण की शक्ति प्राप्त करने के लिए सही उत्तर प्रदान नहीं करता है, और प्रदान की गई तालिकाओं में मानों को देखने से पहले, निम्नलिखित सूत्र से इसे r के लिए ठीक किया जाना चाहिए :{{sfn|Cohen|1988|p=49}}
Line 243: Line 243:




==== अन्य मेट्रिक्स ====
==== अन्य मिति ====
महालनोबिस दूरी (D) कोहेन के D का एक बहुभिन्नरूपी सामान्यीकरण है, जो चरों के बीच संबंधों को ध्यान में रखता है।<ref>{{Cite journal | last=Del Giudice | first=Marco | date=2013-07-18|title=Multivariate Misgivings: Is D a Valid Measure of Group and Sex Differences? | journal=Evolutionary Psychology | language=en | volume=11 | issue=5 | doi=10.1177/147470491301100511 | page=147470491301100 | doi-access=free}}</ref>
महालनोबिस दूरी (D) कोहेन के D का एक बहुभिन्नरूपी सामान्यीकरण है, जो चरों के बीच संबंधों को ध्यान में रखता है।<ref>{{Cite journal | last=Del Giudice | first=Marco | date=2013-07-18|title=Multivariate Misgivings: Is D a Valid Measure of Group and Sex Differences? | journal=Evolutionary Psychology | language=en | volume=11 | issue=5 | doi=10.1177/147470491301100511 | page=147470491301100 | doi-access=free}}</ref>


Line 257: Line 257:
! Cramér's ''V'' (''φ''<sub>''c''</sub>)
! Cramér's ''V'' (''φ''<sub>''c''</sub>)
|}
|}
[[ची-चुकता परीक्षण]] के लिए समिति के सामान्य रूप से उपयोग किए जाने वाले उपायों में [[फी गुणांक]] और हेराल्ड क्रैमर के वी (आंकड़े) हैं (कभी-कभी क्रैमर फाई के रूप में संदर्भित किया जाता है और φ<sub>''c के रूप में दर्शाया जाता है)''</sub>). फी [[बिंदु-द्विक्रमिक सहसंबंध गुणांक]] और कोहेन के डी से संबंधित है और दो चर (2 × 2) के बीच संबंध की सीमा का अनुमान लगाता है।<ref name="Ref_">आरोन, बी., क्रॉम्रे, जे.डी., और फेरॉन, जे.एम. (1998, नवंबर)। [http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED433353&ERICExtSearch_SearchType_0=no&accno=ED433353 r-आधारित और d-आधारित प्रभाव-आकार सूचकांकों की समानता: a के साथ समस्याएँ आमतौर पर अनुशंसित सूत्र।] फ्लोरिडा एजुकेशनल रिसर्च एसोसिएशन, ऑरलैंडो, FL की वार्षिक बैठक में प्रस्तुत किया गया पेपर। (ERIC दस्तावेज़ पुनरुत्पादन सेवा सं. ED433353)</ref> क्रैमर के V का उपयोग दो से अधिक स्तरों वाले चर के साथ किया जा सकता है।
[[ची-चुकता परीक्षण]] के लिए समिति के सामान्य रूप से उपयोग किए जाने वाले उपायों में [[फी गुणांक]] और हेराल्ड क्रैमर के वी (अंक-विवरन) हैं (कभी-कभी क्रैमर फाई के रूप में संदर्भित किया जाता है और φ<sub>''c के रूप में दर्शाया जाता है)''</sub>). फी [[बिंदु-द्विक्रमिक सहसंबंध गुणांक]] और कोहेन के डी से संबंधित है और दो चर (2 × 2) के बीच संबंध की सीमा का अनुमान लगाता है।<ref name="Ref_">आरोन, बी., क्रॉम्रे, जे.डी., और फेरॉन, जे.एम. (1998, नवंबर)। [http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=ED433353&ERICExtSearch_SearchType_0=no&accno=ED433353 r-आधारित और d-आधारित प्रभाव-आकार सूचकांकों की समानता: a के साथ समस्याएँ आमतौर पर अनुशंसित सूत्र।] फ्लोरिडा एजुकेशनल रिसर्च एसोसिएशन, ऑरलैंडो, FL की वार्षिक बैठक में प्रस्तुत किया गया पेपर। (ERIC दस्तावेज़ पुनरुत्पादन सेवा सं. ED433353)</ref> क्रैमर के V का उपयोग दो से अधिक स्तरों वाले चर के साथ किया जा सकता है।


फी की गणना ची-वर्ग आँकड़ों के वर्गमूल को प्रतिरूप आकार से विभाजित करके की जा सकती है।
फी की गणना ची-वर्ग अंक-विवरन के वर्गमूल को प्रतिदर्श आमाप से विभाजित करके की जा सकती है।


इसी तरह, क्रैमर के V की गणना प्रतिरूप आकार और न्यूनतम आयाम की लंबाई से विभाजित काई वर्ग के वर्गमूल को लेकर की जाती है (के पंक्तियों की संख्या R या कॉलम C की छोटी संख्या है)।
इसी तरह, क्रैमर के V की गणना प्रतिदर्श आमाप और न्यूनतम आयाम की लंबाई से विभाजित काई वर्ग के वर्गमूल को लेकर की जाती है (के पंक्तियों की संख्या R या कॉलम C की छोटी संख्या है)।


φ<sub>''c''</sub> दो असतत चरों का अंतर्संबंध है<ref name="Ref_a">{{cite book | last=Sheskin|first=David J. | title=पैरामीट्रिक और गैर पैरामीट्रिक सांख्यिकीय प्रक्रियाओं की पुस्तिका| url=https://books.google.com/books?id=bmwhcJqq01cC&pg=PP1 | edition=Third | year=2003 | publisher=CRC Press | isbn=978-1-4200-3626-8}}</ref> और इसकी गणना r या c के किसी भी मान के लिए की जा सकती है। हालाँकि, जैसे-जैसे ची-वर्ग मान कोशिकाओं की संख्या के साथ बढ़ते जाते हैं, r और c के बीच का अंतर जितना अधिक होता है, उतनी ही अधिक संभावना V की प्रवृत्ति सार्थक सहसंबंध के मजबूत प्रमाण के बिना 1 हो जाएगी।
φ<sub>''c''</sub> दो असतत चरों का अंतर्संबंध है<ref name="Ref_a">{{cite book | last=Sheskin|first=David J. | title=पैरामीट्रिक और गैर पैरामीट्रिक सांख्यिकीय प्रक्रियाओं की पुस्तिका| url=https://books.google.com/books?id=bmwhcJqq01cC&pg=PP1 | edition=Third | year=2003 | publisher=CRC Press | isbn=978-1-4200-3626-8}}</ref> और इसकी गणना r या c के किसी भी मान के लिए की जा सकती है। हालाँकि, जैसे-जैसे ची-वर्ग मान कोशिकाओं की संख्या के साथ बढ़ते जाते हैं, r और c के बीच का अंतर जितना अधिक होता है, उतनी ही अधिक संभावना V की प्रवृत्ति सार्थक सहसंबंध के मजबूत प्रमाण के बिना 1 हो जाएगी।
Line 291: Line 291:
==== विषम अनुपात ====
==== विषम अनुपात ====


विषम अनुपात (OR) एक अन्य उपयोगी प्रभाव परिमाण है। यह उचित है जब शोध प्रश्न दो [[बाइनरी डेटा]] के बीच सहयोग की डिग्री पर केंद्रित हो। उदाहरण के लिए, वर्तनी क्षमता के अध्ययन पर विचार करें। एक नियंत्रण समूह में, दो छात्र असफल होने वाले प्रत्येक के लिए कक्षा उत्तीर्ण करते हैं, इसलिए उत्तीर्ण होने की संभावना दो से एक (या 2/1 = 2) होती है। उपचार समूह में, असफल होने वाले प्रत्येक छात्र के लिए छह छात्र उत्तीर्ण होते हैं, इसलिए उत्तीर्ण होने की संभावना छह से एक (या 6/1 = 6) होती है। प्रभाव के परिमाण की गणना इस बात पर ध्यान देकर की जा सकती है कि उपचार समूह में पास होने की संभावना नियंत्रण समूह की तुलना में तीन गुना अधिक है (क्योंकि 6 को 2 से विभाजित करने पर 3 होता है)। इसलिए, विषम अनुपात 3 है। विषम अनुपात आँकड़े कोहेन के D की तुलना में एक अलग मानदंड पर हैं, इसलिए यह '3' कोहेन के 3 के D से तुलना करने योग्य नहीं है।
विषम अनुपात (OR) एक अन्य उपयोगी प्रभाव परिमाण है। यह उचित है जब शोध प्रश्न दो [[बाइनरी डेटा]] के बीच सहयोग की डिग्री पर केंद्रित हो। उदाहरण के लिए, वर्तनी क्षमता के अध्ययन पर विचार करें। एक नियंत्रण समूह में, दो छात्र असफल होने वाले प्रत्येक के लिए कक्षा उत्तीर्ण करते हैं, इसलिए उत्तीर्ण होने की संभावना दो से एक (या 2/1 = 2) होती है। उपचार समूह में, असफल होने वाले प्रत्येक छात्र के लिए छह छात्र उत्तीर्ण होते हैं, इसलिए उत्तीर्ण होने की संभावना छह से एक (या 6/1 = 6) होती है। प्रभाव के परिमाण की गणना इस बात पर ध्यान देकर की जा सकती है कि उपचार समूह में पास होने की संभावना नियंत्रण समूह की तुलना में तीन गुना अधिक है (क्योंकि 6 को 2 से विभाजित करने पर 3 होता है)। इसलिए, विषम अनुपात 3 है। विषम अनुपात अंक-विवरन कोहेन के D की तुलना में एक अलग मानदंड पर हैं, इसलिए यह '3' कोहेन के 3 के D से तुलना करने योग्य नहीं है।


==== सापेक्ष खतरा ====
==== सापेक्ष खतरा ====
Line 311: Line 311:


==== [[जोखिम अंतर|खतरा अंतर]] ====
==== [[जोखिम अंतर|खतरा अंतर]] ====
खतरा अंतर (RD) जिसे कभी-कभी पूर्ण खतरा में कमी कहा जाता है, केवल दो समूहों के बीच एक घटना के खतरा (संभावना) में अंतर होता है। प्रायोगिक अनुसंधान में यह एक उपयोगी उपाय है, क्योंकि RD आपको बताता है कि किस सीमा तक एक प्रायोगिक हस्तक्षेप किसी घटना या परिणाम की संभावना को बदलता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण समूह और उपचार समूह में पास होने वालों की संभावना क्रमशः 2/3 (या 0.67) और 6/7 (या 0.86) है, और इसलिए RD प्रभाव का आकार 0.86 − 0.67 = 0.19 (या) है 19%)। RD हस्तक्षेपों की प्रभावशीलता का आकलन करने के लिए उच्च उपाय है।<ref name="Stegenga2015"/>
खतरा अंतर (RD) जिसे कभी-कभी पूर्ण खतरा में कमी कहा जाता है, केवल दो समूहों के बीच एक घटना के खतरा (संभावना) में अंतर होता है। प्रायोगिक अनुसंधान में यह एक उपयोगी उपाय है, क्योंकि RD आपको बताता है कि किस सीमा तक एक प्रायोगिक हस्तक्षेप किसी घटना या परिणाम की संभावना को बदलता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण समूह और उपचार समूह में पास होने वालों की संभावना क्रमशः 2/3 (या 0.67) और 6/7 (या 0.86) है, और इसलिए RD प्रभाव का परिणाम 0.86 − 0.67 = 0.19 (या) है 19%)। RD हस्तक्षेपों की प्रभावशीलता का आकलन करने के लिए उच्च उपाय है।<ref name="Stegenga2015"/>




Line 322: Line 322:


=== सामान्य भाषा प्रभाव परिमाण ===
=== सामान्य भाषा प्रभाव परिमाण ===
आँकड़ों से बाहर के लोगों के लिए प्रभाव परिमाण के अर्थ का अधिक आसानी से वर्णन करने के लिए, सामान्य भाषा प्रभाव परिमाण, जैसा कि नाम से पता चलता है, इसे सादे अंग्रेजी में संप्रेषित करने के लिए प्रारुपण किया गया था। इसका उपयोग दो समूहों के बीच एक अंतर का वर्णन करने के लिए किया जाता है और 1992 में केनेथ मैकग्रा और S.P. वोंग द्वारा प्रस्तावित और नाम दिया गया था। उन्होंने निम्नलिखित उदाहरण का उपयोग किया (पुरुषों और महिलाओं की ऊंचाई के बारे में): युवा वयस्क पुरुषों और महिलाओं की किसी भी यादृच्छिक जोड़ी में, पुरुष की महिला की तुलना में लंबा होने की संभावना .92 है, या सरल शब्दों में, युवा वयस्कों में 100 में से 92 दो अजनबियों की मुलाक़ात में, सामान्य भाषा प्रभाव परिमाण के जनसंख्या मूल्य का वर्णन करते समय, पुरुष महिला की तुलना में लंबा होगा।
अंक-विवरन से बाहर के लोगों के लिए प्रभाव परिमाण के अर्थ का अधिक आसानी से वर्णन करने के लिए, सामान्य भाषा प्रभाव परिमाण, जैसा कि नाम से पता चलता है, इसे सादे अंग्रेजी में संप्रेषित करने के लिए प्रारुपण किया गया था। इसका उपयोग दो समूहों के बीच एक अंतर का वर्णन करने के लिए किया जाता है और 1992 में केनेथ मैकग्रा और S.P. वोंग द्वारा प्रस्तावित और नाम दिया गया था। उन्होंने निम्नलिखित उदाहरण का उपयोग किया (पुरुषों और महिलाओं की ऊंचाई के बारे में): युवा वयस्क पुरुषों और महिलाओं की किसी भी यादृच्छिक जोड़ी में, पुरुष की महिला की तुलना में लंबा होने की संभावना .92 है, या सरल शब्दों में, युवा वयस्कों में 100 में से 92 दो अजनबियों की मुलाक़ात में, सामान्य भाषा प्रभाव परिमाण के जनसंख्या मूल्य का वर्णन करते समय, पुरुष महिला की तुलना में लंबा होगा।


सामान्य भाषा प्रभाव परिमाण के लिए जनसंख्या मूल्य, जनसंख्या से अव्यवस्थित तरह से चुने गए जोड़े के संदर्भ में, प्रायः इस तरह सूचित किया जाता है। केर्बी (2014) नोट करता है कि एक जोड़ी, जिसे एक समूह में प्राप्तांक के रूप में दूसरे समूह में प्राप्तांक के साथ परिभाषित किया गया है, सामान्य भाषा प्रभाव परिमाण की एक मूल अवधारणा है।  
सामान्य भाषा प्रभाव परिमाण के लिए जनसंख्या मूल्य, जनसंख्या से अव्यवस्थित तरह से चुने गए जोड़े के संदर्भ में, प्रायः इस तरह सूचित किया जाता है। केर्बी (2014) नोट करता है कि एक जोड़ी, जिसे एक समूह में प्राप्तांक के रूप में दूसरे समूह में प्राप्तांक के साथ परिभाषित किया गया है, सामान्य भाषा प्रभाव परिमाण की एक मूल अवधारणा है।  
Line 339: Line 339:
एक उदाहरण दो सूत्रों के उपयोग का वर्णन कर सकता है। उपचार समूह में दस और नियंत्रण समूह में दस के साथ बीस वृद्ध वयस्कों के स्वास्थ्य अध्ययन पर विचार करें; इसलिए, दस गुना दस या 100 जोड़े हैं। स्वास्थ्य कार्यक्रम स्मृति में सुधार के लिए आहार, व्यायाम और पूरक आहार का उपयोग करता है, और स्मृति को एक मानकीकृत परीक्षण द्वारा मापा जाता है। एक मान-व्हिटनी U परीक्षण से पता चलता है कि उपचार समूह में वयस्क की 100 जोड़ों में से 70 में उच्च स्मृति थी, और 30 जोड़ों में खराब स्मृति थी। मान-व्हिटनी U 70 और 30 में से छोटा है, इसलिए U = 30। केर्बी सरल अंतर सूत्र द्वारा स्मृति और उपचार प्रदर्शन के बीच संबंध r= (70/100) − (30/100) = 0.40। वेन्द्र सूत्र द्वारा सहसंबंध r = 1 − (2·30)/(10·10) = 0.40 है।
एक उदाहरण दो सूत्रों के उपयोग का वर्णन कर सकता है। उपचार समूह में दस और नियंत्रण समूह में दस के साथ बीस वृद्ध वयस्कों के स्वास्थ्य अध्ययन पर विचार करें; इसलिए, दस गुना दस या 100 जोड़े हैं। स्वास्थ्य कार्यक्रम स्मृति में सुधार के लिए आहार, व्यायाम और पूरक आहार का उपयोग करता है, और स्मृति को एक मानकीकृत परीक्षण द्वारा मापा जाता है। एक मान-व्हिटनी U परीक्षण से पता चलता है कि उपचार समूह में वयस्क की 100 जोड़ों में से 70 में उच्च स्मृति थी, और 30 जोड़ों में खराब स्मृति थी। मान-व्हिटनी U 70 और 30 में से छोटा है, इसलिए U = 30। केर्बी सरल अंतर सूत्र द्वारा स्मृति और उपचार प्रदर्शन के बीच संबंध r= (70/100) − (30/100) = 0.40। वेन्द्र सूत्र द्वारा सहसंबंध r = 1 − (2·30)/(10·10) = 0.40 है।


=== क्रमिक डेटा के लिए प्रभाव का आकार ===
=== क्रमिक डेटा के लिए प्रभाव का परिणाम ===
क्लिफ का डेल्टा या <math>d</math>, मूल रूप से [[नॉर्मन क्लिफ]] द्वारा क्रमिक डेटा के उपयोग के लिए विकसित किया गया था,<ref name="Cliff1993">{{cite journal | last=Cliff | first=Norman | title=Dominance statistics: Ordinal analyses to answer ordinal questions | year=1993 | journal=Psychological Bulletin | volume=114 | pages=494–509 | issue=3 | doi=10.1037/0033-2909.114.3.494}}</ref> यह इस बात का माप है कि कितनी बार एक वितरण में मान दूसरे वितरण के मानों से बड़ा होता है। महत्वपूर्ण रूप से, इसमें दो वितरणों के आकार या प्रसार के बारे में किसी धारणा की आवश्यकता नहीं है।
क्लिफ का डेल्टा या <math>d</math>, मूल रूप से [[नॉर्मन क्लिफ]] द्वारा क्रमिक डेटा के उपयोग के लिए विकसित किया गया था,<ref name="Cliff1993">{{cite journal | last=Cliff | first=Norman | title=Dominance statistics: Ordinal analyses to answer ordinal questions | year=1993 | journal=Psychological Bulletin | volume=114 | pages=494–509 | issue=3 | doi=10.1037/0033-2909.114.3.494}}</ref> यह इस बात का माप है कि कितनी बार एक वितरण में मान दूसरे वितरण के मानों से बड़ा होता है। महत्वपूर्ण रूप से, इसमें दो वितरणों के आकार या प्रसार के बारे में किसी धारणा की आवश्यकता नहीं है।


Line 355: Line 355:


=== एकल समूह या दो संबंधित समूहों के औसत अंतर के लिए टी-परीक्षण ===
=== एकल समूह या दो संबंधित समूहों के औसत अंतर के लिए टी-परीक्षण ===
एकल समूह के लिए, M प्रतिरूप माध्य, μ जनसंख्या माध्य, SD प्रतिरूप का मानक विचलन, σ जनसंख्या का मानक विचलन, और n समूह का प्रतिरूप आकार दर्शाता है। माध्य और आधार रेखा μ के बीच के अंतर पर परिकल्पना का परीक्षण करने के लिए t मान का उपयोग किया जाता है. समान्यतः, μ आधार रेखा शून्य है। दो संबंधित समूहों की स्थिति में, एकल समूह का निर्माण नमूनों की जोड़ी में अंतर से होता है, जबकि SD और σ मूल दो समूहों के अतिरिक्त प्रतिरूपों और जनसंख्या के अंतर के मानक विचलन को दर्शाते हैं।
एकल समूह के लिए, M प्रतिरूप माध्य, μ जनसंख्या माध्य, SD प्रतिरूप का मानक विचलन, σ जनसंख्या का मानक विचलन, और n समूह का प्रतिदर्श आमाप दर्शाता है। माध्य और आधार रेखा μ के बीच के अंतर पर परिकल्पना का परीक्षण करने के लिए t मान का उपयोग किया जाता है. समान्यतः, μ आधार रेखा शून्य है। दो संबंधित समूहों की स्थिति में, एकल समूह का निर्माण नमूनों की जोड़ी में अंतर से होता है, जबकि SD और σ मूल दो समूहों के अतिरिक्त प्रतिरूपों और जनसंख्या के अंतर के मानक विचलन को दर्शाते हैं।
<math display="block">t := \frac{M - \mu_{\text{baseline}}}{\text{SE}} = \frac{M- \mu_{\text{baseline}}}{\text{SD}/\sqrt{n}}=\frac{\sqrt{n} \left( \frac{M-\mu}{\sigma} \right) + \sqrt{n} \left( \frac{\mu-\mu_\text{baseline}}{\sigma}\right) }{\frac{\text{SD}} \sigma}</math>
<math display="block">t := \frac{M - \mu_{\text{baseline}}}{\text{SE}} = \frac{M- \mu_{\text{baseline}}}{\text{SD}/\sqrt{n}}=\frac{\sqrt{n} \left( \frac{M-\mu}{\sigma} \right) + \sqrt{n} \left( \frac{\mu-\mu_\text{baseline}}{\sigma}\right) }{\frac{\text{SD}} \sigma}</math>
<math display="block">ncp=\sqrt{n} \left( \frac{\mu-\mu_\text{baseline}}{\sigma} \right) </math>
<math display="block">ncp=\sqrt{n} \left( \frac{\mu-\mu_\text{baseline}}{\sigma} \right) </math>
Line 367: Line 367:


=== दो स्वतंत्र समूहों के बीच औसत अंतर के लिए टी-परीक्षण ===
=== दो स्वतंत्र समूहों के बीच औसत अंतर के लिए टी-परीक्षण ===
<sub>N1</sub> या N<sub>2</sub> संबंधित प्रतिरूप आकार हैं।
<sub>N1</sub> या N<sub>2</sub> संबंधित प्रतिदर्श आमाप हैं।
<math display="block">t:=\frac{M_1-M_2}{\text{SD}_\text{within}/\sqrt{\frac{2*n_1 n_2}{n_1+n_2}}},</math>
<math display="block">t:=\frac{M_1-M_2}{\text{SD}_\text{within}/\sqrt{\frac{2*n_1 n_2}{n_1+n_2}}},</math>
जिसमें
जिसमें
Line 392: Line 392:
तो, F और <math>\chi^2</math> दोनों के ncp(s) समान है
तो, F और <math>\chi^2</math> दोनों के ncp(s) समान है
<math display="block">\text{SS}\left(\mu_i(X_{i,j})/\sigma;i=1,2,\dots,K,\; j=1,2,\dots,n_i \right).</math>
<math display="block">\text{SS}\left(\mu_i(X_{i,j})/\sigma;i=1,2,\dots,K,\; j=1,2,\dots,n_i \right).</math>
के स्थिति में <math>n:=n_1=n_2=\cdots=n_K</math> समान आकार के K स्वतंत्र समूहों के लिए, कुल प्रतिरूप आकार N := n·K है।
के स्थिति में <math>n:=n_1=n_2=\cdots=n_K</math> समान आकार के K स्वतंत्र समूहों के लिए, कुल प्रतिदर्श आमाप N := n·K है।
<math display="block">\text{Cohens }\tilde{f}^2 := \frac{\text{SS}(\mu_1,\mu_2, \dots ,\mu_K)}{K\cdot\sigma^2} = \frac{\text{SS} \left(\mu_i(X_{i,j})/\sigma; i=1,2,\dots,K,\; j=1,2,\dots,n_i \right)}{n\cdot K} = \frac{ncp}{n\cdot K}=\frac{ncp}N.</math>
<math display="block">\text{Cohens }\tilde{f}^2 := \frac{\text{SS}(\mu_1,\mu_2, \dots ,\mu_K)}{K\cdot\sigma^2} = \frac{\text{SS} \left(\mu_i(X_{i,j})/\sigma; i=1,2,\dots,K,\; j=1,2,\dots,n_i \right)}{n\cdot K} = \frac{ncp}{n\cdot K}=\frac{ncp}N.</math>
स्वतंत्र समूहों की एक जोड़ी के लिए टी-परीक्षण एकतरफा एनोवा का एक विशेष स्थिति है। ध्यान दें कि  F का गैर-केंद्रीयता परिमाप <math>ncp_F</math> संगत t के गैर-केंद्रीयता परिमाप <math>ncp_t</math> से तुलनीय नही है। वास्तव में, <math>ncp_F = ncp_t^2</math>, और <math>\tilde{f} = \left|\frac{\tilde{d}}{2}\right|</math>.
स्वतंत्र समूहों की एक जोड़ी के लिए टी-परीक्षण एकतरफा एनोवा का एक विशेष स्थिति है। ध्यान दें कि  F का गैर-केंद्रीयता परिमाप <math>ncp_F</math> संगत t के गैर-केंद्रीयता परिमाप <math>ncp_t</math> से तुलनीय नही है। वास्तव में, <math>ncp_F = ncp_t^2</math>, और <math>\tilde{f} = \left|\frac{\tilde{d}}{2}\right|</math>.


== यह भी देखें ==
== यह भी देखें ==
* अनुमान आँकड़े
* अनुमान अंक-विवरन
*आंकड़ों की महत्ता
*आंकड़ों की महत्ता
*[[Z कारक]], प्रभाव परिमाण का एक वैकल्पिक उपाय
*[[Z कारक]], प्रभाव परिमाण का एक वैकल्पिक उपाय

Revision as of 19:53, 23 April 2023

सांख्यिकी में, प्रभाव परिमाण एक जनसंख्या में दो चर के बीच संबंध की ताकत को मापने वाला मान है, या उस मात्रा का एक प्रतिरूप-आधारित अनुमान है। यह डेटा के प्रतिरूपों से आंकड़ों की गणना के मूल्य, एक काल्पनिक आबादी के लिए परिमाप का मान, या उस समीकरण को संदर्भित कर सकता है जो यह बताता है कि कैसे अंक-विवरन या परिमाप प्रभाव परिमाण मान को कैसे प्रभावित करता है।[1] प्रभाव परिमाण के उदाहरणों में दो चर के बीच सहसंबंध समिलित हैं,[2] एक समाश्रयण में समाश्रयण गुणांक , माध्य (सांख्यिकी) अंतर, या किसी विशेष घटना (जैसे दिल का दौरा) होने का खतरा। प्रभाव परिमाण सांख्यिकीय परिकल्पना परीक्षण के पूरक हैं, और सांख्यिकीय शक्ति विश्लेषण, प्रतिदर्श आमाप योजना और मेटा-विश्लेषण में महत्वपूर्ण भूमिका निभाते हैं। प्रभाव परिमाण से संबंधित डेटा-विश्लेषण विधियों के समूह को अनुमान सांख्यिकी कहा जाता है।

सांख्यिकीय मांग की ताकत का मूल्यांकन करते समय प्रभाव परिमाण एक आवश्यक घटक है, और यह MAGIC मानदंड में पहला अंश (परिमाण) है। प्रभाव के परिणाम का मानक विचलन महत्वपूर्ण महत्व का है, क्योंकि यह इंगित करता है कि माप में कितनी अनिश्चितता समिलित है। एक मानक विचलन जो बहुत बड़ा है वह माप को लगभग अर्थहीन बना देगा। मेटा-विश्लेषण में, जहां उद्देश्य कई प्रभाव परिमाणों को जोड़ना है, प्रभाव के परिणाम में अनिश्चितता का उपयोग प्रभाव के परिणाम को मापने के लिए किया जाता है, ताकि बड़े अध्ययनों को छोटे अध्ययनों से अधिक महत्वपूर्ण माना जा सके। प्रभाव परिमाण में अनिश्चितता की गणना प्रत्येक प्रकार के प्रभाव परिमाण के लिए अलग-अलग की जाती है, लेकिन समान्यतः केवल अध्ययन के प्रतिदर्श आमाप (N) , या प्रत्येक समूह में टिप्पणियों की संख्या (n) जानने की आवश्यकता होती है।

कई क्षेत्रों में अनुभवजन्य शोध निष्कर्ष प्रस्तुत करते समय प्रभाव के परिणाम या उसके अनुमानों (प्रभाव अनुमान [EE], प्रभाव का अनुमान) की सूचना करना अच्छा अभ्यास माना जाता है।[3][4] प्रभाव के परिणाम की सूचना इसके सांख्यिकीय महत्व के विपरीत, एक शोध परिणाम के महत्व की व्याख्या की सुविधा प्रदान करती है।[5] प्रभाव परिमाण विशेष रूप से सामाजिक विज्ञान और चिकित्सा अनुसंधान में प्रमुख हैं (जहां औसत उपचार प्रभाव का परिणाम महत्वपूर्ण होता है)।

प्रभाव के परिणाम को सापेक्ष या निरपेक्ष रूप में मापा जा सकता है। सापेक्ष प्रभाव के परिणाम में, दो समूहों की सीधे एक दूसरे के साथ तुलना की जाती है, जैसे विषम अनुपात और सापेक्ष खतरा। निरपेक्ष प्रभाव आकारों के लिए, एक बड़ा निरपेक्ष मान हमेशा एक मजबूत प्रभाव का संकेत देता है। कई प्रकार के मापों को निरपेक्ष या सापेक्ष के रूप में व्यक्त किया जा सकता है, और इनका एक साथ उपयोग किया जा सकता है क्योंकि वे अलग-अलग जानकारी देते हैं। मनोविज्ञान अनुसंधान समुदाय में एक प्रमुख कर्मी दल ने निम्नलिखित अभिशंसा की:

प्राथमिक परिणामों के लिए हमेशा प्रभाव आकार प्रस्तुत करें... यदि माप की इकाइयां व्यावहारिक स्तर पर सार्थक हैं (उदाहरण के लिए, प्रतिदिन धूम्रपान की जाने वाली सिगरेट की संख्या), तो हम समान्यतः एक मानकीकृत माप के लिए एक गैर-मानकीकृत माप (प्रतिगमन गुणांक या औसत अंतर) पसंद करते हैं (r या d).

संक्षिप्त विवरण

जनसंख्या और प्रतिरूप प्रभाव परिमाण

जैसा कि सांख्यिकीय अनुमान में, वास्तविक प्रभाव परिमाण को प्रेक्षित प्रभाव परिमाण से अलग किया जाता है, उदाहरण, किसी आबादी में बीमारी के खतरा को मापने के लिए (जनसंख्या प्रभाव परिमाण) उस आबादी के प्रतिरूपों (प्रतिरूप प्रभाव परिमाण) के भीतर खतरे को माप सकते हैं। सही और प्रेक्षित प्रभाव आकारों का वर्णन करने के लिए मानक सांख्यिकीय कार्यप्रणाली का पालन करती है - एक सामान्य दृष्टिकोण जनसंख्या मापदंडों को दर्शाने के लिए ρ [rho] जैसे ग्रीक अक्षरों का उपयोग करते है और संबंधित आंकड़ों को दर्शाने के लिए r जैसे लैटिन अक्षरों का उपयोग करते है। वैकल्पिक रूप से, अंक-विवरन को निरूपित करने के लिए जनसंख्या परिमाप पर एक "टोपी" लगाई जा सकती है, उदाहरण, के साथ परिमाप . होने का अनुमान है।

जैसा कि किसी भी सांख्यिकीय समायोजना में, प्रभाव के परिणाम का प्रतिचयन त्रुटि के साथ अनुमान लगाया जाता है, और यह पक्षपाती हो सकता है जब तक कि उपयोग किए जाने वाले प्रभाव परिमाण के अनुमानक उस ढंग के लिए उपयुक्त नहीं है जिसमें डेटा नमूनाकरण (सांख्यिकी) लिया गया था और जिस ढंग से माप किए गए थे। इसका एक उदाहरण प्रकाशन पक्षपात है, जो तब होता है जब वैज्ञानिक परिणामों की सूचना केवल तभी करते हैं जब अनुमानित प्रभाव परिमाण बड़े होते हैं या सांख्यिकीय रूप से महत्वपूर्ण होते हैं। नतीजतन, यदि कई शोधकर्ता कम सांख्यिकीय शक्ति के साथ अध्ययन करते हैं, तो सूचना किए गए प्रभाव का परिणाम सही (जनसंख्या) प्रभाव, यदि कोई हो, से बड़ा होगा।[6] एक अन्य उदाहरण जहां प्रभाव परिमाण विकृत हो सकते हैं, एक बहु-परीक्षण प्रयोग है, जहां प्रभाव परिमाण की गणना परीक्षणों में समान्य या संपूर्ण प्रतिक्रिया पर आधारित होती है।[7]

छोटे अध्ययन कभी-कभी बड़े अध्ययनों की तुलना में भिन्न, प्रायः बड़े, प्रभाव परिमाण दिखाते हैं। इस घटना को लघु-अध्ययन प्रभाव के रूप में जाना जाता है, जो प्रकाशन पक्षपात को संकेत दे सकता है।[8]


परीक्षण प्रतिदर्शन से संबंध

प्रतिरूप-आधारित प्रभाव परिमाण परिकल्पना परीक्षण में उपयोग किए जाने वाले परीक्षण प्रतिदर्शन से अलग होते हैं, जिसमें वे ताकत (परिमाण) का अनुमान लगाते हैं, उदाहरण के लिए, एक स्पष्ट संबंध, महत्व स्तर निर्दिष्ट करने के विपरीत यह दर्शाता है कि देखे गए संबंध का परिमाण संयोग के कारण सकता है या नहीं। प्रभाव का परिणाम सीधे तरह से महत्व स्तर या इसके विपरीत निर्धारित नहीं करता है। पर्याप्त रूप से बड़ा प्रतिदर्श आमाप दिया गया है, एक गैर-शून्य सांख्यिकीय तुलना हमेशा सांख्यिकीय रूप से महत्वपूर्ण परिणाम दिखाएगी जब तक कि जनसंख्या प्रभाव का परिणाम पूरीतरह शून्य न हो (और वहां भी यह प्रकार I त्रुटि की दर पर सांख्यिकीय महत्व दिखाएगा)। उदाहरण के लिए, यदि प्रतिदर्श आमाप 1000 है तो 0.01 का एक प्रतिरूप पियर्सन सहसंबंध गुणांक सांख्यिकीय रूप से महत्वपूर्ण है। इस विश्लेषण से केवल महत्वपूर्ण P-मूल्य की सूचना करना भ्रामक हो सकता है यदि 0.01 का सहसंबंध किसी विशेष अनुप्रयोग में रुचि के लिए बहुत छोटा है।

मानकीकृत और अमानकीकृत प्रभाव परिमाण

शब्द प्रभाव परिमाण, प्रभाव के एक मानकीकृत माप को संदर्भित कर सकता है (जैसे कि R, कोहेन का D, या विषम अनुपात), या एक अमानकीकृत माप (उदाहरण के लिए, समूह के बीच का अंतर या गैर-मानकीकृत समाश्रयण गुणांक) का उल्लेख कर सकता है। मानकीकृत प्रभाव परिमाण उपायों का समान्यतः तब उपयोग किया जाता है जब:

  • अध्ययन किए जा रहे चर के मिति का आंतरिक अर्थ नहीं है (उदाहरण के लिए, एक स्वेच्छ मापक्रम पर व्यक्तित्व परीक्षण पर एक अंक),
  • अनेक अध्ययनों के परिणाम संयुक्त किए जा रहे हैं,
  • कुछ या सभी अध्ययन अलग-अलग मानदंडों का उपयोग करते हैं, या
  • जनसंख्या में परिवर्तनशीलता के सापेक्ष एक प्रभाव के परिणाम को व्यक्त करना वांछित है।

मेटा-विश्लेषण में, मानकीकृत प्रभाव आकारों का उपयोग एक सामान्य माप के रूप में किया जाता है जिससे विभिन्न अध्ययनों के लिए गणना की जा सकती है और फिर समग्र सारांश में जोड़ा जा सकता है।

व्याख्या

एक प्रभाव परिमाण को छोटे, मध्यम या बड़े के रूप में व्याख्यायित किया जाना चाहिए या नहीं यह इसके मूल संदर्भ और इसकी परिचालन परिभाषा पर निर्भर करता है। कोहेन के पारंपरिक मानदंड छोटे, मध्यम या बड़े[9]कई क्षेत्रों में लगभग सर्वव्यापी हैं, हालांकि कोहेन[9]आगाह किया:

शब्द 'छोटा,' 'मध्यम' और 'बड़ा' सापेक्ष हैं, न केवल एक दूसरे के लिए, बल्कि व्यवहार विज्ञान के क्षेत्र या इससे भी अधिक विशेष रूप से किसी भी जांच में नियोजित विशिष्ट सामग्री और अनुसंधान पद्धति के लिए ....इस सापेक्षता के सामने, व्यवहार विज्ञान के रूप में जांच के विविध क्षेत्र में शक्ति विश्लेषण में उपयोग के लिए इन शर्तों के लिए पारंपरिक परिचालन परिभाषाएं पेश करने में एक निश्चित खतरा निहित है। इस खतरा को फिर भी इस विश्वास में स्वीकार किया जाता है कि संदर्भ के एक सामान्य पारंपरिक फ्रेम की आपूर्ति करके खोने से अधिक प्राप्त करना है, जिसे केवल तभी उपयोग करने की सिफारिश की जाती है जब ईएस इंडेक्स का आकलन करने के लिए कोई उच्च आधार उपलब्ध न हो। (पृ. 25)

दो प्रतिरूप अभिन्यास में, सॉविलोव्स्की [10]लागू साहित्य में वर्तमान शोध निष्कर्षों के आधार पर, कोहेन की चेतावनियों को ध्यान में रखते हुए, प्रभाव के परिणाम के लिए अंगूठे के नियमों को संशोधित करना उचित लगता है, और बहुत छोटे, बहुत बड़े और विशाल को समिलित करने के लिए विवरणों का विस्तार किया। अन्य अभिन्यास के लिए समान वास्तविक मानक विकसित किए जा सकते हैं।

दसवीं [11] एक मध्यम प्रभाव परिमाण के लिए नोट किया गया, आप अपने उपकरण की सटीकता या विश्वसनीयता, या अपने विषयों की संकीर्णता या विविधता की परवाह किए बिना वही n चुनेंगे। जाहिर है, यहां महत्वपूर्ण बातों की अनदेखी की जा रही है। शोधकर्ताओं को अपने परिणामों के वास्तविक महत्व की व्याख्या उन्हें एक सार्थक संदर्भ में या ज्ञान में उनके योगदान की मात्रा निर्धारित करके करनी चाहिए, और कोहेन के प्रभाव परिमाण के विवरण एक प्रारंभिक बिंदु के रूप में सहायक हो सकते हैं।[5]इसी तरह, अमेरिकी शिक्षा विभाग की एक प्रायोजित सूचना में कहा गया है कि कोहेन के सामान्य छोटे, मध्यम और बड़े प्रभाव परिमाण मूल्यों का व्यापक अंधाधुंध उपयोग उन डोमेन में प्रभाव आकारों को चिह्नित करने के लिए किया जाता है जिन पर उनके मानक मूल्य लागू नहीं होते हैं, इसी तरह अनुचित और भ्रामक है।[12] उन्होंने सुझाव दिया कि उपयुक्त मानदंड वे हैं जो तुलनीय नमूनों पर लक्षित तुलनीय हस्तक्षेपों से तुलनीय परिणाम उपायों के प्रभाव के परिणाम के वितरण पर आधारित हैं। इस प्रकार यदि एक ऐसे क्षेत्र में एक अध्ययन जहां अधिकांश हस्तक्षेप छोटे हैं (कोहेन के मानदंडों के अनुसार), तो ये नए मानदंड इसे बड़ा कहेंगे। संबंधित बिंदु में, एबेल्सन का विरोधाभास और सॉविलोव्स्की का विरोधाभास देखें।[13][14][15]


प्रकार

प्रभाव परिमाण के लगभग 50 से 100 विभिन्न उपाय ज्ञात हैं। विभिन्न प्रकार के कई प्रभाव आकारों को अन्य प्रकारों में परिवर्तित किया जा सकता है, जैसा कि कई दो वितरणों के पृथक्करण का अनुमान लगाते हैं, इसलिए गणितीय रूप से संबंधित हैं। उदाहरण के लिए, एक सहसंबंध गुणांक को कोहेन के D में परिवर्तित किया जा सकता है और इसके विपरीत।

सहसंबंध परिवार: भिन्नता के आधार पर प्रभाव परिमाण समझाया गया

ये प्रभाव परिमाण एक प्रयोग के भीतर भिन्नता की मात्रा का अनुमान लगाते हैं जिसे प्रयोग के मॉडल द्वारा समझाया गया है या इसका हिसाब लगाया गया है (व्याख्या भिन्नता)।

पियर्सन R या सहसंबंध गुणांक

पियर्सन का सहसंबंध, जिसे प्रायः r द्वारा निरूपित किया जाता है और कार्ल पियर्सन द्वारा प्रस्तुत किया जाता है, व्यापक रूप से एक प्रभाव परिमाण के रूप में उपयोग किया जाता है जब युग्मित मात्रात्मक डेटा उपलब्ध होते हैं; उदाहरण के लिए यदि कोई जन्म के वजन और दीर्घायु के बीच संबंध का अध्ययन कर रहा हो। सहसंबंध गुणांक का उपयोग तब भी किया जा सकता है जब डेटा बाइनरी हो। पियर्सन का r -1 से 1 तक परिमाण में भिन्न हो सकता है, जिसमें -1 एक पूर्ण नकारात्मक रैखिक संबंध दर्शाता है, 1 एक पूर्ण सकारात्मक रैखिक संबंध दर्शाता है, और 0 दो चर के बीच कोई रैखिक संबंध नहीं दर्शाता है। जैकब कोहेन (सांख्यिकीविद) सामाजिक विज्ञानों के लिए निम्नलिखित दिशानिर्देश देते हैं:[9][16]

प्रभाव परिणाम r
छोटा 0.10
मध्यम 0.30
बड़ा 0.50


निर्धारण गुणांक (r2 या R2)

एक संबंधित प्रभाव परिमाण r2 है, निर्धारण गुणांक (जिसे R2 या r-वर्ग भी कहा जाता है), जिसकी गणना पियर्सन सहसंबंध r के वर्ग के रूप में की जाती है। युग्मित डेटा के स्थिति में, यह दो चरों द्वारा साझा किए गए विचरण के अनुपात का एक माप है, और 0 से 1 तक भिन्न होता है। उदाहरण के लिए, 0.21 के r के साथ निर्धारण गुणांक 0.0441 है, जिसका अर्थ है कि 4.4% किसी एक चर का प्रसरण दूसरे चर के साथ साझा किया जाता है। r2 हमेशा धनात्मक होता है, इसलिए दो चरों के बीच सहसंबंध की दिशा नहीं बताता है।

एटा-वर्ग (η2)

एटा-वर्ग अन्य भविष्यवक्ताओं के लिए नियंत्रण करते हुए एक भविष्यवक्ता द्वारा निर्भर चर में व्याख्या किए गए विचरण के अनुपात का वर्णन करता है, इसे r2 के अनुरूप बनाता है।। एटा-वर्ग जनसंख्या में मॉडल द्वारा समझाए गए विचरण का एक पक्षपाती अनुमानक है (यह केवल प्रतिरूपों में प्रभाव के परिणाम का अनुमान लगाता है)। यह अनुमान r2 के साथ कमजोरी साझा करता है कि प्रत्येक अतिरिक्त चर स्वचालित रूप से η2 के मान को बढ़ा देगा। इसके अतिरिक्त, यह प्रतिरूपों के बारे में बताए गए विचरण को मापता है, न कि जनसंख्या को, जिसका अर्थ है कि यह हमेशा प्रभाव के परिणाम को कम कर देगा, हालांकि प्रतिरूप बड़ा होने पर पूर्वाग्रह छोटा हो जाता है।


ओमेगा-वर्ग (ω2)

जनसंख्या में वर्णित प्रसरण का एक कम पक्षपाती अनुमानक ω2 है[17]

सूत्र का यह रूप सभी कक्षों में समान प्रतिरूप आकारों के बीच-विषयों के विश्लेषण तक सीमित है।[17]चूंकि यह कम पक्षपाती है (हालांकि निष्पक्ष नहीं), ω2 η2 से उच्च है; हालांकि, जटिल विश्लेषणों के लिए गणना करना अधिक असुविधाजनक हो सकता है। अनुमानक का एक सामान्यीकृत रूप बीच-विषयों और भीतर-विषयों के विश्लेषण, बार-बार माप, मिश्रित प्रारुपण और यादृच्छिक ब्लॉक प्रारुपण प्रयोगों के लिए प्रकाशित किया गया है।[18] इसके अतिरिक्त, आंशिक ω2 की गणना करने के ढंग व्यक्तिगत गुणकों के लिए और प्रारुपण में संयुक्त गुणकों के लिए अधिकतम तीन स्वतंत्र चर प्रकाशित किए गए हैं।[18]


कोहेन F2

कोहेन F2 एनोवा या एकाधिक समाश्रयण के लिए F-परीक्षण के संदर्भ में उपयोग करने के लिए कई प्रभाव परिमाण उपायों में से एक है। पूर्वाग्रह की इसकी मात्रा (एनोवा के लिए प्रभाव परिमाण का अधिक अनुमान) इसके अंतर्निहित माप के विचलन पर निर्भर करता है (उदाहरण के लिए, r2, η2, ω2).

F2 एकाधिक समाश्रयण के लिए प्रभाव परिमाण माप को इस प्रकार परिभाषित किया गया है:

जहां r2 वर्ग बहु सहसंबंध है।

इसी तरह, f2 को इस प्रकार परिभाषित किया जा सकता है:

या
उन प्रभाव परिमाण उपायों द्वारा वर्णित प्रतिरूपों के लिए।[19]

 अनुक्रमिक एकाधिक समाश्रयण के लिए प्रभाव परिमाण माप और आंशिक न्यूनतम वर्ग पथ मॉडलिंग के लिए भी सामान्य[20] परिभाषित किया जाता है:

जहां r2A एक या एक से अधिक स्वतंत्र चर A, और R2AB के एक सेट के हिसाब से भिन्नता है A और B के एक या एक से अधिक स्वतंत्र चर के दूसरे सेट के लिए संयुक्त भिन्नता है। सम्मेलन द्वारा, f2 के प्रभाव परिमाण , , और क्रमशः छोटे, मध्यम और बड़े कहलाते हैं।[9]

कोहेन का विचरण (ANOVA) के तथ्यात्मक विश्लेषण के लिए भी पीछे की ओर काम करते हुए पाया जा सकता है:

एनोवा के एक संतुलित प्रारुपण (समूहों में समतुल्य प्रतिदर्श आमाप) में, संबंधित जनसंख्या परिमाप है
जिसमें μj, कुल K समूहों के jth सामूह के भीतर जनसंख्या माध्य और σ प्रत्येक समूह के भीतर समतुल्य जनसंख्या मानक विचलन को दर्शाता है। SS एनोवा में वर्ग योगफल है।

कोहेन का q

एक अन्य माप जिसका उपयोग सहसंबंध अंतरों के साथ किया जाता है, कोहेन का q है। यह दो फिशर रूपांतरित पियर्सन समाश्रयण गुणांकों के बीच का अंतर है। प्रतीकों में यह है

जहां r1 और r2 में समाश्रयण की तुलना की जा रही है। Q का अपेक्षित मान शून्य है और इसका विचरण है
जहां n1 और n2 क्रमशः पहले और दूसरे समाश्रयण में डेटा बिंदुओं की संख्या है।

अंतर परिवार: साधनों के बीच अंतर के आधार पर प्रभाव का परिणाम

दो समूहों की तुलना से संबंधित अपरिष्कृत प्रभाव परिमाण की स्वाभाविक रूप से गणना दो साधनों के बीच के अंतर के रूप में की जाती है। हालांकि, व्याख्या की सुविधा के लिए प्रभाव के परिणाम को मानकीकृत करना आम बात है; सांख्यिकीय मानकीकरण के लिए विभिन्न सम्मेलनों को नीचे प्रस्तुत किया गया है।

मानकीकृत माध्य अंतर

कोहेन के डी के विभिन्न मूल्यों को दर्शाते हुए गॉसियन घनत्व के भूखंड।

A (जनसंख्या) प्रभाव परिमाण θ के आधार पर समान्यतः दो आबादी के बीच मानकीकृत औसत अंतर (SMD) पर विचार करता है[21]: 78 

जहाँ μ1 एक आबादी के लिए माध्य है, μ2 अन्य आबादी के लिए माध्य है, और σ एक या दोनों आबादी के आधार पर एक मानक विचलन है।

व्यावहारिक समायोजना में जनसंख्या मूल्य समान्यतः ज्ञात नहीं होते हैं और प्रतिरूप आंकड़ों से अनुमान लगाया जाना चाहिए। साधनों के आधार पर प्रभाव आकारों के कई संस्करण अलग-अलग होते हैं, जिनके संबंध में सांख्यिकी का उपयोग किया जाता है।

प्रभाव परिमाण के लिए यह फॉर्म एक टी-परीक्षण सांख्यिकी के लिए गणना के समान है, महत्वपूर्ण अंतर के साथ टी-परीक्षण सांख्यिकी में का एक कारक समिलित है इसका अर्थ है कि किसी दिए गए प्रभाव परिमाण के लिए, प्रतिदर्श आमाप के साथ महत्व का स्तर बढ़ता है। टी-परीक्षण प्रतिदर्शन के विपरीत, प्रभाव परिमाण का उद्देश्य जनसंख्या परिमाप का अनुमान लगाना है और जो प्रतिदर्श आमाप से प्रभावित नहीं होता है।

0.2 से 0.5 के SMD मूल्यों को छोटा माना जाता है, 0.5 से 0.8 को मध्यम माना जाता है, और 0.8 से अधिक को बड़ा माना जाता है।[22]


कोहेन D

कोहेन के D को डेटा के मानक विचलन द्वारा विभाजित दो साधनों के बीच के अंतर के रूप में परिभाषित किया गया है, अर्थात

जैकब कोहेन (सांख्यिकीविद्) ने जमा किए गए मानक विचलन को परिभाषित किया है, (दो स्वतंत्र नमूनों के लिए):[9]: 67 
जहां समूहों में से एक के लिए विचरण के रूप में परिभाषित किया गया है
और इसी तरह दूसरे समूह के लिए।

नीचे दी गई तालिका में d = 0.01 से 2.0 के परिमाण के लिए वर्णनकर्ता समिलित हैं, जैसा कि शुरू में कोहेन द्वारा सुझाया गया था और सॉविलोव्स्की द्वारा विस्तारित किया गया था।[10]

प्रभाव परिणाम d सन्दर्भ
बहुत छोटा 0.01 [10]
छोटा 0.20 [9]
मध्यम 0.50 [9]
बड़ा 0.80 [9]
बहुत बड़ा 1.20 [10]
विशाल 2.0 [10]

कोहेन के D का वर्णन करते समय अन्य लेखक मानक विचलन की थोड़ी अलग गणना चुनते हैं, जहां भाजक -2 के बिना होता है[23][24]: 14 

कोहेन की D की इस परिभाषा को हेजेज और ओल्किन द्वारा अधिकतम संभावना अनुमानक कहा जाता है,[21]और यह सोपानी गुणक द्वारा हेजेज जी से संबंधित है (नीचे देखें)।

दो युग्मित नमूनों के साथ, हम अंतर स्कोर के वितरण को देखते हैं। उस स्थिति में, अंतर स्कोर के इस वितरण का मानक विचलन है। यह दो समूहों और कोहेन के D के साधनों में अंतर के परीक्षण के लिए टी-सांख्यिकीय के बीच निम्नलिखित संबंध बनाता है:

और
सांख्यिकीय परीक्षण के लिए प्रतिदर्श आमाप का अनुमान लगाने में कोहेन के D का प्रायः उपयोग किया जाता है। एक निचला कोहेन का D बड़े प्रतिदर्श आमाप की आवश्यकता को इंगित करता है, और इसके विपरीत, जैसा कि वांछित महत्व स्तर और सांख्यिकीय शक्ति के अतिरिक्त मापदंडों के साथ बाद में निर्धारित किया जा सकता है।[25]

युग्मित नमूनों के लिए कोहेन सुझाव देते हैं कि परिकलित D वास्तव में a d' है, जो परीक्षण की शक्ति प्राप्त करने के लिए सही उत्तर प्रदान नहीं करता है, और प्रदान की गई तालिकाओं में मानों को देखने से पहले, निम्नलिखित सूत्र से इसे r के लिए ठीक किया जाना चाहिए :[26]


कांच' Δ

1976 में, जीन वी. ग्लास ने प्रभाव परिमाण का एक अनुमानक प्रस्तावित किया जो केवल दूसरे समूह के मानक विचलन का उपयोग करता है[21]: 78 

दूसरे समूह को एक नियंत्रण समूह के रूप में माना जा सकता है, और ग्लास ने तर्क दिया कि यदि नियंत्रण समूह से कई उपचारों की तुलना की जाती है तो नियंत्रण समूह से गणना किए गए मानक विचलन का उपयोग करना उच्च होगा, ताकि प्रभाव के परिणाम समान साधनों और विभिन्न भिन्नताओं के तहत भिन्न न हों ।

समान जनसंख्या प्रसरण की सही धारणा के तहत σ के लिए एक संयोजित आकलन अधिक सटीक है।

हेजेज जी

1981 में लैरी हेजेज द्वारा सुझाए गए हेजेज जी,[27]एक मानकीकृत अंतर के आधार पर अन्य उपायों की तरह है[21]: 79 

जहां संयोजित मानक विचलन के रूप में गणना की जाती है:
हालांकि, जनसंख्या प्रभाव परिमाण θ के लिए एक अनुमानक के रूप में यह अनुमान के पूर्वाग्रह है। फिर भी, इस पूर्वाग्रह को एक गुणक द्वारा गुणा करके लगभग ठीक किया जा सकता है
हेजेज और ओल्किन इस कम-पक्षपाती अनुमानक का उल्लेख करते हैं d के रूप में,[21]लेकिन यह कोहेन के D के समान नहीं है। संशुद्धि गुणक J () के सटीक रूप में गामा फलन समिलित है[21]: 104 


Ψ, वर्ग माध्य मूल मानकीकृत प्रभाव

एकाधिक तुलनाओं के लिए एक समान प्रभाव परिमाण अनुमानक (उदाहरण के लिए, एनोवा) Ψ वर्ग माध्य मूल मानकीकृत प्रभाव है:[19]

जहाँ k तुलना में समूहों की संख्या है।

यह अनिवार्य रूप से D या G के अनुरूप वर्ग माध्य मूल द्वारा समायोजित पूरे प्रतिरूपों के सर्वग्राही अंतर को प्रस्तुत करता है।

इसके अतिरिक्त, बहु-तथ्यात्मक प्रारुपों के लिए एक सामान्यीकरण प्रदान किया गया है।[19]


साधनों के आधार पर प्रभाव के परिणाम का वितरण

बशर्ते कि डेटा गाऊसी ने एक स्केल हेजेज जी, गैर-केंद्रीय टी-वितरण के साथ गैर केंद्रीयता परिमाप और (n1 + n2 − 2) स्वतंत्रता की कोटियां का अनुसरण करता है। इसी तरह, स्केल्ड ग्लास 'Δ के साथ वितरित किया जाता है n2 − 1 स्वतंत्रता की कोटियां।

वितरण से अपेक्षित मूल्य और प्रभाव परिमाण के भिन्नता की गणना करना संभव है।

कुछ स्थितियों में भिन्नता के लिए बड़े प्रतिरूप सन्निकटन का उपयोग किया जाता है। हेजेज के निष्पक्ष अनुमानक के विचरण के लिए एक सुझाव है[21] : 86 


अन्य मिति

महालनोबिस दूरी (D) कोहेन के D का एक बहुभिन्नरूपी सामान्यीकरण है, जो चरों के बीच संबंधों को ध्यान में रखता है।[28]

श्रेणीबद्ध परिवार: श्रेणीबद्ध चर के बीच संघों के लिए प्रभाव परिमाण

  

  

Phi (φ) Cramér's V (φc)

ची-चुकता परीक्षण के लिए समिति के सामान्य रूप से उपयोग किए जाने वाले उपायों में फी गुणांक और हेराल्ड क्रैमर के वी (अंक-विवरन) हैं (कभी-कभी क्रैमर फाई के रूप में संदर्भित किया जाता है और φc के रूप में दर्शाया जाता है)). फी बिंदु-द्विक्रमिक सहसंबंध गुणांक और कोहेन के डी से संबंधित है और दो चर (2 × 2) के बीच संबंध की सीमा का अनुमान लगाता है।[29] क्रैमर के V का उपयोग दो से अधिक स्तरों वाले चर के साथ किया जा सकता है।

फी की गणना ची-वर्ग अंक-विवरन के वर्गमूल को प्रतिदर्श आमाप से विभाजित करके की जा सकती है।

इसी तरह, क्रैमर के V की गणना प्रतिदर्श आमाप और न्यूनतम आयाम की लंबाई से विभाजित काई वर्ग के वर्गमूल को लेकर की जाती है (के पंक्तियों की संख्या R या कॉलम C की छोटी संख्या है)।

φc दो असतत चरों का अंतर्संबंध है[30] और इसकी गणना r या c के किसी भी मान के लिए की जा सकती है। हालाँकि, जैसे-जैसे ची-वर्ग मान कोशिकाओं की संख्या के साथ बढ़ते जाते हैं, r और c के बीच का अंतर जितना अधिक होता है, उतनी ही अधिक संभावना V की प्रवृत्ति सार्थक सहसंबंध के मजबूत प्रमाण के बिना 1 हो जाएगी।

क्रैमर के V को 'फिट ऑफ गुडनेस' ची-वर्ग मॉडल पर भी लागू किया जा सकता है[citation needed] (अर्थात् वे जहाँ c = 1)। इस स्थिति में यह एकल परिणाम (अर्थात k परिणामों में से) की प्रवृत्ति के माप के रूप में कार्य करता है। ऐसी स्थिति में, V की 0 से 1 श्रेणी को बनाए रखने के लिए, k के लिए r का उपयोग करना चाहिए। अन्यथा, c का उपयोग करने से Phi के लिए समीकरण कम हो जाएगा।

कोहेन का ओमेगा (ω)

ची-वर्ग परीक्षण के लिए उपयोग किए जाने वाले प्रभाव परिमाण का एक अन्य माप कोहेन का ओमेगा है (). इसे इस रूप में परिभाषित किया गया है

जहां P0i है, के अंतर्गत iवां सेल का अनुपात है, p1i H1 के अंतर्गत iवां सेल का अनुपात है m कोशिकाओं की संख्या है।

व्यवहार विज्ञान के लिए सांख्यिकीय शक्ति विश्लेषण (1988, PP.224-225) में, कोहेन ओमेगा की व्याख्या के लिए निम्नलिखित सामान्य दिशानिर्देश देते हैं (नीचे दी गई तालिका देखें), लेकिन किसी भी मूल संदर्भ में इसकी संभावित अक्षमता के खिलाफ चेतावनी देते हैं और संदर्भ का उपयोग करने की सलाह देते हैं।

प्रभाव परिणाम
छोटा 0.10
मध्यम 0.30
बड़ा 0.50


विषम अनुपात

विषम अनुपात (OR) एक अन्य उपयोगी प्रभाव परिमाण है। यह उचित है जब शोध प्रश्न दो बाइनरी डेटा के बीच सहयोग की डिग्री पर केंद्रित हो। उदाहरण के लिए, वर्तनी क्षमता के अध्ययन पर विचार करें। एक नियंत्रण समूह में, दो छात्र असफल होने वाले प्रत्येक के लिए कक्षा उत्तीर्ण करते हैं, इसलिए उत्तीर्ण होने की संभावना दो से एक (या 2/1 = 2) होती है। उपचार समूह में, असफल होने वाले प्रत्येक छात्र के लिए छह छात्र उत्तीर्ण होते हैं, इसलिए उत्तीर्ण होने की संभावना छह से एक (या 6/1 = 6) होती है। प्रभाव के परिमाण की गणना इस बात पर ध्यान देकर की जा सकती है कि उपचार समूह में पास होने की संभावना नियंत्रण समूह की तुलना में तीन गुना अधिक है (क्योंकि 6 को 2 से विभाजित करने पर 3 होता है)। इसलिए, विषम अनुपात 3 है। विषम अनुपात अंक-विवरन कोहेन के D की तुलना में एक अलग मानदंड पर हैं, इसलिए यह '3' कोहेन के 3 के D से तुलना करने योग्य नहीं है।

सापेक्ष खतरा

सापेक्ष खतरा (RR), जिसे खतरा अनुपात भी कहा जाता है, कुछ स्वतंत्र चर के सापेक्ष किसी घटना का खतरा (संभावना) है। प्रभाव के परिणाम का यह माप विषम अनुपात से भिन्न होता है, जिसमें यह 'विषम' के अतिरिक्त 'संभावनाओं' की तुलना करता है, लेकिन छोटी संभावनाओं के लिए असम्बद्ध रूप से उत्तरार्द्ध तक पहुंचता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण समूह और उपचार समूह में पास होने वालों के लिए 'संभावना' क्रमशः 2/3 (या 0.67) और 6/7 (या 0.86) है। प्रभाव परिमाण की गणना ऊपर की तरह ही की जा सकती है, लेकिन इसके अतिरिक्त संभावनाओं का उपयोग किया जा सकता है। इसलिए, सापेक्ष खतरा 1.28 है। चूंकि उत्तीर्ण होने की बड़ी संभावनाओं का उपयोग किया गया था, सापेक्ष खतरा और बाधाओं के अनुपात के बीच एक बड़ा अंतर है। अगर 'विफलता' (एक छोटी संभावना) को घटना के रूप में उपयोग किया गया होता ('उत्तीर्ण' होने के अतिरिक्त), प्रभाव परिमाण के दो उपायों के बीच का अंतर इतना बड़ा नहीं होता।

जबकि दोनों उपाय उपयोगी हैं, उनके अलग-अलग सांख्यिकीय उपयोग हैं। चिकित्सा अनुसंधान में, विषम अनुपात समान्यतः स्थिति नियंत्रण अध्ययन के लिए उपयोग किया जाता है।[31] सापेक्ष खतरा समान्यतः यादृच्छिक नियंत्रित परीक्षणों और कोहोर्ट अध्ययन में उपयोग किया जाता है, लेकिन सापेक्ष खतरा हस्तक्षेपों की प्रभावशीलता के अतिरेक में योगदान देता है।[32]


खतरा अंतर

खतरा अंतर (RD) जिसे कभी-कभी पूर्ण खतरा में कमी कहा जाता है, केवल दो समूहों के बीच एक घटना के खतरा (संभावना) में अंतर होता है। प्रायोगिक अनुसंधान में यह एक उपयोगी उपाय है, क्योंकि RD आपको बताता है कि किस सीमा तक एक प्रायोगिक हस्तक्षेप किसी घटना या परिणाम की संभावना को बदलता है। उपरोक्त उदाहरण का उपयोग करते हुए, नियंत्रण समूह और उपचार समूह में पास होने वालों की संभावना क्रमशः 2/3 (या 0.67) और 6/7 (या 0.86) है, और इसलिए RD प्रभाव का परिणाम 0.86 − 0.67 = 0.19 (या) है 19%)। RD हस्तक्षेपों की प्रभावशीलता का आकलन करने के लिए उच्च उपाय है।[32]


कोहेन का H

दो स्वतंत्र अनुपातों की तुलना करते समय शक्ति विश्लेषण में उपयोग किया जाने वाला एक उपाय कोहेन का H है। इसे इस प्रकार परिभाषित किया गया है

जहां p1 और p2 तुलना किए जा रहे दो नमूनों के अनुपात हैं और आर्क्सिन, आर्क्सिन परिवर्तन है।

सामान्य भाषा प्रभाव परिमाण

अंक-विवरन से बाहर के लोगों के लिए प्रभाव परिमाण के अर्थ का अधिक आसानी से वर्णन करने के लिए, सामान्य भाषा प्रभाव परिमाण, जैसा कि नाम से पता चलता है, इसे सादे अंग्रेजी में संप्रेषित करने के लिए प्रारुपण किया गया था। इसका उपयोग दो समूहों के बीच एक अंतर का वर्णन करने के लिए किया जाता है और 1992 में केनेथ मैकग्रा और S.P. वोंग द्वारा प्रस्तावित और नाम दिया गया था। उन्होंने निम्नलिखित उदाहरण का उपयोग किया (पुरुषों और महिलाओं की ऊंचाई के बारे में): युवा वयस्क पुरुषों और महिलाओं की किसी भी यादृच्छिक जोड़ी में, पुरुष की महिला की तुलना में लंबा होने की संभावना .92 है, या सरल शब्दों में, युवा वयस्कों में 100 में से 92 दो अजनबियों की मुलाक़ात में, सामान्य भाषा प्रभाव परिमाण के जनसंख्या मूल्य का वर्णन करते समय, पुरुष महिला की तुलना में लंबा होगा।

सामान्य भाषा प्रभाव परिमाण के लिए जनसंख्या मूल्य, जनसंख्या से अव्यवस्थित तरह से चुने गए जोड़े के संदर्भ में, प्रायः इस तरह सूचित किया जाता है। केर्बी (2014) नोट करता है कि एक जोड़ी, जिसे एक समूह में प्राप्तांक के रूप में दूसरे समूह में प्राप्तांक के साथ परिभाषित किया गया है, सामान्य भाषा प्रभाव परिमाण की एक मूल अवधारणा है।

एक अन्य उदाहरण के रूप में, उपचार समूह में दस लोगों और नियंत्रण समूह में दस लोगों के साथ एक वैज्ञानिक अध्ययन (शायद कुछ पुरानी बीमारी, जैसे गठिया के इलाज के लिए) पर विचार करें। यदि उपचार समूह के सभी लोगों की तुलना नियंत्रण समूह के सभी लोगों से की जाए, तो (10×10=) 100 जोड़े होते हैं। अध्ययन के अंत में, परिणाम को प्रत्येक व्यक्ति के लिए एक अंक में मूल्यांकित किया जाता है (उदाहरण के लिए, गठिया अध्ययन की स्थिति में गतिशीलता और दर्द के मानदंड पर), और फिर सभी अंकों की जोड़ी के बीच तुलना की जाती है। परिणाम, परिकल्पना का समर्थन करने वाले जोड़े के प्रतिशत के रूप में, सामान्य भाषा प्रभाव परिमाण है। उदाहरण के अध्ययन में यह हो सकता है (मान लीजिए) .80, यदि 100 में से 80 तुलना जोड़े नियंत्रण समूह की तुलना में उपचार समूह के लिए उच्च परिणाम दिखाते हैं, और सूचना इस प्रकार हो सकती है: जब उपचार समूह में एक रोगी की तुलना नियंत्रण समूह के एक रोगी से की गई, 100 में से 80 जोड़े में उपचारित रोगी ने उपचार के उच्च परिणाम दिखाए। प्रतिरूप मूल्य, उदाहरण के लिए इस तरह का एक अध्ययन, जनसंख्या मूल्य का एक निष्पक्ष अनुमानक है।

वर्गा और डेलाने ने क्रमिक स्तर के डेटा को पूरा करने के लिए सामान्य भाषा प्रभाव परिमाण (वर्गा-डेलाने A) को सामान्यीकृत किया।

कोटि-द्विक्रमिक सहसंबंध

सामान्य भाषा प्रभाव परिमाण से संबंधित एक प्रभाव परिमाण श्रेणि-द्विक्रमिक सहसंबंध है। मान-व्हिटनी यू परीक्षण के लिए एक प्रभाव परिमाण के रूप में क्योरटन द्वारा यह उपाय प्रस्तुत किया गया था।[33] यानी, दो समूह हैं, और समूहों के प्राप्तांक को श्रेणि में बदल दिया गया है। केर्बी सरल अंतर सूत्र सामान्य भाषा प्रभाव परिमाण से श्रेणि-द्विक्रमिक सहसंबंध की गणना करता है।[34]परिकल्पना (सामान्य भाषा प्रभाव परिमाण) के अनुकूल जोड़े का अनुपात होने दें, और U को अनुकूल न होने वाले जोड़े का अनुपात होने दें, श्रेणि-द्विक्रमिक r दो अनुपातों के बीच सरल अंतर है: r = f − u। दूसरे शब्दों में, सहसंबंध सामान्य भाषा प्रभाव परिमाण और उसके पूरक के बीच का अंतर है। उदाहरण के लिए, यदि सामान्य भाषा प्रभाव परिमाण 60% है, तो श्रेणि-द्विक्रमिक r 60% घटाव 40%, या r = 0.20 के बराबर होता है। केर्बी सूत्र दिशात्मक है, सकारात्मक मूल्यों के साथ यह दर्शाता है कि परिणाम परिकल्पना का समर्थन करते हैं।

श्रेणि-द्विक्रमिक सहसंबंध के लिए एक गैर-दिशात्मक सूत्र वेंडेट द्वारा प्रदान किया गया था, जैसे कि सहसंबंध हमेशा सकारात्मक होता है।[35] वेंड्ट सूत्र का लाभ यह है कि इसकी गणना उन सूचनाओं के साथ की जा सकती है जो प्रकाशित पत्रों में आसानी से उपलब्ध हैं। सूत्र मान-व्हिटनी U परीक्षण से केवल U के परीक्षण मूल्य और दो समूहों के प्रतिरूपों के आकार का उपयोग करता है: r = 1 – (2U)/(n1n2). ध्यान दें कि U को क्लासिक परिभाषा के अनुसार परिभाषित किया गया है, जो डेटा से गणना की जा सकने वाली दो मानों में से छोटा है। यह सुनिश्चित करता है कि 2U < n1n2, क्योंकि n1n2 U आँकड़ो का अधिकतम मूल्य है।

एक उदाहरण दो सूत्रों के उपयोग का वर्णन कर सकता है। उपचार समूह में दस और नियंत्रण समूह में दस के साथ बीस वृद्ध वयस्कों के स्वास्थ्य अध्ययन पर विचार करें; इसलिए, दस गुना दस या 100 जोड़े हैं। स्वास्थ्य कार्यक्रम स्मृति में सुधार के लिए आहार, व्यायाम और पूरक आहार का उपयोग करता है, और स्मृति को एक मानकीकृत परीक्षण द्वारा मापा जाता है। एक मान-व्हिटनी U परीक्षण से पता चलता है कि उपचार समूह में वयस्क की 100 जोड़ों में से 70 में उच्च स्मृति थी, और 30 जोड़ों में खराब स्मृति थी। मान-व्हिटनी U 70 और 30 में से छोटा है, इसलिए U = 30। केर्बी सरल अंतर सूत्र द्वारा स्मृति और उपचार प्रदर्शन के बीच संबंध r= (70/100) − (30/100) = 0.40। वेन्द्र सूत्र द्वारा सहसंबंध r = 1 − (2·30)/(10·10) = 0.40 है।

क्रमिक डेटा के लिए प्रभाव का परिणाम

क्लिफ का डेल्टा या , मूल रूप से नॉर्मन क्लिफ द्वारा क्रमिक डेटा के उपयोग के लिए विकसित किया गया था,[36] यह इस बात का माप है कि कितनी बार एक वितरण में मान दूसरे वितरण के मानों से बड़ा होता है। महत्वपूर्ण रूप से, इसमें दो वितरणों के आकार या प्रसार के बारे में किसी धारणा की आवश्यकता नहीं है।

प्रतिरूप अनुमान द्वारा दिया गया है:

जहां दो वितरण आकार और के साथ और , क्रमशः है और आइवरसन ब्रैकेट है, जो सामग्री के सही होने पर 1 गलत होने पर 0 गलत होता है।

मान-व्हिटनी U सांख्यिकी से रैखिक रूप से संबंधित है; हालाँकि, यह अपने संकेत में अंतर की दिशा को पकड़ लेता है। मान-व्हिटनी , दिया गया है:


गैर-केंद्रीयता मापदंडों के माध्यम से विश्वास्यता अंतराल

मानकीकृत प्रभाव आकारों का विश्वास्यता अंतराल, विशेष रूप से कोहेन का और , गैर-केंद्रीयता मापदंडों (NCP) के विश्वास अंतराल की गणना पर निर्भर करती है। NCP के गैर-केंद्रीयता अंतराल के निर्माण के लिए एक सामान्य दृष्टिकोण महत्वपूर्ण NCP मानों को टेल मत्रा  α/2 और (1 − α/2) के लिए देखे गए आंकड़ों को फिट करने के लिए खोज SAS और R-MBESS NCP के महत्वपूर्ण मूल्यों को खोजने के लिए कार्य प्रदान करता है।

एकल समूह या दो संबंधित समूहों के औसत अंतर के लिए टी-परीक्षण

एकल समूह के लिए, M प्रतिरूप माध्य, μ जनसंख्या माध्य, SD प्रतिरूप का मानक विचलन, σ जनसंख्या का मानक विचलन, और n समूह का प्रतिदर्श आमाप दर्शाता है। माध्य और आधार रेखा μ के बीच के अंतर पर परिकल्पना का परीक्षण करने के लिए t मान का उपयोग किया जाता है. समान्यतः, μ आधार रेखा शून्य है। दो संबंधित समूहों की स्थिति में, एकल समूह का निर्माण नमूनों की जोड़ी में अंतर से होता है, जबकि SD और σ मूल दो समूहों के अतिरिक्त प्रतिरूपों और जनसंख्या के अंतर के मानक विचलन को दर्शाते हैं।

और कोहेन की
का बिन्दु अनुमान है
इसलिए,


दो स्वतंत्र समूहों के बीच औसत अंतर के लिए टी-परीक्षण

N1 या N2 संबंधित प्रतिदर्श आमाप हैं।

जिसमें
और कोहेन की
का बिन्दु अनुमान है इसलिए,


एकाधिक स्वतंत्र समूहों में औसत अंतर के लिए एक तरफ़ा एनोवा परीक्षण

एकतरफा एनोवा परीक्षण गैर-केंद्रीय F वितरण लागू करता है। जबकि किसी दिए गए जनसंख्या मानक विचलन के साथ , वही परीक्षण प्रश्न गैर-केंद्रीय ची-वर्ग वितरण पर लागू होता है।

i-वें समूह X के भीतर प्रत्येक j-वें प्रतिरूपों के लिएi,j, निरूपित करें
जबकि,
तो, F और दोनों के ncp(s) समान है
के स्थिति में समान आकार के K स्वतंत्र समूहों के लिए, कुल प्रतिदर्श आमाप N := n·K है।
स्वतंत्र समूहों की एक जोड़ी के लिए टी-परीक्षण एकतरफा एनोवा का एक विशेष स्थिति है। ध्यान दें कि F का गैर-केंद्रीयता परिमाप संगत t के गैर-केंद्रीयता परिमाप से तुलनीय नही है। वास्तव में, , और .

यह भी देखें

  • अनुमान अंक-विवरन
  • आंकड़ों की महत्ता
  • Z कारक, प्रभाव परिमाण का एक वैकल्पिक उपाय

संदर्भ

  1. Kelley, Ken; Preacher, Kristopher J. (2012). "प्रभाव आकार पर". Psychological Methods. 17 (2): 137–152. doi:10.1037/a0028086. PMID 22545595. S2CID 34152884.
  2. Rosenthal, Robert, H. Cooper, and L. Hedges. "Parametric measures of effect size." The handbook of research synthesis 621 (1994): 231–244. ISBN 978-0871541635
  3. Wilkinson, Leland (1999). "Statistical methods in psychology journals: Guidelines and explanations". American Psychologist. 54 (8): 594–604. doi:10.1037/0003-066X.54.8.594. S2CID 428023.
  4. Nakagawa, Shinichi; Cuthill, Innes C (2007). "Effect size, confidence interval and statistical significance: a practical guide for biologists". Biological Reviews of the Cambridge Philosophical Society. 82 (4): 591–605. doi:10.1111/j.1469-185X.2007.00027.x. PMID 17944619. S2CID 615371.
  5. 5.0 5.1 Ellis, Paul D. (2010). The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge University Press. ISBN 978-0-521-14246-5.[page needed]
  6. Brand A, Bradley MT, Best LA, Stoica G (2008). "प्रकाशित मनोवैज्ञानिक अनुसंधान से प्रभाव के आकार के अनुमानों की सटीकता" (PDF). Perceptual and Motor Skills. 106 (2): 645–649. doi:10.2466/PMS.106.2.645-649. PMID 18556917. S2CID 14340449. Archived from the original (PDF) on 2008-12-17. Retrieved 2008-10-31.
  7. Brand A, Bradley MT, Best LA, Stoica G (2011). "एकाधिक परीक्षण अतिरंजित प्रभाव आकार अनुमान प्राप्त कर सकते हैं" (PDF). The Journal of General Psychology. 138 (1): 1–11. doi:10.1080/00221309.2010.520360. PMID 21404946. S2CID 932324.
  8. Sterne, Jonathan A. C.; Gavaghan, David; Egger, Matthias (2000-11-01). "Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature". Journal of Clinical Epidemiology (in English). 53 (11): 1119–1129. doi:10.1016/S0895-4356(00)00242-0. ISSN 0895-4356. PMID 11106885.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Cohen, Jacob (1988). व्यवहार विज्ञान के लिए सांख्यिकीय शक्ति विश्लेषण. Routledge. ISBN 978-1-134-74270-7.
  10. 10.0 10.1 10.2 10.3 10.4 Sawilowsky, S (2009). "अंगूठे का नया प्रभाव आकार नियम". Journal of Modern Applied Statistical Methods. 8 (2): 467–474. doi:10.22237/jmasm/1257035100. http://digitalcommons.wayne.edu/jmasm/vol8/iss2/26/
  11. Russell V. Lenth. "Java applets for power and sample size". Division of Mathematical Sciences, the College of Liberal Arts or The University of Iowa. Retrieved 2008-10-08.
  12. Lipsey, M.W.; et al. (2012). Translating the Statistical Representation of the Effects of Education Interventions Into More Readily Interpretable Forms (PDF). United States: U.S. Dept of Education, National Center for Special Education Research, Institute of Education Sciences, NCSER 2013–3000.
  13. Sawilowsky, S. S. (2005). "एबेलसन का विरोधाभास और माइकलसन-मॉर्ले प्रयोग". Journal of Modern Applied Statistical Methods. 4 (1): 352. doi:10.22237/jmasm/1114907520.
  14. Sawilowsky, S.; Sawilowsky, J.; Grissom, R. J. (2010). "Effect Size". In Lovric, M. (ed.). सांख्यिकीय विज्ञान का अंतर्राष्ट्रीय विश्वकोश. Springer.
  15. Sawilowsky, S. (2003). "परिकल्पना परीक्षण के खिलाफ मामले से विखंडन तर्क". Journal of Modern Applied Statistical Methods. 2 (2): 467–474. doi:10.22237/jmasm/1067645940.
  16. Cohen, J (1992). "एक पावर प्राइमर". Psychological Bulletin. 112 (1): 155–159. doi:10.1037/0033-2909.112.1.155. PMID 19565683.
  17. 17.0 17.1 Tabachnick, B.G. & Fidell, L.S. (2007). Chapter 4: "Cleaning up your act. Screening data prior to analysis", p. 55 In B.G. Tabachnick & L.S. Fidell (Eds.), Using Multivariate Statistics, Fifth Edition. Boston: Pearson Education, Inc. / Allyn and Bacon.
  18. 18.0 18.1 Olejnik, S.; Algina, J. (2003). "Generalized Eta and Omega Squared Statistics: Measures of Effect Size for Some Common Research Designs" (PDF). Psychological Methods. 8 (4): 434–447. doi:10.1037/1082-989x.8.4.434. PMID 14664681.
  19. 19.0 19.1 19.2 Steiger, J. H. (2004). "Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis" (PDF). Psychological Methods. 9 (2): 164–182. doi:10.1037/1082-989x.9.2.164. PMID 15137887.
  20. Hair, J.; Hult, T. M.; Ringle, C. M. and Sarstedt, M. (2014) A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Sage, pp. 177–178. ISBN 1452217440
  21. 21.0 21.1 21.2 21.3 21.4 21.5 21.6 Larry V. Hedges & Ingram Olkin (1985). मेटा-विश्लेषण के लिए सांख्यिकीय तरीके. Orlando: Academic Press. ISBN 978-0-12-336380-0.
  22. Andrade, Chittaranjan (22 September 2020). "माध्य अंतर, मानकीकृत माध्य अंतर (एसएमडी), और मेटा-विश्लेषण में उनका उपयोग". The Journal of Clinical Psychiatry. 81 (5). doi:10.4088/JCP.20f13681. eISSN 1555-2101. PMID 32965803. S2CID 221865130. SMD values of 0.2-0.5 are considered small, values of 0.5-0.8 are considered medium, and values > 0.8 are considered large. In psychopharmacology studies that compare independent groups, SMDs that are statistically significant are almost always in the small to medium range. It is rare for large SMDs to be obtained.
  23. Robert E. McGrath; Gregory J. Meyer (2006). "When Effect Sizes Disagree: The Case of r and d" (PDF). Psychological Methods. 11 (4): 386–401. CiteSeerX 10.1.1.503.754. doi:10.1037/1082-989x.11.4.386. PMID 17154753. Archived from the original (PDF) on 2013-10-08. Retrieved 2014-07-30.
  24. Hartung, Joachim; Knapp, Guido; Sinha, Bimal K. (2008). अनुप्रयोगों के साथ सांख्यिकीय मेटा-विश्लेषण. John Wiley & Sons. ISBN 978-1-118-21096-3.
  25. Kenny, David A. (1987). "Chapter 13" (PDF). सामाजिक और व्यवहार विज्ञान के लिए सांख्यिकी. Little, Brown. ISBN 978-0-316-48915-7.
  26. Cohen 1988, p. 49.
  27. Larry V. Hedges (1981). "Distribution theory for Glass' estimator of effect size and related estimators". Journal of Educational Statistics. 6 (2): 107–128. doi:10.3102/10769986006002107. S2CID 121719955.
  28. Del Giudice, Marco (2013-07-18). "Multivariate Misgivings: Is D a Valid Measure of Group and Sex Differences?". Evolutionary Psychology (in English). 11 (5): 147470491301100. doi:10.1177/147470491301100511.
  29. आरोन, बी., क्रॉम्रे, जे.डी., और फेरॉन, जे.एम. (1998, नवंबर)। r-आधारित और d-आधारित प्रभाव-आकार सूचकांकों की समानता: a के साथ समस्याएँ आमतौर पर अनुशंसित सूत्र। फ्लोरिडा एजुकेशनल रिसर्च एसोसिएशन, ऑरलैंडो, FL की वार्षिक बैठक में प्रस्तुत किया गया पेपर। (ERIC दस्तावेज़ पुनरुत्पादन सेवा सं. ED433353)
  30. Sheskin, David J. (2003). पैरामीट्रिक और गैर पैरामीट्रिक सांख्यिकीय प्रक्रियाओं की पुस्तिका (Third ed.). CRC Press. ISBN 978-1-4200-3626-8.
  31. Deeks J (1998). "When can odds ratios mislead? : Odds ratios should be used only in case-control studies and logistic regression analyses". BMJ. 317 (7166): 1155–6. doi:10.1136/bmj.317.7166.1155a. PMC 1114127. PMID 9784470.
  32. 32.0 32.1 Stegenga, J. (2015). "Measuring Effectiveness". Studies in History and Philosophy of Biological and Biomedical Sciences. 54: 62–71. doi:10.1016/j.shpsc.2015.06.003. PMID 26199055.
  33. Cureton, E.E. (1956). "रैंक-द्विक्रमिक सहसंबंध". Psychometrika. 21 (3): 287–290. doi:10.1007/BF02289138. S2CID 122500836.
  34. Wendt, H. W. (1972). "Dealing with a common problem in social science: A simplified rank-biserial coefficient of correlation based on the U statistic". European Journal of Social Psychology. 2 (4): 463–465. doi:10.1002/ejsp.2420020412.
  35. Cliff, Norman (1993). "Dominance statistics: Ordinal analyses to answer ordinal questions". Psychological Bulletin. 114 (3): 494–509. doi:10.1037/0033-2909.114.3.494.



अग्रिम पठन


बाहरी संबंध

Further explanations