आइवरसन ब्रैकेट

From Vigyanwiki

गणित में, आइवरसन कोष्ठक, केनेथ ई. इवरसन के नाम पर रखा गया, एक संकेतन है जो क्रोनकर डेल्टा का सामान्यीकरण करता है, जो कथन x = y का आइवरसन कोष्ठक है। यह किसी भी कथन (तर्क) को उस कथन के स्वतंत्र चर के फलन (गणित) में मापता है। इस फलन को उन चरों के मानों के लिए 1 मान लेने के लिए परिभाषित किया गया है जिनके लिए कथन सत्य है, और अन्यथा 0 मान लेता है। इसे सामान्यतौर पर वर्गाकार कोष्ठकों के अंदर कथन लगाकर दर्शाया जाता है:

दूसरे शब्दों में, किसी कथन का आइवरसन कोष्ठक मानों के उस समुच्चय का सूचक फलन है जिसके लिए कथन सत्य है।

इन्वर्सन कोष्ठक समन इंडेक्स पर प्रतिबंध के बिना कैपिटल-सिग्मा संकेतन का उपयोग करने की अनुमति देता है। अर्थात किसी गुण के लिए पूर्णांक का , कोई प्रतिबंधित योग को अप्रतिबंधित रूप में फिर से लिखा जा सकता है। इस फलन के साथ, के मूल्यों के लिए परिभाषित करने की आवश्यकता नहीं है k जिसके लिए आइवरसन कोष्ठक 0 के बराबर है; वह f(k) [ गलत ] का योग है, 0 का मूल्यांकन करना चाहिए भले ही को परिभाषित किया गया है।

अंकन मूल रूप से केनेथ ई. इवरसन द्वारा अपनी प्रोग्रामिंग भाषा एपीएल (प्रोग्रामिंग भाषा) में प्रस्तुत किया गया था,[1][2] चूँकि कोष्ठकों में संलग्न एकल संबंधपरक संचालकों तक सीमित है, जबकि अपने अंतर्गत कथनो के सामान्यीकरण, वर्गाकार कोष्ठकों के लिए नोटेशनल प्रतिबंध, और योग के लिए आवेदन, कोष्ठक में तार्किक अभिव्यक्तियों में अस्पष्टता को कम करने के लिए डोनाल्ड नुथ द्वारा सिद्ध किया गया हैं।[3]

गुण

आइवरसन कोष्ठक, लॉजिक और समूह संचालन पर अंकगणित के बीच सीधा समानता है। उदाहरण के लिए, A और B को सेट होने दें और पूर्णांकों की कोई गुण; तो हमारे पास हैं