हर्मिटियन संलग्न: Difference between revisions
(→गुण) |
(→गुण) |
||
Line 14: | Line 14: | ||
जहाँ<math>\langle\cdot, \cdot \rangle_{H_i}</math> हिल्बर्ट समष्टि <math>H_i</math> में आंतरिक उत्पाद है, जो पहले निर्देशांक में रेखीय है और दूसरे निर्देशांक में प्रतिरैखिक है। विशेष मामले पर ध्यान दें जहां दोनों हिल्बर्ट रिक्त समष्टि समान हैं और <math>A</math> उस हिल्बर्ट समष्टि पर संकारक है। | जहाँ<math>\langle\cdot, \cdot \rangle_{H_i}</math> हिल्बर्ट समष्टि <math>H_i</math> में आंतरिक उत्पाद है, जो पहले निर्देशांक में रेखीय है और दूसरे निर्देशांक में प्रतिरैखिक है। विशेष मामले पर ध्यान दें जहां दोनों हिल्बर्ट रिक्त समष्टि समान हैं और <math>A</math> उस हिल्बर्ट समष्टि पर संकारक है। | ||
जब कोई दोहरी जोड़ी के लिए आंतरिक उत्पाद का विक्रय करता है, तो संकारक के आसन्न, जिसे परिवर्त भी कहा जाता है को परिभाषित कर सकता है <math>A: E \to F</math>, जहाँ <math>E, F</math> समान मानदंड (गणित) के साथ बनच समष्टि हैं <math>\|\cdot\|_E, \|\cdot\|_F</math>. यहां (फिर से किसी तकनीकी पर विचार नहीं करते हुए), इसके | जब कोई दोहरी जोड़ी के लिए आंतरिक उत्पाद का विक्रय करता है, तो संकारक के आसन्न, जिसे परिवर्त भी कहा जाता है को परिभाषित कर सकता है <math>A: E \to F</math>, जहाँ <math>E, F</math> समान मानदंड (गणित) के साथ बनच समष्टि हैं <math>\|\cdot\|_E, \|\cdot\|_F</math>. यहां (फिर से किसी तकनीकी पर विचार नहीं करते हुए), इसके संलग्न संकारक को इस रूप में परिभाषित किया गया है <math>A^*: F^* \to E^*</math> साथ में | ||
:<math>A^*f = f \circ A : u \mapsto f(Au), </math> | :<math>A^*f = f \circ A : u \mapsto f(Au), </math> | ||
अर्थात, <math>\left(A^*f\right)(u) = f(Au)</math> के लिए <math>f \in F^*, u \in E</math>. | अर्थात, <math>\left(A^*f\right)(u) = f(Au)</math> के लिए <math>f \in F^*, u \in E</math>. | ||
Line 79: | Line 79: | ||
घनत्व के कारण <math>D(A)</math> और रिज प्रतिनिधित्व प्रमेय, <math>z</math> विशिष्ट रूप से परिभाषित किया गया है, और, परिभाषा के अनुसार, <math>A^*y=z.</math><ref>{{harvnb|Reed|Simon|2003|p=252}}; {{harvnb|Rudin|1991|loc=§13.1}}</ref> | घनत्व के कारण <math>D(A)</math> और रिज प्रतिनिधित्व प्रमेय, <math>z</math> विशिष्ट रूप से परिभाषित किया गया है, और, परिभाषा के अनुसार, <math>A^*y=z.</math><ref>{{harvnb|Reed|Simon|2003|p=252}}; {{harvnb|Rudin|1991|loc=§13.1}}</ref> | ||
गुण 1.-5 किसी | गुण 1.-5 किसी फलन के प्रांत और [[कोडोमेन]] के बारे में उचित खंड के साथ है। उदाहरण के लिए, अंतिम गुण अब बताता है कि {{math|(''AB'')<sup>∗</sup>}} का विस्तार है {{math|''B''<sup>∗</sup>''A''<sup>∗</sup>}} अगर {{mvar|A}}, {{mvar|B}} और {{mvar|AB}} सघन रूप से परिभाषित संकारक हैं।<ref>{{harvnb|Rudin|1991|loc=Thm 13.2}}</ref> | ||
=== ker A<sup>*</sup>=(im A)<sup>⊥</sup>=== | === ker A<sup>*</sup>=(im A)<sup>⊥</sup>=== | ||
हरएक के लिए <math>y \in \ker A^*,</math> रैखिक कार्यात्मक <math>x \mapsto \langle Ax,y \rangle = \langle x,A^*y\rangle </math> समान रूप से शून्य है, और इसलिए <math> y \in (\operatorname{im} A)^\perp.</math> | हरएक के लिए <math>y \in \ker A^*,</math> रैखिक कार्यात्मक <math>x \mapsto \langle Ax,y \rangle = \langle x,A^*y\rangle </math> समान रूप से शून्य है, और इसलिए <math> y \in (\operatorname{im} A)^\perp.</math> | ||
Line 108: | Line 108: | ||
सकारक <math>A</math> बंद है अगर ग्राफ <math>G(A)</math> स्थलाकृतिक रूप से बंद है <math>H \oplus H.</math> ग्राफ <math>G(A^*)</math> आसन्न संकारक की <math>A^*</math> उपसमष्टि का लांबिक पूरक है, और इसलिए बंद है। | सकारक <math>A</math> बंद है अगर ग्राफ <math>G(A)</math> स्थलाकृतिक रूप से बंद है <math>H \oplus H.</math> ग्राफ <math>G(A^*)</math> आसन्न संकारक की <math>A^*</math> उपसमष्टि का लांबिक पूरक है, और इसलिए बंद है। | ||
===A<sup>*</sup> सघन रूप से परिभाषित है ⇔ A | ===A<sup>*</sup> सघन रूप से परिभाषित है ⇔ A क्लोजेबल है === | ||
सकारक <math>A</math> टोपोलॉजिकल क्लोजर होने पर क्लोजेबल है <math>G^\text{cl}(A) \subseteq H \oplus H </math> ग्राफ का <math>G(A)</math> | सकारक <math>A</math> टोपोलॉजिकल क्लोजर होने पर क्लोजेबल है <math>G^\text{cl}(A) \subseteq H \oplus H </math> ग्राफ का <math>G(A)</math> फलन का ग्राफ है। तब से <math>G^\text{cl}(A)</math> (बंद) रेखीय उपसमष्टि है, शब्द फलन को रेखीय संकारक से बदला जा सकता है। इसी कारण से, <math>A</math> क्लोजेबल है अगर और केवल अगर <math>(0,v) \notin G^\text{cl}(A)</math> जब तक <math>v=0.</math> | ||
संलग्न <math> A^* </math> सघन रूप से परिभाषित किया गया है अगर और केवल अगर <math>A</math> क्लोजेबल है। यह इस तथ्य से अनुसरण करता है कि, प्रत्येक के लिए <math>v \in H,</math> | |||
:<math>v \in D(A^*)^\perp\ \Leftrightarrow\ (0,v) \in G^\text{cl}(A),</math> | :<math>v \in D(A^*)^\perp\ \Leftrightarrow\ (0,v) \in G^\text{cl}(A),</math> | ||
जो, बदले में, समानता की निम्नलिखित श्रृंखला के माध्यम से सिद्ध होता है: | जो, बदले में, समानता की निम्नलिखित श्रृंखला के माध्यम से सिद्ध होता है: | ||
Line 121: | Line 122: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
=='''A<sup>**</sup> = A<sup>cl</sup>'''== | |||
क्लोसर <math> A^\text{cl} </math> संकारक का <math>A</math> संकारक है जिसका ग्राफ है <math> G^\text{cl}(A) </math> यदि यह ग्राफ किसी फलन का प्रतिनिधित्व करता है। ऊपर के अनुसार, शब्द फलन को संकारक से बदला जा सकता है। आगे, <math> A^{**} = A^{\text{cl}},</math> मतलब है कि <math> G(A^{**}) = G^{\text{cl}}(A). </math> | |||
इसे साबित करने के लिए, इसे देखें <math>J^* = -J,</math> अर्थात। <math> \langle Jx,y\rangle_{H \oplus H} = -\langle x,Jy\rangle_{H \oplus H},</math> हरएक के लिए <math>x,y \in H \oplus H.</math> वास्तव में, | इसे साबित करने के लिए, इसे देखें <math>J^* = -J,</math> अर्थात। <math> \langle Jx,y\rangle_{H \oplus H} = -\langle x,Jy\rangle_{H \oplus H},</math> हरएक के लिए <math>x,y \in H \oplus H.</math> वास्तव में, | ||
:<math> | :<math> | ||
Line 136: | Line 136: | ||
</math> | </math> | ||
विशेष रूप से, प्रत्येक के लिए <math>y \in H \oplus H</math> और हर उपक्षेत्र <math> V \subseteq H \oplus H,</math> <math>y \in (JV)^\perp</math> अगर और केवल अगर <math>Jy \in V^\perp.</math> इस प्रकार, <math> J[(JV)^\perp] = V^\perp </math> और <math> [J[(JV)^\perp]]^\perp = V^\text{cl}.</math> स्थानापन्न <math> V = G(A),</math> प्राप्त <math> G^\text{cl}(A) = G(A^{**}).</math> | विशेष रूप से, प्रत्येक के लिए <math>y \in H \oplus H</math> और हर उपक्षेत्र <math> V \subseteq H \oplus H,</math> <math>y \in (JV)^\perp</math> अगर और केवल अगर <math>Jy \in V^\perp.</math> इस प्रकार, <math> J[(JV)^\perp] = V^\perp </math> और <math> [J[(JV)^\perp]]^\perp = V^\text{cl}.</math> स्थानापन्न <math> V = G(A),</math> प्राप्त <math> G^\text{cl}(A) = G(A^{**}).</math> | ||
===== ए{{sup|*}} = (ए{{sup|cl}}){{sup|*}}== | ===== ए{{sup|*}} = (ए{{sup|cl}}){{sup|*}}== | ||
एक | एक क्लोजेबल संकारक के लिए <math>A,</math> <math> A^* = \left(A^\text{cl}\right)^*, </math> मतलब है कि <math>G(A^*) = G\left(\left(A^\text{cl}\right)^*\right).</math> वास्तव में, | ||
:<math> | :<math> | ||
G\left(\left(A^\text{cl}\right)^*\right) = \left(JG^\text{cl}(A)\right)^\perp = \left(\left(JG(A)\right)^\text{cl}\right)^\perp = (JG(A))^\perp = G(A^*). | G\left(\left(A^\text{cl}\right)^*\right) = \left(JG^\text{cl}(A)\right)^\perp = \left(\left(JG(A)\right)^\text{cl}\right)^\perp = (JG(A))^\perp = G(A^*). | ||
Line 146: | Line 147: | ||
=== प्रति उदाहरण जहां आसन्न सघन रूप से परिभाषित नहीं है === | === प्रति उदाहरण जहां आसन्न सघन रूप से परिभाषित नहीं है === | ||
मान लेना <math>H=L^2(\mathbb{R},l),</math> जहाँ<math>l</math> रैखिक माप है। मापने योग्य, परिबद्ध, गैर-समान शून्य | मान लेना <math>H=L^2(\mathbb{R},l),</math> जहाँ<math>l</math> रैखिक माप है। मापने योग्य, परिबद्ध, गैर-समान शून्य फलन का चयन करें <math>f \notin L^2,</math> और उठाओ <math>\varphi_0 \in L^2 \setminus \{0\}.</math> परिभाषित करना | ||
:<math>A \varphi = \langle f,\varphi\rangle \varphi_0.</math> | :<math>A \varphi = \langle f,\varphi\rangle \varphi_0.</math> | ||
यह इस प्रकार है कि <math>D(A) = \{\varphi \in L^2 \mid \langle f,\varphi\rangle \neq \infty\}.</math> उपस्थान <math>D(A)</math> सभी शामिल हैं <math>L^2</math> कॉम्पैक्ट समर्थन के साथ काम करता है। तब से <math>\mathbf{1}_{[-n,n]} \cdot \varphi\ \stackrel{L^2}{\to}\ \varphi,</math> <math>A</math> सघन रूप से परिभाषित है। हरएक के लिए <math>\varphi \in D(A)</math> और <math>\psi \in D(A^*),</math> | यह इस प्रकार है कि <math>D(A) = \{\varphi \in L^2 \mid \langle f,\varphi\rangle \neq \infty\}.</math> उपस्थान <math>D(A)</math> सभी शामिल हैं <math>L^2</math> कॉम्पैक्ट समर्थन के साथ काम करता है। तब से <math>\mathbf{1}_{[-n,n]} \cdot \varphi\ \stackrel{L^2}{\to}\ \varphi,</math> <math>A</math> सघन रूप से परिभाषित है। हरएक के लिए <math>\varphi \in D(A)</math> और <math>\psi \in D(A^*),</math> | ||
:<math>\langle \varphi, A^*\psi \rangle = \langle A\varphi, \psi \rangle = \langle \langle f,\varphi \rangle\varphi_0, \psi \rangle = \langle f,\varphi \rangle\cdot \langle \varphi_0, \psi \rangle = \langle \varphi, \langle \varphi_0, \psi \rangle f\rangle. </math> | :<math>\langle \varphi, A^*\psi \rangle = \langle A\varphi, \psi \rangle = \langle \langle f,\varphi \rangle\varphi_0, \psi \rangle = \langle f,\varphi \rangle\cdot \langle \varphi_0, \psi \rangle = \langle \varphi, \langle \varphi_0, \psi \rangle f\rangle. </math> | ||
इस प्रकार, <math>A^* \psi = \langle \varphi_0, \psi \rangle f.</math> आसन्न संकारक की परिभाषा की आवश्यकता है <math>\mathop{\text{Im}}A^* \subseteq H=L^2.</math> तब से <math>f \notin L^2,</math> यह तभी संभव है जब <math>\langle \varphi_0, \psi \rangle= 0.</math> इस कारण से, <math>D(A^*) = \{\varphi_0\}^\perp.</math> इस तरह, <math>A^*</math> सघन रूप से परिभाषित नहीं है और समान रूप से शून्य पर है <math>D(A^*).</math> नतीजतन, <math>A</math> | इस प्रकार, <math>A^* \psi = \langle \varphi_0, \psi \rangle f.</math> आसन्न संकारक की परिभाषा की आवश्यकता है <math>\mathop{\text{Im}}A^* \subseteq H=L^2.</math> तब से <math>f \notin L^2,</math> यह तभी संभव है जब <math>\langle \varphi_0, \psi \rangle= 0.</math> इस कारण से, <math>D(A^*) = \{\varphi_0\}^\perp.</math> इस तरह, <math>A^*</math> सघन रूप से परिभाषित नहीं है और समान रूप से शून्य पर है <math>D(A^*).</math> नतीजतन, <math>A</math> क्लोजेबल नहीं है और इसका कोई दूसरा जोड़ नहीं है <math>A^{**}.</math> | ||
Line 162: | Line 163: | ||
== एंटीलीनियर संकारक के संयोजन == | == एंटीलीनियर संकारक के संयोजन == | ||
एक एंटीलाइनर मानचित्र के लिए जटिल संयुग्मन की भरपाई के लिए आसन्न की परिभाषा को समायोजित करने की आवश्यकता है। एंटीलीनियर संकारक का एक | एक एंटीलाइनर मानचित्र के लिए जटिल संयुग्मन की भरपाई के लिए आसन्न की परिभाषा को समायोजित करने की आवश्यकता है। एंटीलीनियर संकारक का एक संलग्न संकारक {{mvar|A}} एक जटिल हिल्बर्ट समष्टि पर {{mvar|H}} एक एंटीलीनियर संकारक है {{math|''A''<sup>∗</sup> : ''H'' → ''H''}} गुण के साथ: | ||
: <math>\langle Ax , y \rangle = \overline{\left\langle x , A^* y \right\rangle} \quad \text{for all } x, y \in H.</math> | : <math>\langle Ax , y \rangle = \overline{\left\langle x , A^* y \right\rangle} \quad \text{for all } x, y \in H.</math> |
Revision as of 12:12, 26 April 2023
गणित में, विशेष रूप से संकारक सिद्धांत में, प्रत्येक रैखिक संकारक आंतरिक उत्पाद समष्टि पर हर्मिटियन संलग्न (या आसन्न) संकारक को परिभाषित करता है नियमानुसार उस समष्टि पर
जहाँ सदिश समष्टि पर आंतरिक उत्पाद है।
चार्ल्स हर्मिट के बाद आसन्न को हर्मिटियन संयुग्म या केवल हर्मिटियन [1]भी कहा जा सकता है। इसे अक्सर द्वारा A† निरूपित किया जाता है भौतिकी जैसे क्षेत्रों में, खासकर जब क्वांटम यांत्रिकी में ब्रा-केट नोटेशन के संयोजन के साथ प्रयोग किया जाता है। परिमित आयामों में जहां संकारक को आव्यूह (गणित) द्वारा दर्शाया जाता है, हर्मिटियन संलग्न संयुग्मित परिवर्त (जिसे हर्मिटियन परिवर्त के रूप में भी जाना जाता है) द्वारा दिया जाता है।
आसन्न संकारक की उपरोक्त परिभाषा शब्दशः हिल्बर्ट समष्टि पर बाध्य संकारक तक फैली हुई है। इस परिभाषा को आगे बढ़ाया गया है ताकि असीमित सघन रूप से परिभाषित संकारक को शामिल किया जा सके, जिसका प्रांत टोपोलॉजिकल रूप से सघन (टोपोलॉजी) है - लेकिन जरूरी नहीं कि इसके बराबर हो।
अनौपचारिक परिभाषा
रेखीय मानचित्र पर हिल्बर्ट रिक्त समष्टि के बीच विचार करें। किसी भी विवरण का ध्यान रखे बिना, आसन्न संकारक (ज्यादातर मामलों में विशिष्ट रूप से परिभाषित) रैखिक संकारक है को पूरा करने
जहाँ हिल्बर्ट समष्टि में आंतरिक उत्पाद है, जो पहले निर्देशांक में रेखीय है और दूसरे निर्देशांक में प्रतिरैखिक है। विशेष मामले पर ध्यान दें जहां दोनों हिल्बर्ट रिक्त समष्टि समान हैं और उस हिल्बर्ट समष्टि पर संकारक है।
जब कोई दोहरी जोड़ी के लिए आंतरिक उत्पाद का विक्रय करता है, तो संकारक के आसन्न, जिसे परिवर्त भी कहा जाता है को परिभाषित कर सकता है , जहाँ समान मानदंड (गणित) के साथ बनच समष्टि हैं . यहां (फिर से किसी तकनीकी पर विचार नहीं करते हुए), इसके संलग्न संकारक को इस रूप में परिभाषित किया गया है साथ में
अर्थात, के लिए .
ध्यान दें कि हिल्बर्ट समष्टि समायोजन में उपरोक्त परिभाषा वास्तव में बनच समष्टि केस का एक अनुप्रयोग है जब कोई हिल्बर्ट समष्टि को उसके दोहरे समष्टि से पहचानता है। तब यह स्वाभाविक ही है कि हम संकारक का आसन्न भी प्राप्त कर सकते हैं , जहाँ एक हिल्बर्ट समष्टि है और बनच समष्टि है। दोहरे को तब परिभाषित किया जाता है साथ ऐसा है कि
बनच रिक्त समष्टि के बीच असीमित संकारक के लिए परिभाषा
मान लेना बनच रिक्त समष्टि है। कल्पना करना और , और मान लीजिए (संभवतः अबाधित) रैखिक संकारक है जो सघन रूप से परिभाषित संकारक है (अर्थात, , में सघन है), तत्पश्चात् इसका सहसंयोजक निम्नानुसार परिभाषित किया गया है। प्रांत है
- .
अब यादृच्छिक के लिए लेकिन तय है हम सेट करते हैं के साथ । विकल्प से और की परिभाषा, f (समान रूप से) निरंतर के रूप में जैसा है। फिर हैन-बनाक प्रमेय द्वारा या वैकल्पिक रूप से निरंतरता द्वारा विस्तार के माध्यम से यह विस्तार उत्पन्न करता है , बुलाया सभी पर परिभाषित । ध्यान दें कि यह तकनीकी बाद में प्राप्त करने के लिए आवश्यक है संकारक के रूप में के बजाय यह भी टिप्पणी करें कि इसका मतलब यह नहीं है सभी पर बढ़ाया जा सकता है लेकिन विस्तार केवल विशिष्ट तत्वों के लिए काम करता है .
अब हम के आसन्न को परिभाषित कर सकते हैं जैसा
मौलिक परिभाषित पहचान इस प्रकार है
- के लिए
हिल्बर्ट रिक्त समष्टि के बीच बाध्य संकारक के लिए परिभाषा
कल्पना करना H आंतरिक उत्पाद के साथ जटिल हिल्बर्ट समष्टि है। सतत रैखिक संकारक A : H → H पर विचार करें (रैखिक संकारक के लिए, निरंतरता एक बाध्य संकारक होने के बराबर है)। तब A का संलग्न निरंतर रैखिक संकारक है A∗ : H → H संतोषजनक है
इस संकारक का अस्तित्व और विशिष्टता रिज प्रतिनिधित्व प्रमेय से अनुसरण करती है।[2]
इसे वर्ग आव्यूह के आसन्न आव्यूह के सामान्यीकरण के रूप में देखा जा सकता है जिसमें मानक जटिल आंतरिक उत्पाद से संबंधित समान गुण होती है।
गुण
परिबद्ध संकारक के हर्मिटियन संलग्न के निम्नलिखित गुण तत्काल हैं:[2]
- इन्वोल्यूशन (गणित): A∗∗ = A
- अगर A उलटा है, तो ऐसा है A∗, साथ
- एंटी-लीनियरिटी :
- (A + B)∗ = A∗ + B∗
- (λA)∗ = λA∗, जहाँ λ सम्मिश्र संख्या λ के सम्मिश्र संयुग्म को दर्शाता है
- " प्रति वितरण": (AB)∗ = B∗A∗
यदि संकारक मानदंड A को परिभाषित करते हैं
तब
इसके अतिरिक्त,
एक का कहना है कि मानदंड जो इस शर्त को पूरा करता है, वह एक "सबसे बड़े मान" की तरह व्यवहार करता है, जो स्व-संलग्न संकारक के मामले से बहिर्गमन करता है।
एक जटिल हिल्बर्ट समष्टि H पर परिबद्ध रैखिक संकारक का सेट, साथ में आसन्न ऑपरेशन और संकारक मानदंड के साथ C*-बीजगणित के आदिप्ररूप (प्रोटोटाइप) का निर्माण करता है
हिल्बर्ट रिक्त समष्टि के बीच सघन परिभाषित असीमित संकारक का संयोजन
परिभाषा
आंतरिक उत्पाद पहले तर्क में रैखिक हो। सघन रूप से परिभाषित संकारक A जटिल हिल्बर्ट समष्टि से H अपने आप में रैखिक संकारक है जिसका प्रांत D(A) की सघन रैखिक उपसमष्टि है H और जिनके मान H निहित हैं [3] परिभाषा के अनुसार, प्रांत D(A∗) इसके बगल में A∗ सभी का समुच्चय है y ∈ H जिसके लिए z ∈ H संतुष्टि देने वाला है
घनत्व के कारण और रिज प्रतिनिधित्व प्रमेय, विशिष्ट रूप से परिभाषित किया गया है, और, परिभाषा के अनुसार, [4]
गुण 1.-5 किसी फलन के प्रांत और कोडोमेन के बारे में उचित खंड के साथ है। उदाहरण के लिए, अंतिम गुण अब बताता है कि (AB)∗ का विस्तार है B∗A∗ अगर A, B और AB सघन रूप से परिभाषित संकारक हैं।[5]
ker A*=(im A)⊥
हरएक के लिए रैखिक कार्यात्मक समान रूप से शून्य है, और इसलिए
इसके विपरीत, धारणा है कि कार्यात्मक कारण बनता है समान रूप से शून्य है। चूंकि कार्यात्मक स्पष्ट रूप से बंधा हुआ है, इसकी परिभाषा विश्वास दिलाता है तथ्य यह है कि, प्रत्येक के लिए पता चलता है कि मान लें कि सघन है।
यह गुण दर्शाती है स्थैतिक रूप से बंद उप-समष्टि तब भी है जब क्या नहीं है।
ज्यामितीय व्याख्या
अगर और हिल्बर्ट रिक्त समष्टि हैं, फिर आंतरिक उत्पाद के साथ हिल्बर्ट समष्टि है
जहाँ और
मान लेना सिम्प्लेक्टिक मैट्रिक्स हो, अर्थात फिर ग्राफ
का का लंबकोणीय पूरक है
अभिकथन तुल्यता से अनुसरण करता है
और
परिणाम
A* बंद है
सकारक बंद है अगर ग्राफ स्थलाकृतिक रूप से बंद है ग्राफ आसन्न संकारक की उपसमष्टि का लांबिक पूरक है, और इसलिए बंद है।
A* सघन रूप से परिभाषित है ⇔ A क्लोजेबल है
सकारक टोपोलॉजिकल क्लोजर होने पर क्लोजेबल है ग्राफ का फलन का ग्राफ है। तब से (बंद) रेखीय उपसमष्टि है, शब्द फलन को रेखीय संकारक से बदला जा सकता है। इसी कारण से, क्लोजेबल है अगर और केवल अगर जब तक
संलग्न सघन रूप से परिभाषित किया गया है अगर और केवल अगर क्लोजेबल है। यह इस तथ्य से अनुसरण करता है कि, प्रत्येक के लिए
जो, बदले में, समानता की निम्नलिखित श्रृंखला के माध्यम से सिद्ध होता है:
A** = Acl
क्लोसर संकारक का संकारक है जिसका ग्राफ है यदि यह ग्राफ किसी फलन का प्रतिनिधित्व करता है। ऊपर के अनुसार, शब्द फलन को संकारक से बदला जा सकता है। आगे, मतलब है कि
इसे साबित करने के लिए, इसे देखें अर्थात। हरएक के लिए वास्तव में,
विशेष रूप से, प्रत्येक के लिए और हर उपक्षेत्र अगर और केवल अगर इस प्रकार, और स्थानापन्न प्राप्त
=== ए* = (एcl)*
एक क्लोजेबल संकारक के लिए मतलब है कि वास्तव में,
प्रति उदाहरण जहां आसन्न सघन रूप से परिभाषित नहीं है
मान लेना जहाँ रैखिक माप है। मापने योग्य, परिबद्ध, गैर-समान शून्य फलन का चयन करें और उठाओ परिभाषित करना
यह इस प्रकार है कि उपस्थान सभी शामिल हैं कॉम्पैक्ट समर्थन के साथ काम करता है। तब से सघन रूप से परिभाषित है। हरएक के लिए और
इस प्रकार, आसन्न संकारक की परिभाषा की आवश्यकता है तब से यह तभी संभव है जब इस कारण से, इस तरह, सघन रूप से परिभाषित नहीं है और समान रूप से शून्य पर है नतीजतन, क्लोजेबल नहीं है और इसका कोई दूसरा जोड़ नहीं है
हर्मिटियन संकारक
एक बंधा हुआ संकारक A : H → H को हर्मिटियन या स्व-आसन्न संकारक कहा जाता है | सेल्फ-एडज्वाइंट अगर
जो बराबर है
कुछ अर्थों में, ये संकारक वास्तविक संख्याओं की भूमिका निभाते हैं (अपने स्वयं के जटिल संयुग्म के बराबर होते हैं) और एक वास्तविक सदिश समष्टि बनाते हैं। वे क्वांटम यांत्रिकी में वास्तविक-मूल्यवान वेधशालाओं के मॉडल के रूप में काम करते हैं। पूर्ण इलाज के लिए सेल्फ-एडज्वाइंट ऑपरेटर्स पर लेख देखें।
एंटीलीनियर संकारक के संयोजन
एक एंटीलाइनर मानचित्र के लिए जटिल संयुग्मन की भरपाई के लिए आसन्न की परिभाषा को समायोजित करने की आवश्यकता है। एंटीलीनियर संकारक का एक संलग्न संकारक A एक जटिल हिल्बर्ट समष्टि पर H एक एंटीलीनियर संकारक है A∗ : H → H गुण के साथ:
अन्य जोड़
समीकरण
औपचारिक रूप से श्रेणी सिद्धांत में आसन्न फ़ैक्टरों के जोड़े के परिभाषित गुणों के समान है, और यही वह जगह है जहाँ से आसन्न फ़ैक्टरों को उनका नाम मिला।
यह भी देखें
- गणितीय अवधारणाएँ
- हर्मिटियन संकारक
- नॉर्म (गणित)
- एक रेखीय मानचित्र का स्थानांतरण # स्थानांतरण
- संयुग्म स्थानान्तरण
- भौतिक अनुप्रयोग
- संकारक (भौतिकी)
- †-बीजगणित
संदर्भ
- ↑ Miller, David A. B. (2008). वैज्ञानिकों और इंजीनियरों के लिए क्वांटम यांत्रिकी. Cambridge University Press. pp. 262, 280.
- ↑ 2.0 2.1 2.2 2.3 Reed & Simon 2003, pp. 186–187; Rudin 1991, §12.9
- ↑ See unbounded operator for details.
- ↑ Reed & Simon 2003, p. 252; Rudin 1991, §13.1
- ↑ Rudin 1991, Thm 13.2
- ↑ Reed & Simon 2003, pp. 187; Rudin 1991, §12.11
- Brezis, Haim (2011), Functional Analysis, Sobolev Spaces and Partial Differential Equations (first ed.), Springer, ISBN 978-0-387-70913-0.
- Reed, Michael; Simon, Barry (2003), Functional Analysis, Elsevier, ISBN 981-4141-65-8.
- Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.