हर्मिटियन संलग्न: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Conjugate transpose of an operator in infinite dimensions}} गणित में, विशेष रूप से संकारक सिद्धा...")
 
No edit summary
Tag: Manual revert
 
(14 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Conjugate transpose of an operator in infinite dimensions}}
{{Short description|Conjugate transpose of an operator in infinite dimensions}}
गणित में, विशेष रूप से संकारक सिद्धांत में, प्रत्येक रैखिक संकारक <math> A </math> [[आंतरिक उत्पाद स्थान]] पर एक हर्मिटियन आसन्न (या आसन्न) ऑपरेटर को परिभाषित करता है <math>A^*</math> नियमानुसार उस स्थान पर
गणित में, विशेष रूप से संकारक सिद्धांत में, प्रत्येक रैखिक संकारक <math> A </math> [[आंतरिक उत्पाद स्थान|आंतरिक उत्पाद समष्टि]] पर '''हर्मिटियन संलग्न''' (या आसन्न) संकारक को परिभाषित करता है <math>A^*</math> नियमानुसार उस समष्टि पर


:<math>\langle Ax,y \rangle = \langle x,A^*y \rangle,</math>
:<math>\langle Ax,y \rangle = \langle x,A^*y \rangle,</math>
कहाँ <math>\langle \cdot,\cdot \rangle</math> सदिश स्थान पर आंतरिक उत्पाद है।
जहाँ<math>\langle \cdot,\cdot \rangle</math> सदिश समष्टि पर आंतरिक उत्पाद है।
 
आसन्न को हर्मिटियन संयुग्म या केवल हर्मिटियन भी कहा जा सकता है<ref>{{Cite book |first=David A. B. |last=Miller |title=वैज्ञानिकों और इंजीनियरों के लिए क्वांटम यांत्रिकी|publisher=Cambridge University Press |date=2008 |pages=262, 280}}</ref> [[चार्ल्स हर्मिट]] के बाद। इसे अक्सर द्वारा निरूपित किया जाता है {{math|''A''<sup>†</sup>}} भौतिकी जैसे क्षेत्रों में, खासकर जब [[क्वांटम यांत्रिकी]] में ब्रा-केट नोटेशन के संयोजन के साथ प्रयोग किया जाता है। परिमित आयामों में जहां ऑपरेटरों को [[मैट्रिक्स (गणित)]] द्वारा दर्शाया जाता है, हर्मिटियन आसन्न संयुग्मित संक्रमण (जिसे हर्मिटियन ट्रांज़ोज़ के रूप में भी जाना जाता है) द्वारा दिया जाता है।
 
एक आसन्न ऑपरेटर की उपरोक्त परिभाषा शब्दशः हिल्बर्ट रिक्त स्थान पर बाध्य ऑपरेटरों तक फैली हुई है <math>H</math>. इस परिभाषा को आगे बढ़ाया गया है ताकि असीमित सघन रूप से परिभाषित ऑपरेटर ऑपरेटरों को शामिल किया जा सके, जिसका डोमेन टोपोलॉजिकल रूप से [[सघन (टोपोलॉजी)]] है - लेकिन जरूरी नहीं कि इसके बराबर हो - <math>H.</math>


[[चार्ल्स हर्मिट]] के बाद आसन्न को '''हर्मिटियन संयुग्म''' या केवल '''हर्मिटियन''' <ref>{{Cite book |first=David A. B. |last=Miller |title=वैज्ञानिकों और इंजीनियरों के लिए क्वांटम यांत्रिकी|publisher=Cambridge University Press |date=2008 |pages=262, 280}}</ref>भी कहा जा सकता है। इसे अधिकांशतः द्वारा {{math|''A''<sup>†</sup>}} निरूपित किया जाता है भौतिकी जैसे क्षेत्रों में, खासकर जब [[क्वांटम यांत्रिकी]] में ब्रा-केट नोटेशन के संयोजन के साथ प्रयोग किया जाता है। परिमित आयामों में जहां संकारक को [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] द्वारा दर्शाया जाता है, हर्मिटियन संलग्न संयुग्मित परिवर्त (जिसे हर्मिटियन परिवर्त के रूप में भी जाना जाता है) द्वारा दिया जाता है।


आसन्न संकारक की उपरोक्त परिभाषा शब्दशः हिल्बर्ट समष्टि <math>H</math> पर बाध्य संकारक तक फैली हुई है। इस परिभाषा को आगे बढ़ाया गया है जिससे कि असीमित सघन रूप से परिभाषित संकारक को सम्मिलित किया जा सके, जिसका प्रांत टोपोलॉजिकल रूप से [[सघन (टोपोलॉजी)|सघन '''(टोपोलॉजी)''']] है - लेकिन जरूरी नहीं कि इसके बराबर हो -<math>H.</math>
== अनौपचारिक परिभाषा ==
== अनौपचारिक परिभाषा ==


एक रेखीय मानचित्र पर विचार करें <math>A: H_1\to H_2</math> हिल्बर्ट रिक्त स्थान के बीच। किसी भी विवरण का ध्यान रखे बिना, आसन्न ऑपरेटर (ज्यादातर मामलों में विशिष्ट रूप से परिभाषित) रैखिक ऑपरेटर है <math>A^* : H_2 \to H_1</math> को पूरा करने
रेखीय मानचित्र पर हिल्बर्ट रिक्त समष्टि के बीच <math>A: H_1\to H_2</math> विचार करें। किसी भी विवरण का ध्यान रखे बिना, आसन्न संकारक (ज्यादातर स्थितियों में विशिष्ट रूप से परिभाषित) रैखिक संकारक है <math>A^* : H_2 \to H_1</math> को पूरा करने
:<math>\left\langle A h_1, h_2 \right\rangle_{H_2} = \left\langle h_1, A^* h_2 \right\rangle_{H_1},</math>
:<math>\left\langle A h_1, h_2 \right\rangle_{H_2} = \left\langle h_1, A^* h_2 \right\rangle_{H_1},</math>
कहाँ <math>\langle\cdot, \cdot \rangle_{H_i}</math> इनर प्रोडक्ट स्पेस # हिल्बर्ट स्पेस हिल्बर्ट स्पेस में है <math>H_i</math>, जो पहले निर्देशांक में रेखीय है और दूसरे निर्देशांक में प्रतिरैखिक है। विशेष मामले पर ध्यान दें जहां दोनों हिल्बर्ट रिक्त स्थान समान हैं और <math>A</math> उस हिल्बर्ट स्पेस पर एक ऑपरेटर है।
जहाँ<math>\langle\cdot, \cdot \rangle_{H_i}</math> हिल्बर्ट समष्टि <math>H_i</math> में आंतरिक उत्पाद है, जो पहले निर्देशांक में रेखीय है और दूसरे निर्देशांक में प्रतिरैखिक है। विशेष मामले पर ध्यान दें जहां दोनों हिल्बर्ट रिक्त समष्टि समान हैं और <math>A</math> उस हिल्बर्ट समष्टि पर संकारक है।


जब कोई दोहरी जोड़ी के लिए आंतरिक उत्पाद का व्यापार करता है, तो एक ऑपरेटर के आसन्न को परिभाषित कर सकता है, जिसे रैखिक मानचित्र का स्थानान्तरण भी कहा जाता है। <math>A: E \to F</math>, कहाँ <math>E, F</math> समान मानदंड (गणित) के साथ बनच स्थान हैं <math>\|\cdot\|_E, \|\cdot\|_F</math>. यहां (फिर से किसी तकनीकी पर विचार नहीं करते हुए), इसके सहायक ऑपरेटर को इस रूप में परिभाषित किया गया है <math>A^*: F^* \to E^*</math> साथ
जब कोई दोहरी जोड़ी के लिए आंतरिक उत्पाद का विक्रय करता है, तो संकारक के आसन्न, जिसे परिवर्त भी कहा जाता है को परिभाषित कर सकता है <math>A: E \to F</math>, जहाँ <math>E, F</math> समान मानदंड (गणित) के साथ बनच समष्टि हैं <math>\|\cdot\|_E, \|\cdot\|_F</math>. यहां (फिर से किसी तकनीकी पर विचार नहीं करते हुए), इसके संलग्न संकारक को इस रूप में परिभाषित किया गया है <math>A^*: F^* \to E^*</math> साथ में
:<math>A^*f = f \circ A : u \mapsto f(Au), </math>
:<math>A^*f = f \circ A : u \mapsto f(Au), </math>
अर्थात।, <math>\left(A^*f\right)(u) = f(Au)</math> के लिए <math>f \in F^*, u \in E</math>.
अर्थात, <math>\left(A^*f\right)(u) = f(Au)</math> के लिए <math>f \in F^*, u \in E</math>.


ध्यान दें कि हिल्बर्ट स्पेस सेटिंग में उपरोक्त परिभाषा वास्तव में बनच स्पेस केस का एक अनुप्रयोग है जब कोई हिल्बर्ट स्पेस को उसके दोहरे स्थान से पहचानता है। तब यह स्वाभाविक ही है कि हम संकारक का आसन्न भी प्राप्त कर सकते हैं <math>A: H \to E</math>, कहाँ <math>H</math> एक हिल्बर्ट स्थान है और <math>E</math> एक बनच स्थान है। दोहरे को तब परिभाषित किया जाता है <math>A^*: E^* \to H</math> साथ <math>A^*f = h_f </math> ऐसा है कि
ध्यान दें कि हिल्बर्ट समष्टि समायोजन में उपरोक्त परिभाषा वास्तव में बनच समष्टि केस का एक अनुप्रयोग है जब कोई हिल्बर्ट समष्टि को उसके दोहरे समष्टि से पहचानता है। तब यह स्वाभाविक ही है कि हम संकारक का आसन्न भी प्राप्त कर सकते हैं <math>A: H \to E</math>, जहाँ <math>H</math> एक हिल्बर्ट समष्टि है और <math>E</math> बनच समष्टि है। दोहरे को तब परिभाषित किया जाता है <math>A^*: E^* \to H</math> साथ <math>A^*f = h_f </math> ऐसा है कि
:<math>\langle h_f, h\rangle_H = f(Ah).</math>
:<math>\langle h_f, h\rangle_H = f(Ah).</math>


 
== <big>बनच रिक्त समष्टि के बीच असीमित संकारक के लिए परिभाषा</big> ==
== बनच रिक्त स्थान == के बीच असीमित ऑपरेटरों के लिए परिभाषा
मान लेना <math>\left(E, \|\cdot\|_E\right), \left(F, \|\cdot\|_F\right)</math> बनच रिक्त समष्टि है। कल्पना करना <math> A: D(A) \to F </math> और <math>D(A) \subset E</math>, और मान लीजिए <math>A</math> (संभवतः अबाधित) रैखिक संकारक है जो सघन रूप से परिभाषित संकारक है (अर्थात, <math>D(A)</math>, <math>E</math> में सघन है), तत्पश्चात् इसका सहसंयोजक <math>A^*</math> निम्नानुसार परिभाषित किया गया है। प्रांत है
होने देना <math>\left(E, \|\cdot\|_E\right), \left(F, \|\cdot\|_F\right)</math> Banach रिक्त स्थान हो। कल्पना करना <math> A: D(A) \to F </math> और <math>D(A) \subset E</math>, और मान लीजिए <math>A</math> एक (संभवतः अबाधित) रैखिक संकारक है जो सघन रूप से परिभाषित संकारक है (अर्थात, <math>D(A)</math> में घना है <math>E</math>). तत्पश्चात् इसका सहसंयोजक <math>A^*</math> निम्नानुसार परिभाषित किया गया है। डोमेन है
:<math>D\left(A^*\right) := \left\{g \in F^*:~ \exists c \geq 0:~ \mbox{ for all } u \in D(A):~ |g(Au)| \leq c \cdot \|u\|_E\right\}</math>.
:<math>D\left(A^*\right) := \left\{g \in F^*:~ \exists c \geq 0:~ \mbox{ for all } u \in D(A):~ |g(Au)| \leq c \cdot \|u\|_E\right\}</math>.


अब मनमानी के लिए लेकिन तय है <math>g \in D(A^*)</math> हमलोग तैयार हैं <math>f: D(A) \to \R</math> साथ <math>f(u) = g(Au)</math>. पसंद से <math>g</math> और की परिभाषा <math>D(A^*)</math>, f (समान रूप से) निरंतर है <math>D(A)</math> जैसा <math>|f(u)| = |g(Au)| \leq c\cdot \|u\|_E</math>. फिर हैन-बनाक प्रमेय द्वारा या वैकल्पिक रूप से निरंतरता द्वारा विस्तार के माध्यम से यह एक विस्तार उत्पन्न करता है <math>f</math>, बुलाया <math>\hat{f}</math> सभी पर परिभाषित <math>E</math>. ध्यान दें कि यह तकनीकी बाद में प्राप्त करने के लिए आवश्यक है <math>A^*</math> एक ऑपरेटर के रूप में <math>D\left(A^*\right) \to E^*</math> के बजाय <math>D\left(A^*\right) \to (D(A))^*.</math> यह भी टिप्पणी करें कि इसका मतलब यह नहीं है <math>A</math> सभी पर बढ़ाया जा सकता है <math>E</math> लेकिन विस्तार केवल विशिष्ट तत्वों के लिए काम करता है <math>g \in D\left(A^*\right)</math>.
अब यादृच्छिक के लिए लेकिन तय है <math>g \in D(A^*)</math> हम सेट करते हैं <math>f: D(A) \to \R</math> के साथ <math>f(u) = g(Au)</math>। विकल्प से <math>g</math> और <math>D(A^*)</math> की परिभाषा, f (समान रूप से) निरंतर <math>D(A)</math> के रूप में जैसा <math>|f(u)| = |g(Au)| \leq c\cdot \|u\|_E</math> है। फिर हैन-बनाक प्रमेय द्वारा या वैकल्पिक रूप से निरंतरता द्वारा विस्तार के माध्यम से यह विस्तार उत्पन्न करता है <math>f</math>, बुलाया <math>\hat{f}</math> सभी पर परिभाषित <math>E</math>ध्यान दें कि यह तकनीकी बाद में प्राप्त करने के लिए आवश्यक है <math>A^*</math> संकारक के रूप में <math>D\left(A^*\right) \to E^*</math> के अतिरिक्त <math>D\left(A^*\right) \to (D(A))^*.</math>यह भी टिप्पणी करें कि इसका मतलब यह नहीं है <math>A</math> सभी पर बढ़ाया जा सकता है <math>E</math> लेकिन विस्तार केवल विशिष्ट तत्वों के लिए काम करता है <math>g \in D\left(A^*\right)</math>.


अब हम के आसन्न को परिभाषित कर सकते हैं <math>A</math> जैसा
अब हम <math>A</math> के आसन्न को परिभाषित कर सकते हैं जैसा
:<math>\begin{align}
:<math>\begin{align}
   A^*: F^* \supset D(A^*) &\to E^* \\
   A^*: F^* \supset D(A^*) &\to E^* \\
Line 39: Line 36:
:<math>g(Au) = \left(A^* g\right)(u)</math> के लिए <math>u \in D(A).</math>
:<math>g(Au) = \left(A^* g\right)(u)</math> के लिए <math>u \in D(A).</math>


== हिल्बर्ट रिक्त समष्टि के बीच बाध्य संकारक के लिए परिभाषा ==
कल्पना करना {{mvar|H}} आंतरिक उत्पाद <math>\langle\cdot,\cdot\rangle</math> के साथ जटिल हिल्बर्ट समष्टि है। सतत रैखिक संकारक {{math|''A'' : ''H'' → ''H''}} पर विचार करें (रैखिक संकारक के लिए, निरंतरता एक बाध्य संकारक होने के बराबर है)। तब {{mvar|A}} का संलग्न निरंतर रैखिक संकारक है {{math|''A''<sup>∗</sup> : ''H'' → ''H''}} संतोषजनक है


== हिल्बर्ट रिक्त स्थान == के बीच बाध्य ऑपरेटरों के लिए परिभाषा<!-- This section is linked from [[Dipole]] -->
: <math>\langle Ax , y \rangle = \left\langle x , A^* y\right\rangle \quad \mbox{for all } x, y \in H.</math>
कल्पना करना {{mvar|H}} आंतरिक उत्पाद के साथ एक जटिल हिल्बर्ट स्थान है <math>\langle\cdot,\cdot\rangle</math>. एक सतत कार्य (टोपोलॉजी) रैखिक ऑपरेटर पर विचार करें {{math|''A'' : ''H'' → ''H''}} (रैखिक ऑपरेटरों के लिए, निरंतरता एक बाध्य ऑपरेटर होने के बराबर है)। फिर का जोड़ {{mvar|A}} सतत रैखिक संकारक है {{math|''A''<sup>∗</sup> : ''H'' → ''H''}} संतुष्टि देने वाला
इस संकारक का अस्तित्व और विशिष्टता [[रिज प्रतिनिधित्व प्रमेय|रिज़्ज़ प्रतिनिधित्व प्रमेय]] से अनुसरण करती है।<ref name="rs186">{{harvnb|Reed|Simon|2003|pp=186–187}}; {{harvnb|Rudin|1991|loc=§12.9}}</ref>


: <math>\langle Ax , y \rangle = \left\langle x , A^* y\right\rangle \quad \mbox{for all } x, y \in H.</math>
इसे वर्ग आव्यूह के आसन्न आव्यूह के सामान्यीकरण के रूप में देखा जा सकता है जिसमें मानक जटिल आंतरिक उत्पाद से संबंधित समान गुण होती है।
इस ऑपरेटर का अस्तित्व और विशिष्टता [[रिज प्रतिनिधित्व प्रमेय]] से अनुसरण करती है।<ref name=rs186>{{harvnb|Reed|Simon|2003|pp=186–187}}; {{harvnb|Rudin|1991|loc=§12.9}}</ref>
इसे एक वर्ग मैट्रिक्स के आसन्न मैट्रिक्स के सामान्यीकरण के रूप में देखा जा सकता है जिसमें मानक जटिल आंतरिक उत्पाद से संबंधित समान संपत्ति होती है।


== गुण ==
== गुण ==
बाउंडेड ऑपरेटरों के हर्मिटियन आसन्न के निम्नलिखित गुण तत्काल हैं:<ref name=rs186 /># [[इन्वोल्यूशन (गणित)]]: {{math|1=''A''<sup>∗∗</sup> = ''A''}}
परिबद्ध संकारक के हर्मिटियन संलग्न के निम्नलिखित गुण तत्काल हैं:<ref name=rs186 />
# अगर {{mvar|A}} उलटा है, तो ऐसा है {{math|''A''<sup>∗</sup>}}, साथ <math display="inline">\left(A^*\right)^{-1} = \left(A^{-1}\right)^*</math>
 
# [[एंटीलाइनर नक्शा]] | एंटी-लीनियरिटी:
# [[इन्वोल्यूशन (गणित)]]: {{math|1=''A''<sup>∗∗</sup> = ''A''}}
# यदि {{mvar|A}} उलटा है, तो ऐसा है {{math|''A''<sup>∗</sup>}}, साथ <math display="inline">\left(A^*\right)^{-1} = \left(A^{-1}\right)^*</math>
# [[एंटीलाइनर नक्शा|एंटी-लीनियरिटी]] :
#* {{math|1=(''A'' + ''B'')<sup>∗</sup> = ''A''<sup>∗</sup> + ''B''<sup>∗</sup>}}
#* {{math|1=(''A'' + ''B'')<sup>∗</sup> = ''A''<sup>∗</sup> + ''B''<sup>∗</sup>}}
#* {{math|1=(''λA'')<sup>∗</sup> = {{overline|''λ''}}''A''<sup>∗</sup>}}, कहाँ {{math|{{overline|''λ''}}}} सम्मिश्र संख्या के सम्मिश्र संयुग्म को दर्शाता है {{math|''λ''}}
#* {{math|1=(''λA'')<sup>∗</sup> = {{overline|''λ''}}''A''<sup>∗</sup>}}, जहाँ {{math|{{overline|''λ''}}}} सम्मिश्र संख्या {{math|''λ''}} के सम्मिश्र संयुग्म को दर्शाता है
# वितरण गुण {{math|1=(''AB'')<sup>∗</sup> = ''B''<sup>∗</sup>''A''<sup>∗</sup>}}
# " प्रति वितरण": {{math|1=(''AB'')<sup>∗</sup> = ''B''<sup>∗</sup>''A''<sup>∗</sup>}}
 
यदि [[ऑपरेटर मानदंड|संकारक मानदंड]] {{mvar|A}} को परिभाषित करते हैं
 
<math>\| A \|_\text{op} := \sup \left\{\|Ax\| : \|x\| \le 1\right\}</math>


यदि हम के [[ऑपरेटर मानदंड]] को परिभाषित करते हैं {{mvar|A}} द्वारा
:<math>\| A \|_\text{op} := \sup \left\{\|Ax\| : \|x\| \le 1\right\}</math>
तब
तब
:<math>\left\|A^* \right\|_\text{op} = \|A\|_\text{op}.</math><ref name=rs186 />
:<math>\left\|A^* \right\|_\text{op} = \|A\|_\text{op}.</math><ref name=rs186 />
Line 63: Line 64:
:<math>\left\|A^* A \right\|_\text{op} = \|A\|_\text{op}^2.</math><ref name=rs186 />
:<math>\left\|A^* A \right\|_\text{op} = \|A\|_\text{op}^2.</math><ref name=rs186 />


एक का कहना है कि एक मानदंड जो इस शर्त को पूरा करता है, एक सबसे बड़े मूल्य की तरह व्यवहार करता है, स्व-संलग्न ऑपरेटरों के मामले से एक्सट्रपलेशन।
एक का कहना है कि मानदंड जो इस शर्त को पूरा करता है, वह एक "सबसे बड़े मान" की तरह व्यवहार करता है, जो स्व-संलग्न संकारक के मामले से बहिर्गमन करता है।


एक जटिल हिल्बर्ट अंतरिक्ष पर परिबद्ध रैखिक ऑपरेटरों का सेट {{mvar|H}} साथ में आसन्न ऑपरेशन और ऑपरेटर मानदंड के साथ C*-बीजगणित का प्रोटोटाइप बनाते हैं।
एक जटिल हिल्बर्ट समष्टि {{mvar|H}} पर परिबद्ध रैखिक संकारक का सेट, साथ में आसन्न ऑपरेशन और संकारक मानदंड के साथ C*-बीजगणित के  आदिप्ररूप (प्रोटोटाइप) का निर्माण करता है


== हिल्बर्ट रिक्त स्थान == के बीच घनी परिभाषित असीमित ऑपरेटरों का संयोजन
== हिल्बर्ट रिक्त समष्टि के बीच सघन परिभाषित असीमित संकारक का संयोजन ==


=== परिभाषा ===
=== परिभाषा ===
आंतरिक उत्पाद दें <math>\langle \cdot, \cdot \rangle</math> पहले तर्क में रैखिक हो। सघन रूप से परिभाषित ऑपरेटर {{mvar|A}} एक जटिल हिल्बर्ट स्थान से {{mvar|H}} अपने आप में एक रैखिक संकारक है जिसका डोमेन {{math|''D''(''A'')}} की सघन रैखिक उपसमष्टि है {{mvar|H}} और जिनके मान निहित हैं {{mvar|H}}.<ref>See [[unbounded operator]] for details.</ref> परिभाषा के अनुसार, डोमेन {{math|''D''(''A''<sup>∗</sup>)}} इसके बगल में {{math|''A''<sup>∗</sup>}} सभी का समुच्चय है {{math|''y'' ∈ ''H''}} जिसके लिए एक है {{math|''z'' ∈ ''H''}} संतुष्टि देने वाला
आंतरिक उत्पाद <math>\langle \cdot, \cdot \rangle</math> पहले तर्क में रैखिक हो। सघन रूप से परिभाषित संकारक {{mvar|A}} जटिल हिल्बर्ट समष्टि से {{mvar|H}} अपने आप में रैखिक संकारक है जिसका प्रांत {{math|''D''(''A'')}} की सघन रैखिक उपसमष्टि है {{mvar|H}} और जिनके मान {{mvar|H}} निहित हैं <ref>See [[unbounded operator]] for details.</ref> परिभाषा के अनुसार, प्रांत {{math|''D''(''A''<sup>∗</sup>)}} इसके बगल में {{math|''A''<sup>∗</sup>}} सभी का समुच्चय है {{math|''y'' ∈ ''H''}} जिसके लिए {{math|''z'' ∈ ''H''}} संतुष्टि देने वाला है
: <math> \langle Ax , y \rangle = \langle x , z \rangle \quad \mbox{for all } x \in D(A).</math>
: <math> \langle Ax , y \rangle = \langle x , z \rangle \quad \mbox{for all } x \in D(A).</math>
घनत्व के कारण <math>D(A)</math> और रिज प्रतिनिधित्व प्रमेय, <math>z</math> विशिष्ट रूप से परिभाषित किया गया है, और, परिभाषा के अनुसार, <math>A^*y=z.</math><ref>{{harvnb|Reed|Simon|2003|p=252}}; {{harvnb|Rudin|1991|loc=§13.1}}</ref>
घनत्व के कारण <math>D(A)</math> और रिज प्रतिनिधित्व प्रमेय, <math>z</math> विशिष्ट रूप से परिभाषित किया गया है, और, परिभाषा के अनुसार, <math>A^*y=z.</math><ref>{{harvnb|Reed|Simon|2003|p=252}}; {{harvnb|Rudin|1991|loc=§13.1}}</ref>
गुण 1.-5। किसी फ़ंक्शन के डोमेन और [[कोडोमेन]] के बारे में उचित खंड के साथ पकड़ें।{{clarify|reason=These will be hard to guess.|date=May 2015}} उदाहरण के लिए, अंतिम गुण अब बताता है कि {{math|(''AB'')<sup>∗</sup>}} का विस्तार है {{math|''B''<sup>∗</sup>''A''<sup>∗</sup>}} अगर {{mvar|A}}, {{mvar|B}} और {{mvar|AB}} सघन रूप से परिभाषित ऑपरेटर हैं।<ref>{{harvnb|Rudin|1991|loc=Thm 13.2}}</ref>


गुण 1.-5 किसी फलन के प्रांत और [[कोडोमेन]] के बारे में उचित खंड के साथ है। उदाहरण के लिए, अंतिम गुण अब बताता है कि {{math|(''AB'')<sup>∗</sup>}} का विस्तार है {{math|''B''<sup>∗</sup>''A''<sup>∗</sup>}} यदि {{mvar|A}}, {{mvar|B}} और {{mvar|AB}} सघन रूप से परिभाषित संकारक हैं।<ref>{{harvnb|Rudin|1991|loc=Thm 13.2}}</ref>
=== ker A<sup>*</sup>=(im A)<sup>⊥</sup>===
हर एक के लिए <math>y \in \ker A^*,</math> रैखिक कार्यात्मक <math>x \mapsto \langle Ax,y \rangle = \langle x,A^*y\rangle </math> समान रूप से शून्य है, और इसलिए <math> y \in (\operatorname{im} A)^\perp.</math>


=== केर ए{{sup|*}}=(आईएम ए){{sup|⊥}}===
इसके विपरीत, धारणा है कि <math> y \in (\operatorname{im} A)^\perp</math> कार्यात्मक कारण बनता है <math>x \mapsto \langle Ax,y \rangle</math> समान रूप से शून्य है। चूंकि कार्यात्मक स्पष्ट रूप से बंधा हुआ है, इसकी परिभाषा <math>A^*</math> विश्वास दिलाता है <math> y \in D(A^*).</math> तथ्य यह है कि, प्रत्येक के लिए <math> x \in D(A),</math> <math>\langle Ax,y \rangle = \langle x,A^*y\rangle = 0</math> पता चलता है कि <math> A^* y \in D(A)^\perp =\overline{D(A)}^\perp = \{0\}, </math> मान लें कि <math>D(A)</math> सघन है।
हरएक के लिए <math>y \in \ker A^*,</math> रैखिक कार्यात्मक <math>x \mapsto \langle Ax,y \rangle = \langle x,A^*y\rangle </math> समान रूप से शून्य है, और इसलिए <math> y \in (\operatorname{im} A)^\perp.</math>
इसके विपरीत, धारणा है कि <math> y \in (\operatorname{im} A)^\perp</math> कार्यात्मक कारण बनता है <math>x \mapsto \langle Ax,y \rangle</math> समान रूप से शून्य होना। चूंकि कार्यात्मक स्पष्ट रूप से बंधा हुआ है, इसकी परिभाषा <math>A^*</math> विश्वास दिलाता है <math> y \in D(A^*).</math> तथ्य यह है कि, प्रत्येक के लिए <math> x \in D(A),</math> <math>\langle Ax,y \rangle = \langle x,A^*y\rangle = 0</math> पता चलता है कि <math> A^* y \in D(A)^\perp =\overline{D(A)}^\perp = \{0\}, </math> मान लें कि <math>D(A)</math> घना है।


यह संपत्ति दर्शाती है <math>\operatorname{ker}A^*</math> एक स्थैतिक रूप से बंद उप-स्थान तब भी है जब <math>D(A^*)</math> क्या नहीं है।
यह गुण दर्शाती है <math>\operatorname{ker}A^*</math> स्थैतिक रूप से बंद उप-समष्टि तब भी है जब <math>D(A^*)</math> क्या नहीं है।


=== ज्यामितीय व्याख्या ===
=== ज्यामितीय व्याख्या ===
अगर <math>H_1</math> और <math>H_2</math> हिल्बर्ट रिक्त स्थान हैं, फिर <math>H_1 \oplus H_2</math> आंतरिक उत्पाद के साथ एक हिल्बर्ट स्थान है
यदि <math>H_1</math> और <math>H_2</math> हिल्बर्ट रिक्त समष्टि हैं, फिर <math>H_1 \oplus H_2</math> आंतरिक उत्पाद के साथ हिल्बर्ट समष्टि है


:<math>\bigl \langle (a,b),(c,d) \bigr \rangle_{H_1 \oplus H_2} \stackrel{\text{def}}{=} \langle a,c \rangle_{H_1} + \langle b,d \rangle_{H_2}, </math>
:<math>\bigl \langle (a,b),(c,d) \bigr \rangle_{H_1 \oplus H_2} \stackrel{\text{def}}{=} \langle a,c \rangle_{H_1} + \langle b,d \rangle_{H_2}, </math>
कहाँ <math>a,c \in H_1</math> और <math>b,d \in H_2.</math>
जहाँ <math>a,c \in H_1</math> और <math>b,d \in H_2.</math>
होने देना <math>J\colon H\oplus H \to H \oplus H</math> [[सहानुभूतिपूर्ण मैट्रिक्स]] हो, अर्थात <math>J(\xi, \eta) = (-\eta, \xi).</math> फिर ग्राफ
 
मान लेना <math>J\colon H\oplus H \to H \oplus H</math> [[सहानुभूतिपूर्ण मैट्रिक्स|सिम्प्लेक्टिक मैट्रिक्स]] हो, अर्थात <math>J(\xi, \eta) = (-\eta, \xi).</math> फिर ग्राफ
:<math>G(A^*) =\{(x,y) \mid x\in D(A^*),\ y=A^*x\} \subseteq H \oplus H </math>
:<math>G(A^*) =\{(x,y) \mid x\in D(A^*),\ y=A^*x\} \subseteq H \oplus H </math>
का <math> A^* </math> का [[ऑर्थोगोनल पूरक]] है <math>JG(A):</math>
का <math> A^* </math> का [[ऑर्थोगोनल पूरक|लंबकोणीय पूरक]] है <math>JG(A):</math>
:<math>G(A^*) = (JG(A))^\perp = \{ (x, y) \in H \oplus H : \bigl \langle (x, y) , (-A\xi, \xi) \bigr \rangle_{H \oplus H} = 0\;\;\forall \xi \in D(A)\}. </math>
:<math>G(A^*) = (JG(A))^\perp = \{ (x, y) \in H \oplus H : \bigl \langle (x, y) , (-A\xi, \xi) \bigr \rangle_{H \oplus H} = 0\;\;\forall \xi \in D(A)\}. </math>
अभिकथन तुल्यता से अनुसरण करता है
अभिकथन तुल्यता से अनुसरण करता है
Line 97: Line 99:


:<math>\Bigl[ \forall \xi \in D(A)\ \ \langle A\xi, x \rangle = \langle \xi, y \rangle \Bigr]  \quad \Leftrightarrow \quad x \in D(A^*)\ \&\ y = A^*x. </math>
:<math>\Bigl[ \forall \xi \in D(A)\ \ \langle A\xi, x \rangle = \langle \xi, y \rangle \Bigr]  \quad \Leftrightarrow \quad x \in D(A^*)\ \&\ y = A^*x. </math>
==== परिणाम ====


===== A<sup>*</sup> बंद है=====
सकारक <math>A</math> बंद है यदि ग्राफ <math>G(A)</math> स्थलाकृतिक रूप से बंद है <math>H \oplus H.</math> ग्राफ <math>G(A^*)</math> आसन्न संकारक की <math>A^*</math> उपसमष्टि का लांबिक पूरक है, और इसलिए बंद है।


==== परिणाम ====
===A<sup>*</sup> सघन रूप से परिभाषित है ⇔ A क्लोजेबल है ===
 
सकारक <math>A</math> टोपोलॉजिकल क्लोजर होने पर क्लोजेबल है <math>G^\text{cl}(A)  \subseteq H \oplus H </math> ग्राफ का <math>G(A)</math> फलन का ग्राफ है। तब से <math>G^\text{cl}(A)</math> (बंद) रेखीय उपसमष्टि है, शब्द "फलन" को "रेखीय संकारक" से बदला जा सकता है। इसी कारण से, <math>A</math> क्लोजेबल है यदि और केवल यदि <math>(0,v) \notin G^\text{cl}(A)</math> जब तक <math>v=0.</math>
===== ए{{sup|*}} बंद है=====
एक संचालिका <math>A</math> बंद है अगर ग्राफ <math>G(A)</math> स्थलाकृतिक रूप से बंद है <math>H \oplus H.</math> लेखाचित्र <math>G(A^*)</math> आसन्न ऑपरेटर की <math>A^*</math> एक उपसमष्टि का लांबिक पूरक है, और इसलिए बंद है।


===== ए{{sup|*}} सघन रूप से परिभाषित है ⇔ A बंद करने योग्य है ===
संलग्न <math> A^* </math> सघन रूप से परिभाषित किया गया है यदि और केवल यदि <math>A</math> क्लोजेबल है। यह इस तथ्य से अनुसरण करता है कि, प्रत्येक के लिए <math>v \in H,</math>
एक संचालिका <math>A</math> टोपोलॉजिकल क्लोजर होने पर क्लोजेबल है <math>G^\text{cl}(A)  \subseteq H \oplus H </math> ग्राफ का <math>G(A)</math> एक समारोह का ग्राफ है। तब से <math>G^\text{cl}(A)</math> एक (बंद) रेखीय उपसमष्टि है, शब्द फलन को रेखीय संकारक से बदला जा सकता है। इसी कारण से, <math>A</math> बंद करने योग्य है अगर और केवल अगर <math>(0,v) \notin G^\text{cl}(A)</math> जब तक <math>v=0.</math>
सहायक <math> A^* </math> सघन रूप से परिभाषित किया गया है अगर और केवल अगर <math>A</math> बंद करने योग्य है। यह इस तथ्य से अनुसरण करता है कि, प्रत्येक के लिए <math>v \in H,</math>
:<math>v \in D(A^*)^\perp\ \Leftrightarrow\ (0,v) \in G^\text{cl}(A),</math>
:<math>v \in D(A^*)^\perp\ \Leftrightarrow\ (0,v) \in G^\text{cl}(A),</math>
जो, बदले में, समानता की निम्नलिखित श्रृंखला के माध्यम से सिद्ध होता है:
जो, बदले में, समानता की निम्नलिखित श्रृंखला के माध्यम से सिद्ध होता है:
Line 117: Line 118:
\end{align}
\end{align}
</math>
</math>
===='''A<sup>**</sup> = A<sup>cl</sup>'''====
क्लोसर <math> A^\text{cl} </math> संकारक का <math>A</math> संकारक है जिसका ग्राफ है <math> G^\text{cl}(A) </math> यदि यह ग्राफ किसी फलन का प्रतिनिधित्व करता है। ऊपर के अनुसार, शब्द "फलन" को "संकारक" से बदला जा सकता है। आगे, <math> A^{**} = A^{\text{cl}},</math> मतलब है कि <math> G(A^{**}) = G^{\text{cl}}(A). </math>


 
इसे सिद्ध करने के लिए, इसे देखें <math>J^* = -J,</math> अर्थात<math> \langle Jx,y\rangle_{H \oplus H} = -\langle x,Jy\rangle_{H \oplus H},</math> हरएक के लिए <math>x,y \in H \oplus H.</math> वास्तव में,
===== ए{{sup|**}} = ए{{sup|cl}}==
समापन <math> A^\text{cl} </math> एक ऑपरेटर का <math>A</math> ऑपरेटर है जिसका ग्राफ है <math> G^\text{cl}(A) </math> यदि यह ग्राफ किसी फ़ंक्शन का प्रतिनिधित्व करता है। ऊपर के अनुसार, शब्द फ़ंक्शन को ऑपरेटर से बदला जा सकता है। आगे, <math> A^{**} = A^{\text{cl}},</math> मतलब है कि <math> G(A^{**}) = G^{\text{cl}}(A). </math>
इसे साबित करने के लिए, इसे देखें <math>J^* = -J,</math> अर्थात। <math> \langle Jx,y\rangle_{H \oplus H} = -\langle x,Jy\rangle_{H \oplus H},</math> हरएक के लिए <math>x,y \in H \oplus H.</math> वास्तव में,
:<math>
:<math>
\begin{align}
\begin{align}
Line 131: Line 131:
\end{align}
\end{align}
</math>
</math>
विशेष रूप से, प्रत्येक के लिए <math>y \in H \oplus H</math> और हर उपक्षेत्र <math> V \subseteq H \oplus H,</math> <math>y \in (JV)^\perp</math> अगर और केवल अगर <math>Jy \in V^\perp.</math> इस प्रकार, <math> J[(JV)^\perp] = V^\perp </math> और <math> [J[(JV)^\perp]]^\perp = V^\text{cl}.</math> स्थानापन्न <math> V = G(A),</math> प्राप्त <math> G^\text{cl}(A) = G(A^{**}).</math>
विशेष रूप से, प्रत्येक के लिए <math>y \in H \oplus H</math> और हर उपक्षेत्र <math> V \subseteq H \oplus H,</math> <math>y \in (JV)^\perp</math> यदि और केवल यदि <math>Jy \in V^\perp.</math> इस प्रकार, <math> J[(JV)^\perp] = V^\perp </math> और <math> [J[(JV)^\perp]]^\perp = V^\text{cl}.</math> स्थानापन्न <math> V = G(A),</math> प्राप्त <math> G^\text{cl}(A) = G(A^{**}).</math>
 
===='''A<sup>*</sup> = (A<sup>cl</sup>)<sup>*</sup>'''====
 
क्लोजेबल संकारक के लिए <math>A,</math> <math> A^* = \left(A^\text{cl}\right)^*, </math> मतलब है कि <math>G(A^*) = G\left(\left(A^\text{cl}\right)^*\right).</math> वास्तव में,
===== ए{{sup|*}} = (ए{{sup|cl}}){{sup|*}}==
एक बंद करने योग्य ऑपरेटर के लिए <math>A,</math> <math> A^* = \left(A^\text{cl}\right)^*, </math> मतलब है कि <math>G(A^*) = G\left(\left(A^\text{cl}\right)^*\right).</math> वास्तव में,
:<math>
:<math>
G\left(\left(A^\text{cl}\right)^*\right) = \left(JG^\text{cl}(A)\right)^\perp = \left(\left(JG(A)\right)^\text{cl}\right)^\perp = (JG(A))^\perp = G(A^*).
G\left(\left(A^\text{cl}\right)^*\right) = \left(JG^\text{cl}(A)\right)^\perp = \left(\left(JG(A)\right)^\text{cl}\right)^\perp = (JG(A))^\perp = G(A^*).
</math>
</math>
=== प्रति उदाहरण जहां आसन्न सघन रूप से परिभाषित नहीं है ===
=== प्रति उदाहरण जहां आसन्न सघन रूप से परिभाषित नहीं है ===
होने देना <math>H=L^2(\mathbb{R},l),</math> कहाँ <math>l</math> रैखिक माप है। मापने योग्य, परिबद्ध, गैर-समान शून्य फ़ंक्शन का चयन करें <math>f \notin L^2,</math> और उठाओ <math>\varphi_0 \in L^2 \setminus \{0\}.</math> परिभाषित करना
मान लेना <math>H=L^2(\mathbb{R},l),</math> जहाँ <math>l</math> रैखिक माप है। मापने योग्य, परिबद्ध, गैर-समान शून्य फलन का चयन करें <math>f \notin L^2,</math> और चयन करना <math>\varphi_0 \in L^2 \setminus \{0\}.</math> परिभाषित करना


:<math>A \varphi = \langle f,\varphi\rangle \varphi_0.</math>
:<math>A \varphi = \langle f,\varphi\rangle \varphi_0.</math>
यह इस प्रकार है कि <math>D(A) = \{\varphi \in L^2 \mid \langle f,\varphi\rangle \neq \infty\}.</math> उपस्थान <math>D(A)</math> सभी शामिल हैं <math>L^2</math> कॉम्पैक्ट समर्थन के साथ काम करता है। तब से <math>\mathbf{1}_{[-n,n]} \cdot \varphi\ \stackrel{L^2}{\to}\ \varphi,</math> <math>A</math> सघन रूप से परिभाषित है। हरएक के लिए <math>\varphi \in D(A)</math> और <math>\psi \in D(A^*),</math>
यह इस प्रकार है कि <math>D(A) = \{\varphi \in L^2 \mid \langle f,\varphi\rangle \neq \infty\}.</math> उपस्थान <math>D(A)</math> सभी सम्मिलित हैं <math>L^2</math> कॉम्पैक्ट समर्थन के साथ काम करता है। तब से <math>\mathbf{1}_{[-n,n]} \cdot \varphi\ \stackrel{L^2}{\to}\ \varphi,</math> <math>A</math> सघन रूप से परिभाषित है। हरएक के लिए <math>\varphi \in D(A)</math> और <math>\psi \in D(A^*),</math>
:<math>\langle \varphi, A^*\psi \rangle = \langle A\varphi, \psi \rangle = \langle \langle f,\varphi \rangle\varphi_0, \psi \rangle = \langle f,\varphi \rangle\cdot \langle \varphi_0, \psi \rangle = \langle \varphi, \langle \varphi_0, \psi \rangle f\rangle. </math>
:<math>\langle \varphi, A^*\psi \rangle = \langle A\varphi, \psi \rangle = \langle \langle f,\varphi \rangle\varphi_0, \psi \rangle = \langle f,\varphi \rangle\cdot \langle \varphi_0, \psi \rangle = \langle \varphi, \langle \varphi_0, \psi \rangle f\rangle. </math>
इस प्रकार, <math>A^* \psi = \langle \varphi_0, \psi \rangle f.</math> आसन्न ऑपरेटर की परिभाषा की आवश्यकता है <math>\mathop{\text{Im}}A^* \subseteq H=L^2.</math> तब से <math>f \notin L^2,</math> यह तभी संभव है जब <math>\langle \varphi_0, \psi \rangle= 0.</math> इस कारण से, <math>D(A^*) = \{\varphi_0\}^\perp.</math> इस तरह, <math>A^*</math> सघन रूप से परिभाषित नहीं है और समान रूप से शून्य पर है <math>D(A^*).</math> नतीजतन, <math>A</math> बंद करने योग्य नहीं है और इसका कोई दूसरा जोड़ नहीं है <math>A^{**}.</math>
इस प्रकार, <math>A^* \psi = \langle \varphi_0, \psi \rangle f.</math> आसन्न संकारक की परिभाषा की आवश्यकता है <math>\mathop{\text{Im}}A^* \subseteq H=L^2.</math> तब से <math>f \notin L^2,</math> यह तभी संभव है जब <math>\langle \varphi_0, \psi \rangle= 0.</math> इस कारण से, <math>D(A^*) = \{\varphi_0\}^\perp.</math> इस तरह, <math>A^*</math> सघन रूप से परिभाषित नहीं है और समान रूप से शून्य पर है <math>D(A^*).</math> परिणाम स्वरुप, <math>A</math> क्लोजेबल नहीं है और इसका कोई दूसरा संलग्न नहीं है <math>A^{**}.</math>
 
== हर्मिटियन संकारक ==
 
परिबद्ध संकारक {{math|''A'' : ''H'' → ''H''}} को हर्मिटियन या [[स्व-आसन्न ऑपरेटर|स्व-आसन्न संकारक]] कहा जाता है यदि
== हर्मिटियन ऑपरेटर ==
एक बंधा हुआ ऑपरेटर {{math|''A'' : ''H'' → ''H''}} को हर्मिटियन या [[स्व-आसन्न ऑपरेटर]] कहा जाता है | सेल्फ-एडज्वाइंट अगर
:<math>A = A^*</math>
:<math>A = A^*</math>
जो बराबर है
जो बराबर है
:<math>\langle Ax , y \rangle = \langle x , A y \rangle \mbox{ for all } x, y \in H.</math><ref>{{harvnb|Reed|Simon|2003|pp=187}}; {{harvnb|Rudin|1991|loc=§12.11}}</ref>
:<math>\langle Ax , y \rangle = \langle x , A y \rangle \mbox{ for all } x, y \in H.</math><ref>{{harvnb|Reed|Simon|2003|pp=187}}; {{harvnb|Rudin|1991|loc=§12.11}}</ref>
कुछ अर्थों में, ये ऑपरेटर [[वास्तविक संख्या]]ओं की भूमिका निभाते हैं (अपने स्वयं के जटिल संयुग्म के बराबर होते हैं) और एक वास्तविक सदिश स्थान बनाते हैं। वे क्वांटम यांत्रिकी में वास्तविक-मूल्यवान वेधशालाओं के मॉडल के रूप में काम करते हैं। पूर्ण इलाज के लिए सेल्फ-एडज्वाइंट ऑपरेटर्स पर लेख देखें।
कुछ अर्थों में, ये संकारक [[वास्तविक संख्या]]ओं की भूमिका निभाते हैं (अपने स्वयं के "जटिल संयुग्म" के बराबर होते हैं) और वास्तविक सदिश समष्टि बनाते हैं। वे क्वांटम यांत्रिकी में वास्तविक-मान प्रेक्षणीय के मॉडल के रूप में काम करते हैं। पूर्ण निरूपण के लिए स्व-आसन्न संकारक पर लेख देखें।


== एंटीलीनियर ऑपरेटरों के संयोजन ==
== एंटीलीनियर संकारक के संयोजन ==
एक एंटीलाइनर मानचित्र के लिए जटिल संयुग्मन की भरपाई के लिए आसन्न की परिभाषा को समायोजित करने की आवश्यकता है। एंटीलीनियर ऑपरेटर का एक सहायक ऑपरेटर {{mvar|A}} एक जटिल हिल्बर्ट स्थान पर {{mvar|H}} एक एंटीलीनियर ऑपरेटर है {{math|''A''<sup>∗</sup> : ''H'' → ''H''}} संपत्ति के साथ:
एंटीलाइनर मानचित्र के लिए जटिल संयुग्मन की भरपाई के लिए आसन्न की परिभाषा को समायोजित करने की आवश्यकता है। एंटीलीनियर संकारक का संलग्न संकारक {{mvar|A}} जटिल हिल्बर्ट समष्टि पर {{mvar|H}} एंटीलीनियर संकारक है {{math|''A''<sup>∗</sup> : ''H'' → ''H''}} गुण के साथ:


: <math>\langle Ax , y \rangle = \overline{\left\langle x , A^* y \right\rangle} \quad \text{for all } x, y \in H.</math>
: <math>\langle Ax , y \rangle = \overline{\left\langle x , A^* y \right\rangle} \quad \text{for all } x, y \in H.</math>
 
== अन्य संलग्न ==
 
== अन्य जोड़ ==
समीकरण
समीकरण
: <math>\langle Ax , y \rangle = \left\langle x, A^* y \right\rangle</math>
: <math>\langle Ax , y \rangle = \left\langle x, A^* y \right\rangle</math>
औपचारिक रूप से [[श्रेणी सिद्धांत]] में आसन्न फ़ैक्टरों के जोड़े के परिभाषित गुणों के समान है, और यही वह जगह है जहाँ से आसन्न फ़ैक्टरों को उनका नाम मिला।
औपचारिक रूप से [[श्रेणी सिद्धांत]] में आसन्न कारक के जोड़े के परिभाषित गुणों के समान है, और यही वह जगह है जहाँ से आसन्न कारक को उनका नाम मिला था।


== यह भी देखें ==
== यह भी देखें ==


* गणितीय अवधारणाएँ
* गणितीय अवधारणाएँ
** [[हर्मिटियन ऑपरेटर]]
** [[हर्मिटियन ऑपरेटर|हर्मिटियन संकारक]]
** नॉर्म (गणित)
** नॉर्म (गणित)
** एक रेखीय मानचित्र का स्थानांतरण # स्थानांतरण
** रेखीय मानचित्र का स्थानांतरण  
** संयुग्म स्थानान्तरण
** संयुग्म स्थानान्तरण
* भौतिक अनुप्रयोग
* भौतिक अनुप्रयोग
** [[ऑपरेटर (भौतिकी)]]
** [[ऑपरेटर (भौतिकी)|संकारक (भौतिकी)]]
**†-बीजगणित
**†-बीजगणित


Line 186: Line 178:
* {{Rudin Walter Functional Analysis|edition=2}} <!-- {{sfn | Rudin | 1991 | p=}} -->
* {{Rudin Walter Functional Analysis|edition=2}} <!-- {{sfn | Rudin | 1991 | p=}} -->


{{Functional analysis}}
{{DEFAULTSORT:Hermitian Adjoint}}
{{Hilbert space}}
 
{{DEFAULTSORT:Hermitian Adjoint}}[[Category: ऑपरेटर सिद्धांत]]
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 18/04/2023|Hermitian Adjoint]]
[[Category:Created On 18/04/2023]]
[[Category:Lua-based templates|Hermitian Adjoint]]
[[Category:Machine Translated Page|Hermitian Adjoint]]
[[Category:Pages with maths render errors|Hermitian Adjoint]]
[[Category:Pages with script errors|Hermitian Adjoint]]
[[Category:Templates Vigyan Ready|Hermitian Adjoint]]
[[Category:Templates that add a tracking category|Hermitian Adjoint]]
[[Category:Templates that generate short descriptions|Hermitian Adjoint]]
[[Category:Templates using TemplateData|Hermitian Adjoint]]
[[Category:ऑपरेटर सिद्धांत|Hermitian Adjoint]]

Latest revision as of 11:39, 3 May 2023

गणित में, विशेष रूप से संकारक सिद्धांत में, प्रत्येक रैखिक संकारक आंतरिक उत्पाद समष्टि पर हर्मिटियन संलग्न (या आसन्न) संकारक को परिभाषित करता है नियमानुसार उस समष्टि पर

जहाँ सदिश समष्टि पर आंतरिक उत्पाद है।

चार्ल्स हर्मिट के बाद आसन्न को हर्मिटियन संयुग्म या केवल हर्मिटियन [1]भी कहा जा सकता है। इसे अधिकांशतः द्वारा A निरूपित किया जाता है भौतिकी जैसे क्षेत्रों में, खासकर जब क्वांटम यांत्रिकी में ब्रा-केट नोटेशन के संयोजन के साथ प्रयोग किया जाता है। परिमित आयामों में जहां संकारक को आव्यूह (गणित) द्वारा दर्शाया जाता है, हर्मिटियन संलग्न संयुग्मित परिवर्त (जिसे हर्मिटियन परिवर्त के रूप में भी जाना जाता है) द्वारा दिया जाता है।

आसन्न संकारक की उपरोक्त परिभाषा शब्दशः हिल्बर्ट समष्टि पर बाध्य संकारक तक फैली हुई है। इस परिभाषा को आगे बढ़ाया गया है जिससे कि असीमित सघन रूप से परिभाषित संकारक को सम्मिलित किया जा सके, जिसका प्रांत टोपोलॉजिकल रूप से सघन (टोपोलॉजी) है - लेकिन जरूरी नहीं कि इसके बराबर हो -

अनौपचारिक परिभाषा

रेखीय मानचित्र पर हिल्बर्ट रिक्त समष्टि के बीच विचार करें। किसी भी विवरण का ध्यान रखे बिना, आसन्न संकारक (ज्यादातर स्थितियों में विशिष्ट रूप से परिभाषित) रैखिक संकारक है को पूरा करने

जहाँ हिल्बर्ट समष्टि में आंतरिक उत्पाद है, जो पहले निर्देशांक में रेखीय है और दूसरे निर्देशांक में प्रतिरैखिक है। विशेष मामले पर ध्यान दें जहां दोनों हिल्बर्ट रिक्त समष्टि समान हैं और उस हिल्बर्ट समष्टि पर संकारक है।

जब कोई दोहरी जोड़ी के लिए आंतरिक उत्पाद का विक्रय करता है, तो संकारक के आसन्न, जिसे परिवर्त भी कहा जाता है को परिभाषित कर सकता है , जहाँ समान मानदंड (गणित) के साथ बनच समष्टि हैं . यहां (फिर से किसी तकनीकी पर विचार नहीं करते हुए), इसके संलग्न संकारक को इस रूप में परिभाषित किया गया है साथ में

अर्थात, के लिए .

ध्यान दें कि हिल्बर्ट समष्टि समायोजन में उपरोक्त परिभाषा वास्तव में बनच समष्टि केस का एक अनुप्रयोग है जब कोई हिल्बर्ट समष्टि को उसके दोहरे समष्टि से पहचानता है। तब यह स्वाभाविक ही है कि हम संकारक का आसन्न भी प्राप्त कर सकते हैं , जहाँ एक हिल्बर्ट समष्टि है और बनच समष्टि है। दोहरे को तब परिभाषित किया जाता है साथ ऐसा है कि

बनच रिक्त समष्टि के बीच असीमित संकारक के लिए परिभाषा

मान लेना बनच रिक्त समष्टि है। कल्पना करना और , और मान लीजिए (संभवतः अबाधित) रैखिक संकारक है जो सघन रूप से परिभाषित संकारक है (अर्थात, , में सघन है), तत्पश्चात् इसका सहसंयोजक निम्नानुसार परिभाषित किया गया है। प्रांत है

.

अब यादृच्छिक के लिए लेकिन तय है हम सेट करते हैं के साथ । विकल्प से और की परिभाषा, f (समान रूप से) निरंतर के रूप में जैसा है। फिर हैन-बनाक प्रमेय द्वारा या वैकल्पिक रूप से निरंतरता द्वारा विस्तार के माध्यम से यह विस्तार उत्पन्न करता है , बुलाया सभी पर परिभाषित । ध्यान दें कि यह तकनीकी बाद में प्राप्त करने के लिए आवश्यक है संकारक के रूप में के अतिरिक्त यह भी टिप्पणी करें कि इसका मतलब यह नहीं है सभी पर बढ़ाया जा सकता है लेकिन विस्तार केवल विशिष्ट तत्वों के लिए काम करता है .

अब हम के आसन्न को परिभाषित कर सकते हैं जैसा

मौलिक परिभाषित पहचान इस प्रकार है

के लिए

हिल्बर्ट रिक्त समष्टि के बीच बाध्य संकारक के लिए परिभाषा

कल्पना करना H आंतरिक उत्पाद के साथ जटिल हिल्बर्ट समष्टि है। सतत रैखिक संकारक A : HH पर विचार करें (रैखिक संकारक के लिए, निरंतरता एक बाध्य संकारक होने के बराबर है)। तब A का संलग्न निरंतर रैखिक संकारक है A : HH संतोषजनक है

इस संकारक का अस्तित्व और विशिष्टता रिज़्ज़ प्रतिनिधित्व प्रमेय से अनुसरण करती है।[2]

इसे वर्ग आव्यूह के आसन्न आव्यूह के सामान्यीकरण के रूप में देखा जा सकता है जिसमें मानक जटिल आंतरिक उत्पाद से संबंधित समान गुण होती है।

गुण

परिबद्ध संकारक के हर्मिटियन संलग्न के निम्नलिखित गुण तत्काल हैं:[2]

  1. इन्वोल्यूशन (गणित): A∗∗ = A
  2. यदि A उलटा है, तो ऐसा है A, साथ
  3. एंटी-लीनियरिटी :
    • (A + B) = A + B
    • (λA) = λA, जहाँ λ सम्मिश्र संख्या λ के सम्मिश्र संयुग्म को दर्शाता है
  4. " प्रति वितरण": (AB) = BA

यदि संकारक मानदंड A को परिभाषित करते हैं

तब

[2]

इसके अतिरिक्त,

[2]

एक का कहना है कि मानदंड जो इस शर्त को पूरा करता है, वह एक "सबसे बड़े मान" की तरह व्यवहार करता है, जो स्व-संलग्न संकारक के मामले से बहिर्गमन करता है।

एक जटिल हिल्बर्ट समष्टि H पर परिबद्ध रैखिक संकारक का सेट, साथ में आसन्न ऑपरेशन और संकारक मानदंड के साथ C*-बीजगणित के आदिप्ररूप (प्रोटोटाइप) का निर्माण करता है

हिल्बर्ट रिक्त समष्टि के बीच सघन परिभाषित असीमित संकारक का संयोजन

परिभाषा

आंतरिक उत्पाद पहले तर्क में रैखिक हो। सघन रूप से परिभाषित संकारक A जटिल हिल्बर्ट समष्टि से H अपने आप में रैखिक संकारक है जिसका प्रांत D(A) की सघन रैखिक उपसमष्टि है H और जिनके मान H निहित हैं [3] परिभाषा के अनुसार, प्रांत D(A) इसके बगल में A सभी का समुच्चय है yH जिसके लिए zH संतुष्टि देने वाला है

घनत्व के कारण और रिज प्रतिनिधित्व प्रमेय, विशिष्ट रूप से परिभाषित किया गया है, और, परिभाषा के अनुसार, [4]

गुण 1.-5 किसी फलन के प्रांत और कोडोमेन के बारे में उचित खंड के साथ है। उदाहरण के लिए, अंतिम गुण अब बताता है कि (AB) का विस्तार है BA यदि A, B और AB सघन रूप से परिभाषित संकारक हैं।[5]

ker A*=(im A)

हर एक के लिए रैखिक कार्यात्मक समान रूप से शून्य है, और इसलिए

इसके विपरीत, धारणा है कि कार्यात्मक कारण बनता है समान रूप से शून्य है। चूंकि कार्यात्मक स्पष्ट रूप से बंधा हुआ है, इसकी परिभाषा विश्वास दिलाता है तथ्य यह है कि, प्रत्येक के लिए पता चलता है कि मान लें कि सघन है।

यह गुण दर्शाती है स्थैतिक रूप से बंद उप-समष्टि तब भी है जब क्या नहीं है।

ज्यामितीय व्याख्या

यदि और हिल्बर्ट रिक्त समष्टि हैं, फिर आंतरिक उत्पाद के साथ हिल्बर्ट समष्टि है

जहाँ और

मान लेना सिम्प्लेक्टिक मैट्रिक्स हो, अर्थात फिर ग्राफ

का का लंबकोणीय पूरक है

अभिकथन तुल्यता से अनुसरण करता है

और

परिणाम

A* बंद है

सकारक बंद है यदि ग्राफ स्थलाकृतिक रूप से बंद है ग्राफ आसन्न संकारक की उपसमष्टि का लांबिक पूरक है, और इसलिए बंद है।

A* सघन रूप से परिभाषित है ⇔ A क्लोजेबल है

सकारक टोपोलॉजिकल क्लोजर होने पर क्लोजेबल है ग्राफ का फलन का ग्राफ है। तब से (बंद) रेखीय उपसमष्टि है, शब्द "फलन" को "रेखीय संकारक" से बदला जा सकता है। इसी कारण से, क्लोजेबल है यदि और केवल यदि जब तक

संलग्न सघन रूप से परिभाषित किया गया है यदि और केवल यदि क्लोजेबल है। यह इस तथ्य से अनुसरण करता है कि, प्रत्येक के लिए

जो, बदले में, समानता की निम्नलिखित श्रृंखला के माध्यम से सिद्ध होता है:

A** = Acl

क्लोसर संकारक का संकारक है जिसका ग्राफ है यदि यह ग्राफ किसी फलन का प्रतिनिधित्व करता है। ऊपर के अनुसार, शब्द "फलन" को "संकारक" से बदला जा सकता है। आगे, मतलब है कि

इसे सिद्ध करने के लिए, इसे देखें अर्थात हरएक के लिए वास्तव में,

विशेष रूप से, प्रत्येक के लिए और हर उपक्षेत्र यदि और केवल यदि इस प्रकार, और स्थानापन्न प्राप्त

A* = (Acl)*

क्लोजेबल संकारक के लिए मतलब है कि वास्तव में,

प्रति उदाहरण जहां आसन्न सघन रूप से परिभाषित नहीं है

मान लेना जहाँ रैखिक माप है। मापने योग्य, परिबद्ध, गैर-समान शून्य फलन का चयन करें और चयन करना परिभाषित करना

यह इस प्रकार है कि उपस्थान सभी सम्मिलित हैं कॉम्पैक्ट समर्थन के साथ काम करता है। तब से सघन रूप से परिभाषित है। हरएक के लिए और

इस प्रकार, आसन्न संकारक की परिभाषा की आवश्यकता है तब से यह तभी संभव है जब इस कारण से, इस तरह, सघन रूप से परिभाषित नहीं है और समान रूप से शून्य पर है परिणाम स्वरुप, क्लोजेबल नहीं है और इसका कोई दूसरा संलग्न नहीं है

हर्मिटियन संकारक

परिबद्ध संकारक A : HH को हर्मिटियन या स्व-आसन्न संकारक कहा जाता है यदि

जो बराबर है

[6]

कुछ अर्थों में, ये संकारक वास्तविक संख्याओं की भूमिका निभाते हैं (अपने स्वयं के "जटिल संयुग्म" के बराबर होते हैं) और वास्तविक सदिश समष्टि बनाते हैं। वे क्वांटम यांत्रिकी में वास्तविक-मान प्रेक्षणीय के मॉडल के रूप में काम करते हैं। पूर्ण निरूपण के लिए स्व-आसन्न संकारक पर लेख देखें।

एंटीलीनियर संकारक के संयोजन

एंटीलाइनर मानचित्र के लिए जटिल संयुग्मन की भरपाई के लिए आसन्न की परिभाषा को समायोजित करने की आवश्यकता है। एंटीलीनियर संकारक का संलग्न संकारक A जटिल हिल्बर्ट समष्टि पर H एंटीलीनियर संकारक है A : HH गुण के साथ:

अन्य संलग्न

समीकरण

औपचारिक रूप से श्रेणी सिद्धांत में आसन्न कारक के जोड़े के परिभाषित गुणों के समान है, और यही वह जगह है जहाँ से आसन्न कारक को उनका नाम मिला था।

यह भी देखें

संदर्भ

  1. Miller, David A. B. (2008). वैज्ञानिकों और इंजीनियरों के लिए क्वांटम यांत्रिकी. Cambridge University Press. pp. 262, 280.
  2. 2.0 2.1 2.2 2.3 Reed & Simon 2003, pp. 186–187; Rudin 1991, §12.9
  3. See unbounded operator for details.
  4. Reed & Simon 2003, p. 252; Rudin 1991, §13.1
  5. Rudin 1991, Thm 13.2
  6. Reed & Simon 2003, pp. 187; Rudin 1991, §12.11