समान कण: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Concept in quantum mechanics of perfectly substitutable particles}}{{Statistical mechanics|cTopic=[कण सांख्यिकी{{!}}कण सांख्यिकी]}} | {{Short description|Concept in quantum mechanics of perfectly substitutable particles}}{{Statistical mechanics|cTopic=[कण सांख्यिकी{{!}}कण सांख्यिकी]}} | ||
[[क्वांटम यांत्रिकी|परिमाण यांत्रिकी]] [[मेसन|प्रक्रिया]], समान [[कण]] (जिन्हें अप्रभेद्य या अविवेकी कण भी कहा जाता है) ऐसे कण होते हैं जिन्हें | [[क्वांटम यांत्रिकी|परिमाण यांत्रिकी]] [[मेसन|प्रक्रिया]], समान [[कण]] (जिन्हें अप्रभेद्य या अविवेकी कण भी कहा जाता है) ऐसे कण होते हैं, जिन्हें सिद्धांतिक रूप में भी एक दूसरे से अलग नहीं किया जा सकता है। समान कणों की प्रजातियों में [[प्राथमिक कण]] (जैसे [[इलेक्ट्रॉन|विद्युद अणु]]) एवं समग्र उप-परमाणु कण (जैसे [[परमाणु नाभिक]]) और साथ ही परमाणु और [[अणु]] सम्मिलित हैं, किन्तु यह इन तक ही सीमित नहीं हैं।अर्ध कण भी इसी प्रकार का व्यवहार करते हैं। चूंकि सभी ज्ञात अप्रभेद्य कण केवल परिमाण सीमा में उपस्थित हैं, कणों के सभी संभावित प्रकारों की कोई विस्तृत सूची नहीं है और न ही प्रयोज्यता की स्पष्ट सीमा है, जैसा कि कण सांख्यिकी परिमाण सांख्यिकी में पता लगाया गया है। | ||
समान कणों की दो मुख्य श्रेणियां हैं: बोसोन, जो परिमाण अवस्थाओं को साझा कर सकते हैं, और [[फर्मियन]], जो नहीं कर सकते (जैसा कि [[पाउली अपवर्जन सिद्धांत]] द्वारा वर्णित है) | समान कणों की दो मुख्य श्रेणियां हैं: बोसोन, जो परिमाण अवस्थाओं को साझा कर सकते हैं, और [[फर्मियन]], जो परिमाण अवस्थाओं को साझा नहीं कर सकते (जैसा कि [[पाउली अपवर्जन सिद्धांत]] द्वारा वर्णित है) है। फोटॉन, ग्लूऑन, [[फोनन]], [[हीलियम -4]] (गंधहीन वाष्प) और नाभिक यह सभी मेसॉन [[बोसॉन]] के उदाहरण हैं। विद्युद अणु, [[ न्युट्रीनो |न्युट्रीनो]] , [[क्वार्क]], [[प्रोटॉन]], [[न्यूट्रॉन]] और [[हीलियम -3]] (गंधहीन वाष्प) यह सभी नाभिक फ़र्मियन के उदाहरण हैं। | ||
तथ्य यह है कि कण समान हो सकते हैं, [[सांख्यिकीय यांत्रिकी]] में महत्वपूर्ण परिणाम हैं, जहां गणना संभाव्यता | तथ्य यह है कि कण समान हो सकते हैं, [[सांख्यिकीय यांत्रिकी]] में महत्वपूर्ण परिणाम हैं, जहां गणना संभाव्यता सिद्धांतिक तर्कों पर निर्भर करती है, जो इस बात के प्रति संवेदनशील हैं कि अध्ययन की जा रही वस्तुएं समान हैं या नहीं। परिणाम स्वरुप , समान कण अलग-अलग कणों से स्पष्ट रूप से भिन्न सांख्यिकीय व्यवहार प्रदर्शित करते हैं। उदाहरण के लिए, गिब्स के गिब्स विरोधाभास एवं मिश्रण विरोधाभास के समाधान के रूप में कणों की अविभाज्यता को प्रस्तावित किया गया है। | ||
== कणों के बीच भेद == | == कणों के बीच भेद == | ||
कणों के बीच भेद करने की दो विधियाँ हैं। पहली विधि कणों के आंतरिक भौतिक गुणों, जैसे [[द्रव्यमान]], विद्युत आवेश और [[स्पिन (भौतिकी)]] (चक्रण) में अंतर पर निर्भर करती है। यदि मतभेद | कणों के बीच भेद करने की दो विधियाँ हैं। पहली विधि कणों के आंतरिक भौतिक गुणों, जैसे [[द्रव्यमान]], विद्युत आवेश और [[स्पिन (भौतिकी)]] (चक्रण) में अंतर पर निर्भर करती है। यदि मतभेद उपस्थित हैं, तो संबंधित गुणों को मापकर कणों के बीच अंतर करना संभव है। चूंकि, यह अनुभवजन्य तथ्य है कि एक ही प्रजाति के सूक्ष्म कणों में पूरी तरह से समान भौतिक गुण होते हैं। उदाहरण के लिए, ब्रह्माण्ड के प्रत्येक विद्युद अणु में बिल्कुल समान विद्युत आवेश होता है; यही कारण है कि प्राथमिक प्रभार जैसी किसी चीज के बारे में बात करना संभव है। | ||
तथापि कणों के समान भौतिक गुण हों, कणों के बीच अंतर करने के लिए दूसरी विधि बनी रहती है, इसमे प्रत्येक कण के प्रक्षेपवक्र को मार्ग करना है। जब तक प्रत्येक कण की स्थिति को अनंत स्पष्ट के साथ मापा जा सकता है (यहां तक कि जब कण टकराते हैं), तब तक कोई अस्पष्टता नहीं होगी कि यह कौन सा कण है। | |||
दूसरे दृष्टिकोण के साथ समस्या यह है कि यह परिमाण यांत्रिकी के सिद्धांतों के विपरीत है। परिमाण सिद्धांत के अनुसार, माप के बीच की अवधि के | दूसरे दृष्टिकोण के साथ समस्या यह है, कि यह परिमाण यांत्रिकी के सिद्धांतों के विपरीत है। परिमाण सिद्धांत के अनुसार, माप के बीच की अवधि के समयकणों की निश्चित स्थिति नहीं होती है। इसके अतिरिक्त, वे [[ तरंग क्रिया |तरंग क्रिया]] द्वारा नियंत्रित होते हैं जो प्रत्येक स्थिति में कण को खोजने की संभावना देते हैं। जैसे-जैसे समय बीतता है, तरंग के कार्य फैलते हैं और अधिव्यापन होते हैं। एक बार ऐसा हो जाने के बाद, माप में यह निर्धारित करना असंभव हो जाता है कि कौन से कण की स्थिति पहले मापी गई स्थिति के अनुरूप है। कणों को तब अप्रभेद्य कहा जाता है। | ||
== परिमाण यांत्रिक विवरण == | == परिमाण यांत्रिक विवरण == | ||
=== सममित और विषम स्थिति === | === सममित और विषम स्थिति === | ||
[[Image:Asymmetricwave2.png|right|thumb|एक अनंत वर्ग कुएं की क्षमता में (फर्मियोनिक) 2-कण अवस्था के लिए | [[Image:Asymmetricwave2.png|right|thumb|एक अनंत वर्ग कुएं की क्षमता में (फर्मियोनिक) 2-कण अवस्था के लिए प्रतिसममित तरंग कार्य।]] | ||
[[Image:Symmetricwave2.png|right|thumb|एक अनंत वर्ग कुएं की क्षमता में (बोसोनिक) 2-कण अवस्था के लिए सममित तरंग।]]परिमाण यांत्रिकी के गणितीय सूत्रीकरण पर लेख में विकसित औपचारिकता का उपयोग करते हुए उपरोक्त चर्चा को ठोस बनाने के लिए | [[Image:Symmetricwave2.png|right|thumb|एक अनंत वर्ग कुएं की क्षमता में (बोसोनिक) 2-कण अवस्था के लिए सममित तरंग।]]परिमाण यांत्रिकी के गणितीय सूत्रीकरण पर लेख में विकसित औपचारिकता का उपयोग करते हुए उपरोक्त चर्चा को ठोस बनाने के लिए उदाहरण निम्नलिखित है। | ||
चलो n एकल-कण अवस्थाओं को निर्दिष्ट करने के लिए (असतत) परिमाण संख्याओं के | चलो n एकल-कण अवस्थाओं को निर्दिष्ट करने के लिए (असतत) परिमाण संख्याओं के पूर्ण समुच्चय को निरूपित करते हैं (उदाहरण के लिए, एक वर्ग समस्या में कण के लिए, n को तरंग कार्य के परिमाणित तरंग संवाहक के रूप में लें।) सरलता के लिए, प्रणाली पर विचार करें। दो कणों की जो एक दूसरे के साथ संभाषण नहीं कर रहे हैं। मान लीजिए कि एक कण n<sub>1</sub> अवस्था में है , और दूसरा कण n<sub>2</sub> में है . प्रणाली की परिमाण स्थिति को अभिव्यक्ति द्वारा निरूपित किया जाता है | ||
:<math> | n_1 \rang | n_2 \rang </math> | :<math> | n_1 \rang | n_2 \rang </math> | ||
जहां | जहां प्रदिश उत्पाद का क्रम मायने रखता है (यदि <math> | n_2 \rang | n_1 \rang </math>, तो कण एक स्थिति n<sub>2</sub> पर अधिकृत कर लेता है जबकि कण दो स्थिति n<sub>1</sub> पर अधिकृत कर लेता है। व्यक्तिगत अंतरालक से संयुक्त प्रणाली का यह [[प्रदिश उत्पाद]] स्थान के लिए आधार बनाने का प्रामाणिक प्रणाली है <math>H \otimes H</math>। यह अभिव्यक्ति अलग-अलग कणों के लिए मान्य है, चूंकि, यह अप्रभेद्य कणों के लिए उपयुक्त नहीं है <math> |n_1\rang |n_2\rang</math> और <math>|n_2\rang |n_1\rang </math> कणों के आदान-प्रदान के परिणामस्वरूप सामान्यतः अलग-अलग अवस्थाएँ होती हैं। | ||
* कण | * कण एक n<sub>1</sub> पर अधिकृत कर लेता है स्थिति और कण दो n<sub>2</sub> पर अधिकृत कर लेता है। | ||
दो अवस्थाएँ शारीरिक रूप से केवल तभी समतुल्य होती हैं, जब वे | दो अवस्थाएँ शारीरिक रूप से केवल तभी समतुल्य होती हैं, जब वे जटिल चरण कारक द्वारा अधिक से अधिक भिन्न हों। दो अप्रभेद्य कणों के लिए, कण विनिमय से पहले की अवस्था विनिमय के बाद की अवस्था के भौतिक रूप से समतुल्य होनी चाहिए, इसलिए ये दोनों अवस्थाएँ जटिल चरण कारक द्वारा भिन्न होती हैं। यह तथ्य बताता है कि दो अप्रभेद्य (और गैर-अंतःक्रियात्मक) कणों के लिए एक स्थिति निम्नलिखित दो संभावनाओं द्वारा दी गई है: <ref>{{Cite web|url=http://www.tcm.phy.cam.ac.uk/~pdh1001/thesis/node14.html|title = 2.3 Identical particles}}</ref><ref>{{harvtxt|Tuckerman|2010|p=385}}</ref><ref>{{Cite book|title=परिचयात्मक क्वांटम यांत्रिकी|last=Liboff|first=Richard|publisher=Addison-Wesley|year=2003|isbn=978-0805387148|pages=597}}</ref> | ||
:<math> |n_1\rang |n_2\rang \pm |n_2\rang |n_1\rang </math> | :<math> |n_1\rang |n_2\rang \pm |n_2\rang |n_1\rang </math> | ||
पदों जहां यह | पदों मे जहां यह सारांश है सममित के रूप में जाना जाता है, जबकि अंतर को सम्मिलित करने वाले पदों को प्रतिसममित कहा जाता है। अधिक पूरी तरह से, सममित पदों का रूप निम्म है | ||
:<math> |n_1, n_2; S\rang \equiv \mbox{constant} \times \bigg( |n_1\rang |n_2\rang + |n_2\rang |n_1\rang \bigg) </math> | :<math> |n_1, n_2; S\rang \equiv \mbox{constant} \times \bigg( |n_1\rang |n_2\rang + |n_2\rang |n_1\rang \bigg) </math> | ||
जबकि | जबकि प्रतिसममित पदों का रूप है | ||
:<math> |n_1, n_2; A\rang \equiv \mbox{constant} \times \bigg( |n_1\rang |n_2\rang - |n_2\rang |n_1\rang \bigg) </math> | :<math> |n_1, n_2; A\rang \equiv \mbox{constant} \times \bigg( |n_1\rang |n_2\rang - |n_2\rang |n_1\rang \bigg) </math> | ||
ध्यान दें कि यदि | ध्यान दें कि यदि n<sub>1</sub> और n<sub>2</sub> समान हैं, तो प्रतिसममित अभिव्यक्ति शून्य देता है, जो पद संवाहक नहीं हो सकता क्योंकि इसे सामान्यीकृत नहीं किया जा सकता है। दूसरे शब्दों में, एक से अधिक समान कण एक प्रतिसममित स्थिति पर अधिकृत नहीं कर सकते (एक प्रतिसममित पद केवल एक कण द्वारा अधिकृत कर लिया जा सकता है)। इसे पाउली अपवर्जन सिद्धांत के रूप में जाना जाता है, और यह परमाणुओं के रासायनिक गुणों और पदार्थ की स्थिरता के पीछे मूलभूत कारण है। | ||
=== विनिमय समरूपता === | === विनिमय समरूपता === | ||
सममित और विषमतापूर्ण पदों का महत्व अंततः अनुभवजन्य साक्ष्य पर आधारित है। यह प्रकृति का | सममित और विषमतापूर्ण पदों का महत्व अंततः अनुभवजन्य साक्ष्य पर आधारित है। यह प्रकृति का तथ्य प्रतीत होता है कि समान कण मिश्रित समरूपता की अवस्थाओं पर अधिकृत नहीं करते हैं, जैसे कि | ||
:<math> |n_1, n_2; ?\rang = \mbox{constant} \times \bigg( |n_1\rang |n_2\rang + i |n_2\rang |n_1\rang \bigg) </math> | :<math> |n_1, n_2; ?\rang = \mbox{constant} \times \bigg( |n_1\rang |n_2\rang + i |n_2\rang |n_1\rang \bigg) </math> | ||
वास्तव में इस नियम का एक अपवाद है, जिस पर बाद में चर्चा की जाएगी। दूसरी ओर, यह दिखाया जा सकता है कि सममित और | वास्तव में इस नियम का एक अपवाद है, जिस पर बाद में चर्चा की जाएगी। दूसरी ओर, यह दिखाया जा सकता है कि सममित और प्रतिसममित स्थिति अर्थ में विशेष हैं। बहु-कण स्थिति की विशेष समरूपता की जांच करके उन्हें विनिमय समरूपता के रूप में जाना जाता है। | ||
विनिमय संक्रियक कहे जाने वाले रैखिक संक्रियक '' | विनिमय संक्रियक कहे जाने वाले रैखिक संक्रियक ''p'' को परिभाषित करें। जब यह दो पद सदिश के प्रदिश उत्पाद पर कार्य करता है, तो यह स्थिति सदिश के मूल्यों का आदान-प्रदान करता है: | ||
:<math>P \bigg(|\psi\rang |\phi\rang \bigg) \equiv |\phi\rang |\psi\rang </math> | :<math>P \bigg(|\psi\rang |\phi\rang \bigg) \equiv |\phi\rang |\psi\rang </math> | ||
P हर्मिटियन संकारक और एकात्मक संकारक दोनों है। क्योंकि यह एकात्मक है, इसे | P हर्मिटियन संकारक और एकात्मक संकारक दोनों है। क्योंकि यह एकात्मक है, इसे [[समरूपता (भौतिकी)]] के रूप में माना जा सकता है। इस समरूपता को कणों से जुड़े नामपत्रों के आदान-प्रदान के अनुसार समरूपता के रूप में वर्णित किया जा सकता है (अर्थात, एकल-कण हिल्बर्ट अंतरालक के लिए)। | ||
स्पष्ट रूप से, <math>P^2 = 1</math> (पहचान संचालक), इसलिए P के | स्पष्ट रूप से, <math>P^2 = 1</math> (पहचान संचालक), इसलिए P के अतिलक्षणिक अंतराल (अभिलक्षणिक मान ) +1 और -1 हैं। संबंधित [[अभिलक्षणिक सदिश]] सममित और प्रतिसममित पद हैं: | ||
:<math>P|n_1, n_2; S\rang = + |n_1, n_2; S\rang</math> | :<math>P|n_1, n_2; S\rang = + |n_1, n_2; S\rang</math> | ||
:<math>P|n_1, n_2; A\rang = - |n_1, n_2; A\rang</math> | :<math>P|n_1, n_2; A\rang = - |n_1, n_2; A\rang</math> | ||
दूसरे शब्दों में, सममित और | दूसरे शब्दों में, सममित और प्रतिसममित स्थिति अनिवार्य रूप से कण नामपत्र के आदान-प्रदान के अनुसार अपरिवर्तित होते हैं। हिल्बर्ट अंतराल में कहीं और घुमाए जाने के अतिरिक्त उन्हें केवल +1 या -1 के कारक से गुणा किया जाता है। यह इंगित करता है कि अप्रभेद्यता पर पहले की चर्चा के साथ कण नामपत्र का कोई भौतिक अर्थ नहीं है। | ||
यह याद किया जाएगा कि P हर्मिटियन है। | यह याद किया जाएगा कि P हर्मिटियन है। परिणाम स्वरुप , इसे प्रणाली के अवलोकन के रूप में माना जा सकता है। जिसका अर्थ है कि, सिद्धांतिक रूप में, पता लगाने के लिए माप किया जा सकता है कि कोई पद सममित या विषम है या नहीं। इसके अतिरिक्त, कणों की समानता इंगित करती है कि [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन (परिमाण यांत्रिकी)]] को सममित रूप में लिखा जा सकता है, जैसे कि | ||
:<math>H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + U(|x_1 - x_2|) + V(x_1) + V(x_2) </math> | :<math>H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + U(|x_1 - x_2|) + V(x_1) + V(x_2) </math> | ||
यह दिखाना संभव है कि ऐसे हैमिल्टन [[रूपान्तरण संबंध]] को संतुष्ट करते | यह दिखाना संभव है कि ऐसे हैमिल्टन [[रूपान्तरण संबंध]] को संतुष्ट करते हैं। | ||
:<math>\left[P, H\right] = 0</math> | :<math>\left[P, H\right] = 0</math> | ||
[[हाइजेनबर्ग चित्र]] के अनुसार, इसका अर्थ है कि P का मान गति का | [[हाइजेनबर्ग चित्र]] के अनुसार, इसका अर्थ है कि P का मान गति का स्थिरांक है। यदि परिमाण पद प्रारंभिक रूप से सममित ( प्रतिसममित) है, तो प्रणाली विकसित होने पर यह सममित ( प्रतिसममित) रहेगा। गणितीय रूप से, यह कहता है कि स्थितिसंवाहक p के दो अतिलक्षणिक अंतराल में से एक तक ही सीमित है, और पूरे हिल्बर्ट अंतराल में कार्यक्षेत्र करने की अनुमति नहीं है। इस प्रकार, उस अतिलक्षणिक अंतराल को प्रणाली के वास्तविक हिल्बर्ट अंतराल के रूप में भी माना जा सकता है। [[फॉक स्पेस|फॉक अंतराल]] की परिभाषा के पीछे यही विचार है। | ||
=== फर्मियंस (उप-परमाणु कण) और बोसोन === | === फर्मियंस (उप-परमाणु कण) और बोसोन === | ||
समरूपता या विषमता का चुनाव कण की प्रजातियों द्वारा निर्धारित किया जाता है। उदाहरण के लिए, फोटॉनों या हीलियम (गंधहीन वाष्प)-4 परमाणुओं का वर्णन करते समय सममित अवस्थाओं का | समरूपता या विषमता का चुनाव कण की प्रजातियों द्वारा निर्धारित किया जाता है। उदाहरण के लिए, फोटॉनों या हीलियम (गंधहीन वाष्प)-4 परमाणुओं का वर्णन करते समय सममित अवस्थाओं का सदैव उपयोग किया जाना चाहिए, और विद्युद अणुों या प्रोटॉनों का वर्णन करते समय प्रतिसममित अवस्थाओं का उपयोग किया जाना चाहिए। | ||
सममित अवस्था प्रदर्शित करने वाले कण बोसोन कहलाते हैं। कई समान बोसोन से बनी प्रणालियों के सांख्यिकीय गुणों के लिए सममित पदों की प्रकृति के महत्वपूर्ण परिणाम हैं। इन सांख्यिकीय गुणों को बोस-आइंस्टीन सांख्यिकी के रूप में वर्णित किया गया है। | सममित अवस्था प्रदर्शित करने वाले कण बोसोन कहलाते हैं। कई समान बोसोन से बनी प्रणालियों के सांख्यिकीय गुणों के लिए सममित पदों की प्रकृति के महत्वपूर्ण परिणाम हैं। इन सांख्यिकीय गुणों को बोस-आइंस्टीन सांख्यिकी के रूप में वर्णित किया गया है। | ||
वे कण जो प्रतिसममित अवस्थाएँ प्रदर्शित करते हैं, उप-परमाणु कण कहलाते हैं। प्रति सममिति पाउली बहिष्करण सिद्धांत को | वे कण जो प्रतिसममित अवस्थाएँ प्रदर्शित करते हैं, उप-परमाणु कण कहलाते हैं। प्रति सममिति पाउली बहिष्करण सिद्धांत को उत्पन्न करती है, जो समान परिमाण अवस्था को साझा करने से समान फर्मों को मना करती है। फर्मी-डिराक सांख्यिकी द्वारा कई समान उप-परमाणु कण की प्रणालियों का वर्णन किया गया है। | ||
[[पैरास्टैटिस्टिक्स]] अनुवृत्त सांख्यिकी) भी संभव हैं। | [[पैरास्टैटिस्टिक्स]] (अनुवृत्त सांख्यिकी) भी संभव हैं। | ||
कुछ द्वि-आयामी प्रणालियों में, मिश्रित समरूपता हो सकती है। इन | कुछ द्वि-आयामी प्रणालियों में, मिश्रित समरूपता हो सकती है। इन अन्य स्थानबद्ध कणों को किसी के रूप में जाना जाता है, और वे भिन्नात्मक आँकड़ों का पालन करते हैं। किसी भी प्रकार के अस्तित्व के लिए प्रायोगिक साक्ष्य [[क्वांटम हॉल प्रभाव|परिमाण महाकक्ष प्रभाव]] में उपस्थित है। एक घटना जो द्वि-आयामी विद्युदअणु वाष्पों में देखी गई है, जो [[मॉसफेट]] (धातु ऑक्साइड अर्धचालक क्षेत्र प्रभाव ट्रांजिस्टर) की व्युत्क्रम परत बनाती है। [[ऋणायन]] एक प्रकार का आँकड़ा है, जिसे चोटी के आँकड़ों के रूप में जाना जाता है, जो [[प्लवक]] के रूप में जाने जाने वाले कणों से जुड़े होते हैं। | ||
[[स्पिन-सांख्यिकी प्रमेय|चक्रण-सांख्यिकी प्रमेय]] समान कणों के विनिमय समरूपता को उनके | [[स्पिन-सांख्यिकी प्रमेय|चक्रण-सांख्यिकी प्रमेय]] समान कणों के विनिमय समरूपता को उनके चक्रण (भौतिकी) से संबंधित करता है। इसमें कहा गया है कि बोसोन में पूर्णांक चक्रण होता है, और फ़र्मियन में आधा-पूर्णांक चक्रण होता है, और किसी के पास भिन्नात्मक चक्रण होता है। | ||
=== एन (n) कण === | === एन (n) कण === | ||
उपरोक्त चर्चा | उपरोक्त चर्चा n कणों के स्थितियों में आसानी से सामान्यीकृत होती है। मान लीजिए कि परिमाण संख्या n वाले कण हैं n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>N</sub>. यदि कण बोसोन हैं, तो वे पूरी तरह से सममित स्थिति पर अधिकृत कर लेते हैं, जो ''किसी भी दो'' कण नामपत्र के आदान-प्रदान के अनुसार सममित है: | ||
:<math>|n_1 n_2 \cdots n_N; S\rang = \sqrt{\frac{\prod_n m_n!}{N!}} \sum_p \left|n_{p(1)}\right\rang \left|n_{p(2)}\right\rang \cdots \left|n_{p(N)}\right\rang </math> | :<math>|n_1 n_2 \cdots n_N; S\rang = \sqrt{\frac{\prod_n m_n!}{N!}} \sum_p \left|n_{p(1)}\right\rang \left|n_{p(2)}\right\rang \cdots \left|n_{p(N)}\right\rang </math> | ||
यहां, n तत्वों पर अभिनय करने वाले क्रम [[परिवर्तन]] | यहां, n तत्वों पर अभिनय करने वाले क्रम [[परिवर्तन]] p के अनुसार सभी अलग-अलग स्थिति में योग लिया जाता है। योग के लिए छोड़ा गया वर्गमूल [[सामान्यीकरण स्थिरांक]] है। मात्रा M<sub>n</sub> कण अवस्था में प्रत्येक एकल-कण अवस्था n प्रकट होने की संख्या के लिए खड़ा है। ध्यान दें कि Σ<sub>n</sub> m<sub>n</sub> = n। | ||
एक ही | एक ही शैली में, 'पूरी तरह से प्रतिसममित क्षेत्रों' पर अधिकृत कर लेते हैं: | ||
:<math>|n_1 n_2 \cdots n_N; A\rang = \frac{1}{\sqrt{N!}} \sum_p \operatorname{sgn}(p) \left|n_{p(1)}\right\rang \left|n_{p(2)}\right\rang \cdots \left|n_{p(N)}\right\rang\ </math> | :<math>|n_1 n_2 \cdots n_N; A\rang = \frac{1}{\sqrt{N!}} \sum_p \operatorname{sgn}(p) \left|n_{p(1)}\right\rang \left|n_{p(2)}\right\rang \cdots \left|n_{p(N)}\right\rang\ </math> | ||
यहाँ, {{math|sgn(''p'')}} प्रत्येक क्रमचय के क्रमचय की समानता है (अर्थात <math>+1</math> | यहाँ, {{math|sgn(''p'')}} प्रत्येक क्रमचय के क्रमचय की समानता है (अर्थात <math>+1</math> यदि <math>p</math> पारदर्शिता की समान संख्या से बना है, और <math>-1</math> यदि विषम)। ध्यान दें <math>\Pi_n m_n</math>, क्योंकि प्रत्येक एकल-कण अवस्था केवल एक बार फर्मीओनिक अवस्था में प्रकट हो सकती है। अन्यथा विषमता के कारण योग फिर से शून्य होगा, इस प्रकार यह शारीरिक रूप से असंभव स्थिति का प्रतिनिधित्व करता है। यह अनेक कणों के लिए पाउली अपवर्जन सिद्धांत है। | ||
इन पदों को सामान्य किया गया है ताकि | इन पदों को सामान्य किया गया है ताकि | ||
Line 97: | Line 97: | ||
=== माप === | === माप === | ||
मान लीजिए कि सममित ( प्रतिसममित) अवस्था में | मान लीजिए कि सममित ( प्रतिसममित) अवस्था में n बोसोन (फर्मियन) की प्रणाली है | ||
:<math>|n_1 n_2 \cdots n_N; S/A \rang</math> | :<math>|n_1 n_2 \cdots n_N; S/A \rang</math> | ||
और असतत अवलोकनीय के किसी अन्य समुच्चय पर माप किया जाता | और असतत अवलोकनीय के किसी अन्य समुच्चय पर माप किया जाता है। सामान्यतः, यह कुछ परिणाम कण के लिए m<sub>1</sub> देता है, m<sub>2</sub> दूसरे कण के लिए। यदि कण बोसोन (फर्मियन) हैं, तो माप के बाद की स्थिति सममित ( प्रतिसममित) होनी चाहिए, अर्थात। | ||
:<math>|m_1 m_2 \cdots m_N; S/A \rang</math> | :<math>|m_1 m_2 \cdots m_N; S/A \rang</math> | ||
m माप के लिए | m माप के लिए विशेष परिणाम प्राप्त करने की संभावना है | ||
:<math>P_{S/A}\left(n_1, \ldots, n_N \rightarrow m_1, \ldots, m_N\right) \equiv \big|\left\lang m_1 \cdots m_N; S/A \,|\, n_1 \cdots n_N; S/A \right\rang \big|^2 </math> | :<math>P_{S/A}\left(n_1, \ldots, n_N \rightarrow m_1, \ldots, m_N\right) \equiv \big|\left\lang m_1 \cdots m_N; S/A \,|\, n_1 \cdots n_N; S/A \right\rang \big|^2 </math> | ||
Line 109: | Line 109: | ||
:<math>\sum_{m_1 \le m_2 \le \dots \le m_N} P_{S/A}(n_1, \ldots, n_N \rightarrow m_1, \ldots, m_N) = 1</math> | :<math>\sum_{m_1 \le m_2 \le \dots \le m_N} P_{S/A}(n_1, \ldots, n_N \rightarrow m_1, \ldots, m_N) = 1</math> | ||
जो सत्यापित करता है कि कुल प्रायिकता 1 है। योग को m | जो सत्यापित करता है कि कुल प्रायिकता 1 है। यह सुनिश्चित करने के लिए योग को m<sub>1</sub>, ..., m<sub>N</sub> के क्रमबद्ध मानों तक सीमित करना होगा ताकि यह सुनिश्चित हो सके कि प्रत्येक बहु-कण स्थिति को एक से अधिक बार नहीं गिना जाता है। | ||
=== तरंग कार्य प्रतिनिधित्व === | === तरंग कार्य प्रतिनिधित्व === | ||
अब तक, चर्चा में केवल असतत अवलोकनीय को | अब तक, चर्चा में केवल असतत अवलोकनीय को सम्मिलित किया गया है। इसे निरंतर अवलोकनीयों तक बढ़ाया जा सकता है, जैसे स्थिति (संवाहक ) x है। | ||
याद रखें कि | याद रखें कि निरंतर अवलोकनीय का अतिलक्षणिक परिस्थिति अवलोकन योग्य के मूल्यों की असीम श्रेणी का प्रतिनिधित्व करता है, जिसे अलग-अलग अवलोकनों के साथ समरूप नहीं मान गई है। उदाहरण के लिए, यदि कोई कण |ψ⟩ अवस्था में है, तो उसके आयतन d<sup>3</sup> x के क्षेत्र में पाए जाने की संभावना किसी स्थिति x के आस-पास है | ||
:<math> |\lang x | \psi \rang|^2 \; d^3 x </math> | :<math> |\lang x | \psi \rang|^2 \; d^3 x </math> | ||
परिणाम स्वरुप , निरंतर अतिलक्षणिक परिस्थिति |x⟩ एकता के अतिरिक्त [[डायराक डेल्टा समारोह|डायराक डेल्टा फलन]] के लिए सामान्यीकृत होते हैं: | |||
:<math> \lang x | x' \rang = \delta^3 (x - x') </math> | :<math> \lang x | x' \rang = \delta^3 (x - x') </math> | ||
सममित और | सममित और प्रतिसममित बहु-कण क्षेत्रों का निर्माण पहले की तरह निरंतर अतिलक्षणिक परिस्थिति्यों से किया जा सकता है। चूंकि, यह अलग सामान्यीकरण स्थिरांक का उपयोग करने के लिए प्रथागत है: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 127: | Line 127: | ||
|x_1 x_2 \cdots x_N; A\rang &= \frac{1}{N!} \sum_p \mathrm{sgn}(p) \left|x_{p(1)}\right\rang \left|x_{p(2)}\right\rang \cdots \left|x_{p(N)}\right\rang | |x_1 x_2 \cdots x_N; A\rang &= \frac{1}{N!} \sum_p \mathrm{sgn}(p) \left|x_{p(1)}\right\rang \left|x_{p(2)}\right\rang \cdots \left|x_{p(N)}\right\rang | ||
\end{align}</math> | \end{align}</math> | ||
एक बहु-निकाय | एक बहु-निकाय तरंग कार्य लिखा जा सकता है, | ||
: <math>\begin{align} | : <math>\begin{align} | ||
Line 137: | Line 137: | ||
& = \frac{1}{\sqrt{N!}} \sum_p \mathrm{sgn}(p) \psi_{p(1)}(x_1) \psi_{p(2)}(x_2) \cdots \psi_{p(N)}(x_N) | & = \frac{1}{\sqrt{N!}} \sum_p \mathrm{sgn}(p) \psi_{p(1)}(x_1) \psi_{p(2)}(x_2) \cdots \psi_{p(N)}(x_N) | ||
\end{align}</math> | \end{align}</math> | ||
जहां एकल-कण तरंगों को | जहां एकल-कण तरंगों को सदैव की तरह परिभाषित किया जाता है | ||
:<math>\psi_n(x) \equiv \lang x | n \rang </math> | :<math>\psi_n(x) \equiv \lang x | n \rang </math> | ||
इन तरंगों की सबसे महत्वपूर्ण संपत्ति यह है कि किसी भी दो समन्वयित चर का आदान-प्रदान करने से तरंग कार्य केवल धनात्मक | इन तरंगों की सबसे महत्वपूर्ण संपत्ति यह है, कि किसी भी दो समन्वयित चर का आदान-प्रदान करने से तरंग कार्य केवल धनात्मक या ऋणात्मक चिह्न से बदल जाता है। यह तरंग कार्य प्रतिनिधित्व में समरूपता और विषमता की अभिव्यक्ति है: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 148: | Line 148: | ||
-\Psi^{(A)}_{n_1 \cdots n_N} (\cdots x_j \cdots x_i \cdots) | -\Psi^{(A)}_{n_1 \cdots n_N} (\cdots x_j \cdots x_i \cdots) | ||
\end{align}</math> | \end{align}</math> | ||
बहु-निकाय | बहु-निकाय तरंग कार्य का निम्नलिखित महत्व है: यदि प्रणाली प्रारंभ में परिमाण संख्या के साथ एकाकी अवस्था में है,n<sub>1</sub> ..., n<sub>N</sub>, और यह स्थिति मापन प्रक्रिया कि जाती है, x<sub>1</sub> के निकट अतिसूक्ष्म मात्रा में कणों को खोजने की संभावना ,x<sub>2</sub>, ..., x<sub>N</sub> है | ||
:<math> N! \; \left|\Psi^{(S/A)}_{n_1 n_2 \cdots n_N} (x_1, x_2, \ldots, x_N) \right|^2 \; d^{3N}\!x </math> | :<math> N! \; \left|\Psi^{(S/A)}_{n_1 n_2 \cdots n_N} (x_1, x_2, \ldots, x_N) \right|^2 \; d^{3N}\!x </math> | ||
n का कारक | n का कारक एकल-कण तरंगों के अनुरूप चुना गया है जो हमारे सामान्यीकरण स्थिरांक से आता है, | ||
:<math> \int\!\int\!\cdots\!\int\; \left|\Psi^{(S/A)}_{n_1 n_2 \cdots n_N} (x_1, x_2, \ldots, x_N)\right|^2 d^3\!x_1 d^3\!x_2 \cdots d^3\!x_N = 1 </math> | :<math> \int\!\int\!\cdots\!\int\; \left|\Psi^{(S/A)}_{n_1 n_2 \cdots n_N} (x_1, x_2, \ldots, x_N)\right|^2 d^3\!x_1 d^3\!x_2 \cdots d^3\!x_N = 1 </math> | ||
क्योंकि प्रत्येक समाकल x के सभी संभावित मानों पर चलता है, प्रत्येक बहु-कण अवस्था N दिखाई देती | क्योंकि प्रत्येक समाकल x के सभी संभावित मानों पर चलता है, प्रत्येक बहु-कण अवस्था N अभिन्न बार दिखाई देती है। दूसरे शब्दों में, प्रत्येक घटना से जुड़ी संभावना समान रूप से n में वितरित की जाती है! अभिन्न स्थान में समतुल्य बिंदु है। क्योंकि यह सामान्यतः प्रतिबंधित लोगों की तुलना में अप्रतिबंधित अभिन्न के साथ काम करना अधिक सुविधाजनक होता है, इसे दर्शाने के लिए सामान्यीकरण स्थिरांक को चुना गया है। | ||
अंत में, | अंत में, प्रतिसममित तरंग कार्य को [[मैट्रिक्स (गणित)|आव्युह (गणित)]] के निर्धारक के रूप में लिखा जा सकता है, जिसे [[स्लेटर निर्धारक]] के रूप में जाना जाता है: | ||
:<math>\Psi^{(A)}_{n_1 \cdots n_N} (x_1, \ldots, x_N) = | :<math>\Psi^{(A)}_{n_1 \cdots n_N} (x_1, \ldots, x_N) = | ||
Line 168: | Line 168: | ||
\right| | \right| | ||
</math> | </math> | ||
=== संक्रियक दृष्टिकोण और अनुवृत्त सांख्यिकी === | === संक्रियक दृष्टिकोण और अनुवृत्त सांख्यिकी === | ||
के लिए हिल्बर्ट स्थान <math>n</math> कण | के लिए हिल्बर्ट स्थान <math>n</math> कण प्रदिश उत्पाद द्वारा दिए गए हैं <math display="inline"> \bigotimes_n H </math>. का क्रम परिवर्तन समूह <math> S_n </math> प्रविष्टियों को अनुमति देकर इस स्थान पर कार्य करता है। परिभाषा के अनुसार अवलोकनीय के लिए अपेक्षा मूल्य <math>a</math> का <math>n</math> इन क्रम परिवर्तन के अनुसार अप्रभेद्य कणों को अपरिवर्तनीय होना चाहिए। इसका कारण है कि सभी के लिए <math> \psi \in H </math> और <math> \sigma \in S_n </math> | ||
:<math> | :<math> | ||
(\sigma \Psi )^t a (\sigma \Psi) = \Psi^t a \Psi, | (\sigma \Psi )^t a (\sigma \Psi) = \Psi^t a \Psi, | ||
Line 180: | Line 179: | ||
\sigma^t a \sigma = a | \sigma^t a \sigma = a | ||
</math>. | </math>. | ||
दो अवस्थाएँ समतुल्य होती हैं जब भी उनकी अपेक्षाएँ सभी अवलोकनों के लिए मेल खाती हैं। | दो अवस्थाएँ समतुल्य होती हैं, जब भी उनकी अपेक्षाएँ सभी अवलोकनों के लिए मेल खाती हैं। यदि हम के अवलोकनों तक सीमित हैं तो <math>n </math> समान कण है, और इसलिए ऊपर दिए गए समीकरण को संतुष्ट करने वाले अवलोकनीय है, हम पाते हैं कि निम्नलिखित पद (सामान्यीकरण के बाद) समकक्ष हैं | ||
:<math> | :<math> | ||
\Psi \sim \sum_{\sigma \in S_n} \lambda_{\sigma} \sigma \Psi | \Psi \sim \sum_{\sigma \in S_n} \lambda_{\sigma} \sigma \Psi | ||
Line 186: | Line 185: | ||
तुल्यता वर्ग के अलघुकरणीय उपसमष्टि के साथ [[विशेषण संबंध]] में हैं <math display="inline"> \bigotimes_n H </math> अंतर्गत <math> S_n </math>. | तुल्यता वर्ग के अलघुकरणीय उपसमष्टि के साथ [[विशेषण संबंध]] में हैं <math display="inline"> \bigotimes_n H </math> अंतर्गत <math> S_n </math>. | ||
दो स्पष्ट अप्रासंगिक उप-स्थान | दो स्पष्ट अप्रासंगिक उप-स्थान आयामी सममित/बोसोनिक उप-स्थान और विरोधी-सममित/फर्मियोनिक उप-स्थान हैं। चूंकि अधिक प्रकार के अलघुकरणीय उप-स्थान हैं। इन अन्य अप्रासंगिक उप-स्थानों से जुड़े पदों को अनुवृत्त सांख्यिकी कहा जाता है।<ref>{{Cite journal|last=Bach|first=Alexaner|date=1993|title=अप्रभेद्य कणों का वर्गीकरण|journal=[[Europhysics Letters]]|volume=21|issue=5|pages=515–520|doi=10.1209/0295-5075/21/5/002|bibcode=1993EL.....21..515B|s2cid=250835341 }}</ref> युवा दृश्य प्रतिनिधित्व सिद्धांत में अनुप्रयोग इन सभी अप्रासंगिक उप-स्थानों को वर्गीकृत करने की प्रणाली प्रदान करते हैं। | ||
== सांख्यिकीय गुण == | == सांख्यिकीय गुण == | ||
Line 192: | Line 191: | ||
=== अप्रभेद्यता के सांख्यिकीय प्रभाव === | === अप्रभेद्यता के सांख्यिकीय प्रभाव === | ||
कणों की अप्रभेद्यता का उनके सांख्यिकीय गुणों पर गहरा प्रभाव पड़ता है। इसे स्पष्ट करने के लिए, N विभेदनीय, गैर-अंतःक्रियात्मक कणों की | कणों की अप्रभेद्यता का उनके सांख्यिकीय गुणों पर गहरा प्रभाव पड़ता है। इसे स्पष्ट करने के लिए, N विभेदनीय, गैर-अंतःक्रियात्मक कणों की प्रणाली पर विचार करें। चलो n<sub>''j''</sub> कण j की स्थिति (अर्थात परिमाण संख्या) को निरूपित करें। यदि कणों में समान भौतिक गुण हैं, तो n<sub>''j''</sub> मानों की समान श्रेणी पर चलाया जाता है। चलो ε(n) स्थिति n में कण की [[ऊर्जा]] को निरूपित करते हैं। चूंकि कण परस्पर क्रिया नहीं करते हैं, कार्य की कुल ऊर्जा एकल-कण ऊर्जाओं का योग है। कार्य का विभाजन कार्य (सांख्यिकीय यांत्रिकी) है। | ||
:<math> Z = \sum_{n_1, n_2, \ldots, n_N} \exp\left\{ -\frac{1}{kT} \left[ \varepsilon(n_1) + \varepsilon(n_2) + \cdots + \varepsilon(n_N) \right] \right\} </math> | :<math> Z = \sum_{n_1, n_2, \ldots, n_N} \exp\left\{ -\frac{1}{kT} \left[ \varepsilon(n_1) + \varepsilon(n_2) + \cdots + \varepsilon(n_N) \right] \right\} </math> | ||
जहाँ k बोल्ट्जमैन स्थिरांक है और T [[तापमान]] है। यह व्यंजक प्राप्त करने के लिए [[गुणन]]खंड हो सकता | जहाँ k बोल्ट्जमैन स्थिरांक है और T [[तापमान]] है। यह व्यंजक प्राप्त करने के लिए [[गुणन]]खंड हो सकता है। | ||
:<math> Z = \xi^N </math> | :<math> Z = \xi^N </math> | ||
:<math> \xi = \sum_n \exp\left[ - \frac{\varepsilon(n)}{kT} \right].</math> | :<math> \xi = \sum_n \exp\left[ - \frac{\varepsilon(n)}{kT} \right].</math> | ||
यदि कण समान हैं, तो यह समीकरण गलत है। कार्य की | यदि कण समान हैं, तो यह समीकरण गलत है। कार्य की स्थिति पर विचार करें, जिसे एकल कण पदों द्वारा वर्णित किया गया है n<sub>1</sub>, ..., n<sub>''N''</sub>। Z के लिए समीकरण में, n का प्रत्येक संभव क्रमचय योग में एक बार होता है, तथापि इनमें से प्रत्येक क्रम परिवर्तन बहु-कण अवस्था का वर्णन कर रहा है। इस प्रकार, पदों की संख्या अधिक गिनी गयी है। | ||
यदि अतिव्यापी पदों की संभावना की उपेक्षा की जाती है, जो तापमान अधिक होने पर मान्य है, तो प्रत्येक पद की गणना की जाने वाली संख्या लगभग N | यदि अतिव्यापी पदों की संभावना की उपेक्षा की जाती है, जो तापमान अधिक होने पर मान्य है, तो प्रत्येक पद की गणना की जाने वाली संख्या लगभग N है, और यही सही विभाजन कार्य है। | ||
:<math> Z = \frac{\xi^N}{N!}.</math> | :<math> Z = \frac{\xi^N}{N!}.</math> | ||
ध्यान दें कि यह उच्च तापमान सन्निकटन फर्मिऑन और बोसॉन के बीच अंतर नहीं करता है। | ध्यान दें कि यह उच्च तापमान सन्निकटन फर्मिऑन और बोसॉन के बीच अंतर नहीं करता है। | ||
अलग-अलग और अप्रभेद्य कणों के विभाजन कार्यों में विसंगति को परिमाण यांत्रिकी के आगमन से पहले 19वीं शताब्दी तक जाना जाता था। यह [[गिब्स विरोधाभास]] के रूप में जानी जाने वाली कठिनाई की ओर ले जाता है। [[विलार्ड गिब्स]] ने दिखाया कि समीकरण Z = ξ | अलग-अलग और अप्रभेद्य कणों के विभाजन कार्यों में विसंगति को परिमाण यांत्रिकी के आगमन से पहले 19वीं शताब्दी तक जाना जाता था। यह [[गिब्स विरोधाभास]] के रूप में जानी जाने वाली कठिनाई की ओर ले जाता है। [[विलार्ड गिब्स]] ने दिखाया कि समीकरण Z = ξ <sup>N</sup> मे मौलिक [[आदर्श गैस|आदर्श वाष्प]] की एंट्रॉपी (ऊष्मप्रवैगिकी) है | ||
:<math>S = N k \ln \left(V\right) + N f(T)</math> | :<math>S = N k \ln \left(V\right) + N f(T)</math> | ||
जहाँ V वाष्प का [[आयतन]] है | जहाँ V वाष्प का [[आयतन]] है, f अकेले और T का कुछ कार्य है। इस परिणाम के साथ समस्या यह है कि S [[व्यापक चर]] नहीं है - यदि N और V दोगुने हैं, तो S तदनुसार दोगुना नहीं होता है। ऐसी प्रणाली [[ऊष्मप्रवैगिकी]] के सिद्धांतों का पालन नहीं करती है। | ||
गिब्स ने यह भी दिखाया कि Z = ξ | गिब्स ने यह भी दिखाया कि Z = ξ<sup>n</sup> का उपयोग करके और परिणाम में परिवर्तन करें | ||
:<math>S = N k \ln \left(\frac{V}{N}\right) + N f(T)</math> | :<math>S = N k \ln \left(\frac{V}{N}\right) + N f(T)</math> | ||
जो बिल्कुल व्यापक है। | जो बिल्कुल व्यापक है। चूंकि, विभाजन कार्य में इस सुधार का कारण परिमाण यांत्रिकी की खोज तक अस्पष्ट रहा है। | ||
=== बोसॉन और फर्मिऑन के सांख्यिकीय गुण === | === बोसॉन और फर्मिऑन के सांख्यिकीय गुण === | ||
बोसोन और फ़र्मियन के सांख्यिकीय व्यवहार के बीच महत्वपूर्ण अंतर हैं, जो क्रमशः बोस-आइंस्टीन सांख्यिकी और फर्मी-डिराक सांख्यिकी द्वारा वर्णित हैं। मोटे तौर पर कहा जाए तो, बोसोन में एक ही परिमाण अवस्था में टकराने की प्रवृत्ति होती है, जो [[लेज़र]] (विकिरण के उत्तेजित उत्सर्जन का प्रकाश प्रवर्धन), बोस-आइंस्टीन वाष्पीकरण, | बोसोन और फ़र्मियन के सांख्यिकीय व्यवहार के बीच महत्वपूर्ण अंतर हैं, जो क्रमशः बोस-आइंस्टीन सांख्यिकी और फर्मी-डिराक सांख्यिकी द्वारा वर्णित हैं। मोटे तौर पर कहा जाए तो, बोसोन में एक ही परिमाण अवस्था में टकराने की प्रवृत्ति होती है, जो [[लेज़र]] (विकिरण के उत्तेजित उत्सर्जन का प्रकाश प्रवर्धन), बोस-आइंस्टीन वाष्पीकरण, बोस-आइंस्टीन संघनन, और अतिप्रवाह जैसी घटनाओं को रेखांकित करती है। दूसरी ओर, फर्मीन्स को परिमाण पदों को साझा करने से मना किया जाता है, जिससे [[फर्मी गैस|फर्मी वाष्प]] जैसी प्रणालियों को उत्पन्न मिलता है। इसे पाउली अपवर्जन सिद्धांत के रूप में जाना जाता है, और अधिकांश रसायन विज्ञान के लिए जिम्मेदार है, क्योंकि परमाणु (फर्मियन) में विद्युद अणु क्रमिक रूप से एक ही निम्नतम ऊर्जा अवस्था में पड़े सभी पदों के अतिरिक्त [[इलेक्ट्रॉन कवच|विद्युदअणु कवच]] के अंदर कई पदों को भरते हैं। | ||
दो कणों की | दो कणों की प्रणाली का उपयोग करके फ़र्मियन, बोसोन और अलग-अलग कणों के सांख्यिकीय व्यवहार के बीच के अंतर को चित्रित किया जा सकता है। कणों को a और b नामित किया गया है। प्रत्येक कण दो संभावित अवस्थाओं में उपस्थित हो सकते है, जिन्हें नामपत्र किया गया है <math>|0\rangle</math> और <math>|1\rangle</math>, जिनमें समान ऊर्जा होती है। | ||
समग्र प्रणाली समय के साथ विकसित हो सकती है, | समग्र प्रणाली समय के साथ विकसित हो सकती है, और मुखर परिस्थिति के साथ बातचीत कर सकती है। क्योंकि <math>|0\rangle</math> और <math>|1\rangle</math> पद ऊर्जावान रूप से समतुल्य हैं, न तो पद का पक्ष लिया जाता है, इसलिए इस प्रक्रिया का प्रभाव पदों को यादृच्छिक बनाने का है। (परिमाण उलझाव पर लेख में इस पर चर्चा की गई है।) कुछ समय बाद, जब समग्र प्रणाली में इसके लिए उपलब्ध प्रत्येक पद पर अधिकृत करने की समान संभावना होगी तब कण पदों को मापा जाता है। | ||
यदि | यदि a और b अलग-अलग कण हैं, तो समग्र प्रणाली में चार अलग-अलग पद हैं: <math>|0\rangle|0\rangle</math>, <math>|1\rangle|1\rangle</math>, <math>|0\rangle|1\rangle</math>, और <math>|1\rangle|0\rangle</math>. में दो कण प्राप्त करने की प्रायिकता <math>|1\rangle</math> पद 0.25 है; और एक कण प्राप्त करने की संभावना <math>|0\rangle</math> स्थिति में और दूसरा में <math>|1\rangle</math> स्थिति 0.5 है। | ||
यदि | यदि a और b समान बोसोन हैं, तो समग्र प्रणाली में केवल तीन अलग-अलग अवस्थाएँ हैं: <math>|0\rangle|0\rangle</math>, <math>|1\rangle|1\rangle</math>, और <math>\frac{1}{\sqrt{2}}(|0\rangle|1\rangle + |1\rangle|0\rangle)</math>. तब प्रयोग किया जाता है, तो दो कणों के प्राप्त होने की प्रायिकता <math>|0\rangle</math> पद अब 0.33 है; और एक कण प्राप्त करने की संभावना <math>|0\rangle</math> पद में और दूसरा में <math>|1\rangle</math> पद 0.33 है। ध्यान दें कि एक ही अवस्था में कणों को खोजने की संभावना अलग-अलग स्थितियों की तुलना में अपेक्षाकृत बड़ी है। यह बोसोन की क्लंप बनने की प्रवृत्ति को प्रदर्शित करता है। | ||
यदि | यदि a और b समान फ़र्मियन हैं, तो समग्र प्रणाली के लिए केवल एकाकी ही अवस्था उपलब्ध है: जो पूरी तरह से विषम स्थिति <math>\frac{1}{\sqrt{2}}(|0\rangle|1\rangle - |1\rangle|0\rangle)</math>. मे प्रयोग किया जाता है, तो कण मे सदैव अंदर होता है <math>|0\rangle</math> पद और दूसरा <math>|1\rangle</math> पद में है। | ||
नतीजों को सूची | नतीजों को सूची में सार निकाला गया है: | ||
{| class="wikitable" style="margin:auto" | {| class="wikitable" style="margin:auto" | ||
|+ तालिका 1: दो कणों के आंकड़े | |+ तालिका 1: दो कणों के आंकड़े | ||
|- | |- | ||
! | ! कण !! Both 0 !! Both 1 !! One 0 and one 1 | ||
|- | |- | ||
| | | विशेषणीय|| align="center" |0.25|| align=center |0.25|| align=center |0.5 | ||
|- | |- | ||
| | | बोसॉनों|| align="center" |0.33|| align=center |0.33|| align=center |0.33 | ||
|- | |- | ||
| | | फरमिओन्स|| align="center" |0|| align=center |0|| align=center |1 | ||
|} जैसा कि देखा जा सकता है, यहां तक कि दो कणों की | |} जैसा कि देखा जा सकता है, यहां तक कि दो कणों की प्रणाली अलग-अलग कणों, बोसॉन और फर्मिऑन के बीच अलग-अलग सांख्यिकीय व्यवहार प्रदर्शित करती है। फर्मी-डिराक सांख्यिकी और बोस-आइंस्टीन सांख्यिकी पर लेखों में, इन सिद्धांतों को गुणात्मक रूप से समान परिणामों के साथ बड़ी संख्या में कणों तक विस्तारित किया गया है। | ||
== समरूपता वर्ग == | == समरूपता वर्ग == | ||
{{See also| समस्थेयता|चोटी के आँकड़े}} | {{See also| समस्थेयता|चोटी के आँकड़े}} | ||
यह समझने के लिए कि कण आँकड़े उस तरह से क्यों काम करते हैं, जैसा वे करते हैं, पहले ध्यान दें कि कण बिंदु-स्थानबद्ध | यह समझने के लिए कि कण आँकड़े उस तरह से क्यों काम करते हैं, जैसा वे करते हैं, पहले ध्यान दें कि कण बिंदु-स्थानबद्ध ऊर्जन हैं और जो कण अलग-अलग हैं, वे परस्पर क्रिया नहीं करते हैं। एक खंड में {{mvar|d}}-विमीय स्थान {{mvar|M}}, किसी भी समय, दो समान कणों के विन्यास को तत्व के रूप में निर्दिष्ट किया जा सकता है {{math|''M'' × ''M''}}. यदि कणों के बीच कोई अधिव्यापन नहीं है, जिससे वे सीधे बातचीत न करें, तो उनके स्थान अंतर से संबंधित होने चाहिए {{math|[''M'' × ''M''] \ संयोग अंक,}} संपाती बिंदुओं के साथ उप-स्थान हटा दिया गया। तत्व {{math|(''x'', ''y'')}} कण के साथ विन्यास का वर्णन करता है {{mvar|x}} और कण पर {{mvar|y}}, जबकि {{math|(''y'', ''x'')}} परस्पर विन्यास का वर्णन करता है। समान कणों के साथ, द्वारा वर्णित पद {{math|(''x'', ''y'')}} द्वारा वर्णित पद से अप्रभेद्य होना चाहिए {{math|(''y'', ''x'')}}. अब से निरंतर पथों के [[होमोटॉपी वर्ग|समस्थेयता वर्ग]] पर विचार करें {{math|(''x'', ''y'')}} को {{math|(''y'', ''x'')}}, अंतर के अंदर {{math|[''M'' × ''M''] \ संयोग अंक}}. यदि {{mvar|M}} है {{tmath|\mathbb R^d}} तो {{math|''d'' ≥ 3}}, तो इस समरूपता वर्ग में केवल एकाकी तत्व है। यदि {{mvar|M}} {{tmath|\mathbb R^2}} है, तो इस समस्थेयता वर्ग में कई तत्व हैं (आधे मोड़ से वामावर्त पस्पर विनिमय द्वारा डेढ़ मोड़, ढाई मोड़, आदि, दक्षिणावर्त पस्पर विनिमय आधा मोड़, आदि) . विशेष रूप से, आधे मोड़ से वामावर्त पस्पर विनिमय आधे मोड़ से दक्षिणावर्त पस्पर विनिमय के लिए [[होमोटोपिक|समस्थानी]] नहीं है। अंत में, यदि {{mvar|M}} {{tmath|\mathbb R}} है, तो यह समस्थेयता श्रेणी खाली है। | ||
मान लीजिए कि पहले {{math|''d'' ≥ 3}}. का सार्वभौमिक आवरण स्थान {{math|[''M'' × ''M''] \ संयोग अंक,}} जो और कोई नहीं है {{math|[''M'' × ''M''] \ संयोग अंक}} ही, केवल दो बिंदु हैं जो शारीरिक रूप से अप्रभेद्य हैं {{math|(''x'', ''y'')}}, अर्थात् {{math|(''x'', ''y'')}} | मान लीजिए कि पहले {{math|''d'' ≥ 3}}. का सार्वभौमिक आवरण स्थान {{math|[''M'' × ''M''] \ संयोग अंक,}} जो और कोई नहीं है {{math|[''M'' × ''M''] \ संयोग अंक}} ही, केवल दो बिंदु हैं जो शारीरिक रूप से अप्रभेद्य हैं {{math|(''x'', ''y'')}}, अर्थात् {{math|(''x'', ''y'')}} स्वयं और {{math|(''y'', ''x'')}}. इसलिए, दोनों कणों की अदला-बदली करने के लिए केवल अनुमत विनिमय है। यह आदान-प्रदान उलटाव (गणित) है, इसलिए इसका एकमात्र प्रभाव चरण को 1 के वर्गमूल से गुणा करना है। यदि मूल +1 है, तो अंकों में बोस आँकड़े हैं, और यदि मूल -1 है, तो अंक फर्मी सांख्यिकी हैं। | ||
यदि <math>M = \mathbb R^2,</math> का सार्वभौमिक आवरण स्थान {{math|[''M'' × ''M''] \ संयोग अंक}} में अपरिमित रूप से अनेक बिंदु हैं जो भौतिक रूप से अप्रभेद्य हैं {{math|(''x'', ''y'')}}. यह | यदि <math>M = \mathbb R^2,</math> का सार्वभौमिक आवरण स्थान {{math|[''M'' × ''M''] \ संयोग अंक}} में अपरिमित रूप से अनेक बिंदु हैं, जो भौतिक रूप से अप्रभेद्य हैं {{math|(''x'', ''y'')}}. यह वामावर्त अर्ध-मोड़ पस्पर विनिमय बनाकर उत्पन्न अनंत [[चक्रीय समूह]] द्वारा वर्णित है। पिछले स्थितियों के विपरीत, इस पस्पर विनिमय को लगातार दो बार करने से मूल स्थिति ठीक नहीं होती है; इसलिए इस तरह के आदान-प्रदान का परिणाम सामान्य रूप से गुणा में हो सकता है {{math|उदाहरण(''iθ'')}} किसी भी वास्तविक के लिए {{mvar|θ}} ([[ केन्द्रीकरण |केन्द्रीकरण]] द्वारा, गुणन का निरपेक्ष मान 1 होना चाहिए)। इसे ऋणायनी सांख्यिकी कहा जाता है। वास्तव में, तथापि दो अलग-अलग कणों के साथ {{math|(''x'', ''y'')}} अब शारीरिक रूप से भिन्न है {{math|(''y'', ''x'')}}, सार्वभौमिक आवरण अंतराल में अभी भी अनेक रूप से कई बिंदु हैं, जो मूल बिंदु से भौतिक रूप से अप्रभेद्य हैं, जो अब एक पूर्ण मोड़ द्वारा दक्षिणावर्त नियमित आवर्तन द्वारा उत्पन्न होते हैं। यह उत्पादक, तब, गुणा में परिणत होता है {{math|उदाहरण(''iφ'')}}. यहाँ इस चरण कारक को [[पारस्परिक आँकड़े]] कहा जाता है। | ||
अंत में, | अंत में, स्थितियों में <math>M = \mathbb R,</math> अंतर {{math|[''M'' × ''M''] \ संयोग अंक}} जुड़ा नहीं है, इसलिए तथापि कण समान हों, फिर भी उन्हें बाईं ओर के कण और दाईं ओर के कण जैसे नामपत्र के माध्यम से पहचाना जा सकता है। यहाँ कोई पस्पर विनिमय समरूपता नहीं है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 271: | Line 269: | ||
* [http://www.av8n.com/physics/exchange.htm Exchange of Identical and Possibly Indistinguishable Particles] by John S. Denker | * [http://www.av8n.com/physics/exchange.htm Exchange of Identical and Possibly Indistinguishable Particles] by John S. Denker | ||
* [http://plato.stanford.edu/entries/qt-idind/ Identity and Individuality in Quantum Theory] ([[Stanford Encyclopedia of Philosophy]]) | * [http://plato.stanford.edu/entries/qt-idind/ Identity and Individuality in Quantum Theory] ([[Stanford Encyclopedia of Philosophy]]) | ||
* [http://www.cond-mat.de/events/correl13/manuscripts/koch.pdf Many-Electron States] in E. | * [http://www.cond-mat.de/events/correl13/manuscripts/koch.pdf Many-Electron States] in E. Pavarini, E. Koch, and U. Schollwöck: Emergent Phenomena in Correlated Matter, Jülich 2013, {{ISBN|978-3-89336-884-6}} | ||
{{DEFAULTSORT:Identical Particles}} | |||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Identical Particles]] | ||
[[Category:Created On 29/03/2023]] | [[Category:Created On 29/03/2023|Identical Particles]] | ||
[[Category:Lua-based templates|Identical Particles]] | |||
[[Category:Machine Translated Page|Identical Particles]] | |||
[[Category:Pages with maths render errors|Identical Particles]] | |||
[[Category:Pages with script errors|Identical Particles]] | |||
[[Category:Templates Translated in Hindi|Identical Particles]] | |||
[[Category:Templates Vigyan Ready|Identical Particles]] | |||
[[Category:Templates that add a tracking category|Identical Particles]] | |||
[[Category:Templates that generate short descriptions|Identical Particles]] | |||
[[Category:Templates using TemplateData|Identical Particles]] | |||
[[Category:कण आँकड़े|Identical Particles]] | |||
[[Category:पाउली अपवर्जन सिद्धांत|Identical Particles]] | |||
[[Category:संभाव्य तर्क|Identical Particles]] |
Latest revision as of 11:40, 3 May 2023
Statistical mechanics |
---|
परिमाण यांत्रिकी प्रक्रिया, समान कण (जिन्हें अप्रभेद्य या अविवेकी कण भी कहा जाता है) ऐसे कण होते हैं, जिन्हें सिद्धांतिक रूप में भी एक दूसरे से अलग नहीं किया जा सकता है। समान कणों की प्रजातियों में प्राथमिक कण (जैसे विद्युद अणु) एवं समग्र उप-परमाणु कण (जैसे परमाणु नाभिक) और साथ ही परमाणु और अणु सम्मिलित हैं, किन्तु यह इन तक ही सीमित नहीं हैं।अर्ध कण भी इसी प्रकार का व्यवहार करते हैं। चूंकि सभी ज्ञात अप्रभेद्य कण केवल परिमाण सीमा में उपस्थित हैं, कणों के सभी संभावित प्रकारों की कोई विस्तृत सूची नहीं है और न ही प्रयोज्यता की स्पष्ट सीमा है, जैसा कि कण सांख्यिकी परिमाण सांख्यिकी में पता लगाया गया है।
समान कणों की दो मुख्य श्रेणियां हैं: बोसोन, जो परिमाण अवस्थाओं को साझा कर सकते हैं, और फर्मियन, जो परिमाण अवस्थाओं को साझा नहीं कर सकते (जैसा कि पाउली अपवर्जन सिद्धांत द्वारा वर्णित है) है। फोटॉन, ग्लूऑन, फोनन, हीलियम -4 (गंधहीन वाष्प) और नाभिक यह सभी मेसॉन बोसॉन के उदाहरण हैं। विद्युद अणु, न्युट्रीनो , क्वार्क, प्रोटॉन, न्यूट्रॉन और हीलियम -3 (गंधहीन वाष्प) यह सभी नाभिक फ़र्मियन के उदाहरण हैं।
तथ्य यह है कि कण समान हो सकते हैं, सांख्यिकीय यांत्रिकी में महत्वपूर्ण परिणाम हैं, जहां गणना संभाव्यता सिद्धांतिक तर्कों पर निर्भर करती है, जो इस बात के प्रति संवेदनशील हैं कि अध्ययन की जा रही वस्तुएं समान हैं या नहीं। परिणाम स्वरुप , समान कण अलग-अलग कणों से स्पष्ट रूप से भिन्न सांख्यिकीय व्यवहार प्रदर्शित करते हैं। उदाहरण के लिए, गिब्स के गिब्स विरोधाभास एवं मिश्रण विरोधाभास के समाधान के रूप में कणों की अविभाज्यता को प्रस्तावित किया गया है।
कणों के बीच भेद
कणों के बीच भेद करने की दो विधियाँ हैं। पहली विधि कणों के आंतरिक भौतिक गुणों, जैसे द्रव्यमान, विद्युत आवेश और स्पिन (भौतिकी) (चक्रण) में अंतर पर निर्भर करती है। यदि मतभेद उपस्थित हैं, तो संबंधित गुणों को मापकर कणों के बीच अंतर करना संभव है। चूंकि, यह अनुभवजन्य तथ्य है कि एक ही प्रजाति के सूक्ष्म कणों में पूरी तरह से समान भौतिक गुण होते हैं। उदाहरण के लिए, ब्रह्माण्ड के प्रत्येक विद्युद अणु में बिल्कुल समान विद्युत आवेश होता है; यही कारण है कि प्राथमिक प्रभार जैसी किसी चीज के बारे में बात करना संभव है।
तथापि कणों के समान भौतिक गुण हों, कणों के बीच अंतर करने के लिए दूसरी विधि बनी रहती है, इसमे प्रत्येक कण के प्रक्षेपवक्र को मार्ग करना है। जब तक प्रत्येक कण की स्थिति को अनंत स्पष्ट के साथ मापा जा सकता है (यहां तक कि जब कण टकराते हैं), तब तक कोई अस्पष्टता नहीं होगी कि यह कौन सा कण है।
दूसरे दृष्टिकोण के साथ समस्या यह है, कि यह परिमाण यांत्रिकी के सिद्धांतों के विपरीत है। परिमाण सिद्धांत के अनुसार, माप के बीच की अवधि के समयकणों की निश्चित स्थिति नहीं होती है। इसके अतिरिक्त, वे तरंग क्रिया द्वारा नियंत्रित होते हैं जो प्रत्येक स्थिति में कण को खोजने की संभावना देते हैं। जैसे-जैसे समय बीतता है, तरंग के कार्य फैलते हैं और अधिव्यापन होते हैं। एक बार ऐसा हो जाने के बाद, माप में यह निर्धारित करना असंभव हो जाता है कि कौन से कण की स्थिति पहले मापी गई स्थिति के अनुरूप है। कणों को तब अप्रभेद्य कहा जाता है।
परिमाण यांत्रिक विवरण
सममित और विषम स्थिति
परिमाण यांत्रिकी के गणितीय सूत्रीकरण पर लेख में विकसित औपचारिकता का उपयोग करते हुए उपरोक्त चर्चा को ठोस बनाने के लिए उदाहरण निम्नलिखित है।
चलो n एकल-कण अवस्थाओं को निर्दिष्ट करने के लिए (असतत) परिमाण संख्याओं के पूर्ण समुच्चय को निरूपित करते हैं (उदाहरण के लिए, एक वर्ग समस्या में कण के लिए, n को तरंग कार्य के परिमाणित तरंग संवाहक के रूप में लें।) सरलता के लिए, प्रणाली पर विचार करें। दो कणों की जो एक दूसरे के साथ संभाषण नहीं कर रहे हैं। मान लीजिए कि एक कण n1 अवस्था में है , और दूसरा कण n2 में है . प्रणाली की परिमाण स्थिति को अभिव्यक्ति द्वारा निरूपित किया जाता है
जहां प्रदिश उत्पाद का क्रम मायने रखता है (यदि , तो कण एक स्थिति n2 पर अधिकृत कर लेता है जबकि कण दो स्थिति n1 पर अधिकृत कर लेता है। व्यक्तिगत अंतरालक से संयुक्त प्रणाली का यह प्रदिश उत्पाद स्थान के लिए आधार बनाने का प्रामाणिक प्रणाली है । यह अभिव्यक्ति अलग-अलग कणों के लिए मान्य है, चूंकि, यह अप्रभेद्य कणों के लिए उपयुक्त नहीं है और कणों के आदान-प्रदान के परिणामस्वरूप सामान्यतः अलग-अलग अवस्थाएँ होती हैं।
- कण एक n1 पर अधिकृत कर लेता है स्थिति और कण दो n2 पर अधिकृत कर लेता है।
दो अवस्थाएँ शारीरिक रूप से केवल तभी समतुल्य होती हैं, जब वे जटिल चरण कारक द्वारा अधिक से अधिक भिन्न हों। दो अप्रभेद्य कणों के लिए, कण विनिमय से पहले की अवस्था विनिमय के बाद की अवस्था के भौतिक रूप से समतुल्य होनी चाहिए, इसलिए ये दोनों अवस्थाएँ जटिल चरण कारक द्वारा भिन्न होती हैं। यह तथ्य बताता है कि दो अप्रभेद्य (और गैर-अंतःक्रियात्मक) कणों के लिए एक स्थिति निम्नलिखित दो संभावनाओं द्वारा दी गई है: [1][2][3]
पदों मे जहां यह सारांश है सममित के रूप में जाना जाता है, जबकि अंतर को सम्मिलित करने वाले पदों को प्रतिसममित कहा जाता है। अधिक पूरी तरह से, सममित पदों का रूप निम्म है
जबकि प्रतिसममित पदों का रूप है
ध्यान दें कि यदि n1 और n2 समान हैं, तो प्रतिसममित अभिव्यक्ति शून्य देता है, जो पद संवाहक नहीं हो सकता क्योंकि इसे सामान्यीकृत नहीं किया जा सकता है। दूसरे शब्दों में, एक से अधिक समान कण एक प्रतिसममित स्थिति पर अधिकृत नहीं कर सकते (एक प्रतिसममित पद केवल एक कण द्वारा अधिकृत कर लिया जा सकता है)। इसे पाउली अपवर्जन सिद्धांत के रूप में जाना जाता है, और यह परमाणुओं के रासायनिक गुणों और पदार्थ की स्थिरता के पीछे मूलभूत कारण है।
विनिमय समरूपता
सममित और विषमतापूर्ण पदों का महत्व अंततः अनुभवजन्य साक्ष्य पर आधारित है। यह प्रकृति का तथ्य प्रतीत होता है कि समान कण मिश्रित समरूपता की अवस्थाओं पर अधिकृत नहीं करते हैं, जैसे कि
वास्तव में इस नियम का एक अपवाद है, जिस पर बाद में चर्चा की जाएगी। दूसरी ओर, यह दिखाया जा सकता है कि सममित और प्रतिसममित स्थिति अर्थ में विशेष हैं। बहु-कण स्थिति की विशेष समरूपता की जांच करके उन्हें विनिमय समरूपता के रूप में जाना जाता है।
विनिमय संक्रियक कहे जाने वाले रैखिक संक्रियक p को परिभाषित करें। जब यह दो पद सदिश के प्रदिश उत्पाद पर कार्य करता है, तो यह स्थिति सदिश के मूल्यों का आदान-प्रदान करता है:
P हर्मिटियन संकारक और एकात्मक संकारक दोनों है। क्योंकि यह एकात्मक है, इसे समरूपता (भौतिकी) के रूप में माना जा सकता है। इस समरूपता को कणों से जुड़े नामपत्रों के आदान-प्रदान के अनुसार समरूपता के रूप में वर्णित किया जा सकता है (अर्थात, एकल-कण हिल्बर्ट अंतरालक के लिए)।
स्पष्ट रूप से, (पहचान संचालक), इसलिए P के अतिलक्षणिक अंतराल (अभिलक्षणिक मान ) +1 और -1 हैं। संबंधित अभिलक्षणिक सदिश सममित और प्रतिसममित पद हैं:
दूसरे शब्दों में, सममित और प्रतिसममित स्थिति अनिवार्य रूप से कण नामपत्र के आदान-प्रदान के अनुसार अपरिवर्तित होते हैं। हिल्बर्ट अंतराल में कहीं और घुमाए जाने के अतिरिक्त उन्हें केवल +1 या -1 के कारक से गुणा किया जाता है। यह इंगित करता है कि अप्रभेद्यता पर पहले की चर्चा के साथ कण नामपत्र का कोई भौतिक अर्थ नहीं है।
यह याद किया जाएगा कि P हर्मिटियन है। परिणाम स्वरुप , इसे प्रणाली के अवलोकन के रूप में माना जा सकता है। जिसका अर्थ है कि, सिद्धांतिक रूप में, पता लगाने के लिए माप किया जा सकता है कि कोई पद सममित या विषम है या नहीं। इसके अतिरिक्त, कणों की समानता इंगित करती है कि हैमिल्टनियन (परिमाण यांत्रिकी) को सममित रूप में लिखा जा सकता है, जैसे कि
यह दिखाना संभव है कि ऐसे हैमिल्टन रूपान्तरण संबंध को संतुष्ट करते हैं।
हाइजेनबर्ग चित्र के अनुसार, इसका अर्थ है कि P का मान गति का स्थिरांक है। यदि परिमाण पद प्रारंभिक रूप से सममित ( प्रतिसममित) है, तो प्रणाली विकसित होने पर यह सममित ( प्रतिसममित) रहेगा। गणितीय रूप से, यह कहता है कि स्थितिसंवाहक p के दो अतिलक्षणिक अंतराल में से एक तक ही सीमित है, और पूरे हिल्बर्ट अंतराल में कार्यक्षेत्र करने की अनुमति नहीं है। इस प्रकार, उस अतिलक्षणिक अंतराल को प्रणाली के वास्तविक हिल्बर्ट अंतराल के रूप में भी माना जा सकता है। फॉक अंतराल की परिभाषा के पीछे यही विचार है।
फर्मियंस (उप-परमाणु कण) और बोसोन
समरूपता या विषमता का चुनाव कण की प्रजातियों द्वारा निर्धारित किया जाता है। उदाहरण के लिए, फोटॉनों या हीलियम (गंधहीन वाष्प)-4 परमाणुओं का वर्णन करते समय सममित अवस्थाओं का सदैव उपयोग किया जाना चाहिए, और विद्युद अणुों या प्रोटॉनों का वर्णन करते समय प्रतिसममित अवस्थाओं का उपयोग किया जाना चाहिए।
सममित अवस्था प्रदर्शित करने वाले कण बोसोन कहलाते हैं। कई समान बोसोन से बनी प्रणालियों के सांख्यिकीय गुणों के लिए सममित पदों की प्रकृति के महत्वपूर्ण परिणाम हैं। इन सांख्यिकीय गुणों को बोस-आइंस्टीन सांख्यिकी के रूप में वर्णित किया गया है।
वे कण जो प्रतिसममित अवस्थाएँ प्रदर्शित करते हैं, उप-परमाणु कण कहलाते हैं। प्रति सममिति पाउली बहिष्करण सिद्धांत को उत्पन्न करती है, जो समान परिमाण अवस्था को साझा करने से समान फर्मों को मना करती है। फर्मी-डिराक सांख्यिकी द्वारा कई समान उप-परमाणु कण की प्रणालियों का वर्णन किया गया है।
पैरास्टैटिस्टिक्स (अनुवृत्त सांख्यिकी) भी संभव हैं।
कुछ द्वि-आयामी प्रणालियों में, मिश्रित समरूपता हो सकती है। इन अन्य स्थानबद्ध कणों को किसी के रूप में जाना जाता है, और वे भिन्नात्मक आँकड़ों का पालन करते हैं। किसी भी प्रकार के अस्तित्व के लिए प्रायोगिक साक्ष्य परिमाण महाकक्ष प्रभाव में उपस्थित है। एक घटना जो द्वि-आयामी विद्युदअणु वाष्पों में देखी गई है, जो मॉसफेट (धातु ऑक्साइड अर्धचालक क्षेत्र प्रभाव ट्रांजिस्टर) की व्युत्क्रम परत बनाती है। ऋणायन एक प्रकार का आँकड़ा है, जिसे चोटी के आँकड़ों के रूप में जाना जाता है, जो प्लवक के रूप में जाने जाने वाले कणों से जुड़े होते हैं।
चक्रण-सांख्यिकी प्रमेय समान कणों के विनिमय समरूपता को उनके चक्रण (भौतिकी) से संबंधित करता है। इसमें कहा गया है कि बोसोन में पूर्णांक चक्रण होता है, और फ़र्मियन में आधा-पूर्णांक चक्रण होता है, और किसी के पास भिन्नात्मक चक्रण होता है।
एन (n) कण
उपरोक्त चर्चा n कणों के स्थितियों में आसानी से सामान्यीकृत होती है। मान लीजिए कि परिमाण संख्या n वाले कण हैं n1, n2, ..., nN. यदि कण बोसोन हैं, तो वे पूरी तरह से सममित स्थिति पर अधिकृत कर लेते हैं, जो किसी भी दो कण नामपत्र के आदान-प्रदान के अनुसार सममित है:
यहां, n तत्वों पर अभिनय करने वाले क्रम परिवर्तन p के अनुसार सभी अलग-अलग स्थिति में योग लिया जाता है। योग के लिए छोड़ा गया वर्गमूल सामान्यीकरण स्थिरांक है। मात्रा Mn कण अवस्था में प्रत्येक एकल-कण अवस्था n प्रकट होने की संख्या के लिए खड़ा है। ध्यान दें कि Σn mn = n।
एक ही शैली में, 'पूरी तरह से प्रतिसममित क्षेत्रों' पर अधिकृत कर लेते हैं:
यहाँ, sgn(p) प्रत्येक क्रमचय के क्रमचय की समानता है (अर्थात यदि पारदर्शिता की समान संख्या से बना है, और यदि विषम)। ध्यान दें , क्योंकि प्रत्येक एकल-कण अवस्था केवल एक बार फर्मीओनिक अवस्था में प्रकट हो सकती है। अन्यथा विषमता के कारण योग फिर से शून्य होगा, इस प्रकार यह शारीरिक रूप से असंभव स्थिति का प्रतिनिधित्व करता है। यह अनेक कणों के लिए पाउली अपवर्जन सिद्धांत है।
इन पदों को सामान्य किया गया है ताकि
माप
मान लीजिए कि सममित ( प्रतिसममित) अवस्था में n बोसोन (फर्मियन) की प्रणाली है
और असतत अवलोकनीय के किसी अन्य समुच्चय पर माप किया जाता है। सामान्यतः, यह कुछ परिणाम कण के लिए m1 देता है, m2 दूसरे कण के लिए। यदि कण बोसोन (फर्मियन) हैं, तो माप के बाद की स्थिति सममित ( प्रतिसममित) होनी चाहिए, अर्थात।
m माप के लिए विशेष परिणाम प्राप्त करने की संभावना है
यह दिखाया जा सकता है
जो सत्यापित करता है कि कुल प्रायिकता 1 है। यह सुनिश्चित करने के लिए योग को m1, ..., mN के क्रमबद्ध मानों तक सीमित करना होगा ताकि यह सुनिश्चित हो सके कि प्रत्येक बहु-कण स्थिति को एक से अधिक बार नहीं गिना जाता है।
तरंग कार्य प्रतिनिधित्व
अब तक, चर्चा में केवल असतत अवलोकनीय को सम्मिलित किया गया है। इसे निरंतर अवलोकनीयों तक बढ़ाया जा सकता है, जैसे स्थिति (संवाहक ) x है।
याद रखें कि निरंतर अवलोकनीय का अतिलक्षणिक परिस्थिति अवलोकन योग्य के मूल्यों की असीम श्रेणी का प्रतिनिधित्व करता है, जिसे अलग-अलग अवलोकनों के साथ समरूप नहीं मान गई है। उदाहरण के लिए, यदि कोई कण |ψ⟩ अवस्था में है, तो उसके आयतन d3 x के क्षेत्र में पाए जाने की संभावना किसी स्थिति x के आस-पास है
परिणाम स्वरुप , निरंतर अतिलक्षणिक परिस्थिति |x⟩ एकता के अतिरिक्त डायराक डेल्टा फलन के लिए सामान्यीकृत होते हैं:
सममित और प्रतिसममित बहु-कण क्षेत्रों का निर्माण पहले की तरह निरंतर अतिलक्षणिक परिस्थिति्यों से किया जा सकता है। चूंकि, यह अलग सामान्यीकरण स्थिरांक का उपयोग करने के लिए प्रथागत है:
एक बहु-निकाय तरंग कार्य लिखा जा सकता है,
जहां एकल-कण तरंगों को सदैव की तरह परिभाषित किया जाता है
इन तरंगों की सबसे महत्वपूर्ण संपत्ति यह है, कि किसी भी दो समन्वयित चर का आदान-प्रदान करने से तरंग कार्य केवल धनात्मक या ऋणात्मक चिह्न से बदल जाता है। यह तरंग कार्य प्रतिनिधित्व में समरूपता और विषमता की अभिव्यक्ति है:
बहु-निकाय तरंग कार्य का निम्नलिखित महत्व है: यदि प्रणाली प्रारंभ में परिमाण संख्या के साथ एकाकी अवस्था में है,n1 ..., nN, और यह स्थिति मापन प्रक्रिया कि जाती है, x1 के निकट अतिसूक्ष्म मात्रा में कणों को खोजने की संभावना ,x2, ..., xN है
n का कारक एकल-कण तरंगों के अनुरूप चुना गया है जो हमारे सामान्यीकरण स्थिरांक से आता है,
क्योंकि प्रत्येक समाकल x के सभी संभावित मानों पर चलता है, प्रत्येक बहु-कण अवस्था N अभिन्न बार दिखाई देती है। दूसरे शब्दों में, प्रत्येक घटना से जुड़ी संभावना समान रूप से n में वितरित की जाती है! अभिन्न स्थान में समतुल्य बिंदु है। क्योंकि यह सामान्यतः प्रतिबंधित लोगों की तुलना में अप्रतिबंधित अभिन्न के साथ काम करना अधिक सुविधाजनक होता है, इसे दर्शाने के लिए सामान्यीकरण स्थिरांक को चुना गया है।
अंत में, प्रतिसममित तरंग कार्य को आव्युह (गणित) के निर्धारक के रूप में लिखा जा सकता है, जिसे स्लेटर निर्धारक के रूप में जाना जाता है:
संक्रियक दृष्टिकोण और अनुवृत्त सांख्यिकी
के लिए हिल्बर्ट स्थान कण प्रदिश उत्पाद द्वारा दिए गए हैं . का क्रम परिवर्तन समूह प्रविष्टियों को अनुमति देकर इस स्थान पर कार्य करता है। परिभाषा के अनुसार अवलोकनीय के लिए अपेक्षा मूल्य का इन क्रम परिवर्तन के अनुसार अप्रभेद्य कणों को अपरिवर्तनीय होना चाहिए। इसका कारण है कि सभी के लिए और
या समकक्ष प्रत्येक के लिए
- .
दो अवस्थाएँ समतुल्य होती हैं, जब भी उनकी अपेक्षाएँ सभी अवलोकनों के लिए मेल खाती हैं। यदि हम के अवलोकनों तक सीमित हैं तो समान कण है, और इसलिए ऊपर दिए गए समीकरण को संतुष्ट करने वाले अवलोकनीय है, हम पाते हैं कि निम्नलिखित पद (सामान्यीकरण के बाद) समकक्ष हैं
- .
तुल्यता वर्ग के अलघुकरणीय उपसमष्टि के साथ विशेषण संबंध में हैं अंतर्गत .
दो स्पष्ट अप्रासंगिक उप-स्थान आयामी सममित/बोसोनिक उप-स्थान और विरोधी-सममित/फर्मियोनिक उप-स्थान हैं। चूंकि अधिक प्रकार के अलघुकरणीय उप-स्थान हैं। इन अन्य अप्रासंगिक उप-स्थानों से जुड़े पदों को अनुवृत्त सांख्यिकी कहा जाता है।[4] युवा दृश्य प्रतिनिधित्व सिद्धांत में अनुप्रयोग इन सभी अप्रासंगिक उप-स्थानों को वर्गीकृत करने की प्रणाली प्रदान करते हैं।
सांख्यिकीय गुण
अप्रभेद्यता के सांख्यिकीय प्रभाव
कणों की अप्रभेद्यता का उनके सांख्यिकीय गुणों पर गहरा प्रभाव पड़ता है। इसे स्पष्ट करने के लिए, N विभेदनीय, गैर-अंतःक्रियात्मक कणों की प्रणाली पर विचार करें। चलो nj कण j की स्थिति (अर्थात परिमाण संख्या) को निरूपित करें। यदि कणों में समान भौतिक गुण हैं, तो nj मानों की समान श्रेणी पर चलाया जाता है। चलो ε(n) स्थिति n में कण की ऊर्जा को निरूपित करते हैं। चूंकि कण परस्पर क्रिया नहीं करते हैं, कार्य की कुल ऊर्जा एकल-कण ऊर्जाओं का योग है। कार्य का विभाजन कार्य (सांख्यिकीय यांत्रिकी) है।
जहाँ k बोल्ट्जमैन स्थिरांक है और T तापमान है। यह व्यंजक प्राप्त करने के लिए गुणनखंड हो सकता है।
यदि कण समान हैं, तो यह समीकरण गलत है। कार्य की स्थिति पर विचार करें, जिसे एकल कण पदों द्वारा वर्णित किया गया है n1, ..., nN। Z के लिए समीकरण में, n का प्रत्येक संभव क्रमचय योग में एक बार होता है, तथापि इनमें से प्रत्येक क्रम परिवर्तन बहु-कण अवस्था का वर्णन कर रहा है। इस प्रकार, पदों की संख्या अधिक गिनी गयी है।
यदि अतिव्यापी पदों की संभावना की उपेक्षा की जाती है, जो तापमान अधिक होने पर मान्य है, तो प्रत्येक पद की गणना की जाने वाली संख्या लगभग N है, और यही सही विभाजन कार्य है।
ध्यान दें कि यह उच्च तापमान सन्निकटन फर्मिऑन और बोसॉन के बीच अंतर नहीं करता है।
अलग-अलग और अप्रभेद्य कणों के विभाजन कार्यों में विसंगति को परिमाण यांत्रिकी के आगमन से पहले 19वीं शताब्दी तक जाना जाता था। यह गिब्स विरोधाभास के रूप में जानी जाने वाली कठिनाई की ओर ले जाता है। विलार्ड गिब्स ने दिखाया कि समीकरण Z = ξ N मे मौलिक आदर्श वाष्प की एंट्रॉपी (ऊष्मप्रवैगिकी) है
जहाँ V वाष्प का आयतन है, f अकेले और T का कुछ कार्य है। इस परिणाम के साथ समस्या यह है कि S व्यापक चर नहीं है - यदि N और V दोगुने हैं, तो S तदनुसार दोगुना नहीं होता है। ऐसी प्रणाली ऊष्मप्रवैगिकी के सिद्धांतों का पालन नहीं करती है।
गिब्स ने यह भी दिखाया कि Z = ξn का उपयोग करके और परिणाम में परिवर्तन करें
जो बिल्कुल व्यापक है। चूंकि, विभाजन कार्य में इस सुधार का कारण परिमाण यांत्रिकी की खोज तक अस्पष्ट रहा है।
बोसॉन और फर्मिऑन के सांख्यिकीय गुण
बोसोन और फ़र्मियन के सांख्यिकीय व्यवहार के बीच महत्वपूर्ण अंतर हैं, जो क्रमशः बोस-आइंस्टीन सांख्यिकी और फर्मी-डिराक सांख्यिकी द्वारा वर्णित हैं। मोटे तौर पर कहा जाए तो, बोसोन में एक ही परिमाण अवस्था में टकराने की प्रवृत्ति होती है, जो लेज़र (विकिरण के उत्तेजित उत्सर्जन का प्रकाश प्रवर्धन), बोस-आइंस्टीन वाष्पीकरण, बोस-आइंस्टीन संघनन, और अतिप्रवाह जैसी घटनाओं को रेखांकित करती है। दूसरी ओर, फर्मीन्स को परिमाण पदों को साझा करने से मना किया जाता है, जिससे फर्मी वाष्प जैसी प्रणालियों को उत्पन्न मिलता है। इसे पाउली अपवर्जन सिद्धांत के रूप में जाना जाता है, और अधिकांश रसायन विज्ञान के लिए जिम्मेदार है, क्योंकि परमाणु (फर्मियन) में विद्युद अणु क्रमिक रूप से एक ही निम्नतम ऊर्जा अवस्था में पड़े सभी पदों के अतिरिक्त विद्युदअणु कवच के अंदर कई पदों को भरते हैं।
दो कणों की प्रणाली का उपयोग करके फ़र्मियन, बोसोन और अलग-अलग कणों के सांख्यिकीय व्यवहार के बीच के अंतर को चित्रित किया जा सकता है। कणों को a और b नामित किया गया है। प्रत्येक कण दो संभावित अवस्थाओं में उपस्थित हो सकते है, जिन्हें नामपत्र किया गया है और , जिनमें समान ऊर्जा होती है।
समग्र प्रणाली समय के साथ विकसित हो सकती है, और मुखर परिस्थिति के साथ बातचीत कर सकती है। क्योंकि और पद ऊर्जावान रूप से समतुल्य हैं, न तो पद का पक्ष लिया जाता है, इसलिए इस प्रक्रिया का प्रभाव पदों को यादृच्छिक बनाने का है। (परिमाण उलझाव पर लेख में इस पर चर्चा की गई है।) कुछ समय बाद, जब समग्र प्रणाली में इसके लिए उपलब्ध प्रत्येक पद पर अधिकृत करने की समान संभावना होगी तब कण पदों को मापा जाता है।
यदि a और b अलग-अलग कण हैं, तो समग्र प्रणाली में चार अलग-अलग पद हैं: , , , और . में दो कण प्राप्त करने की प्रायिकता पद 0.25 है; और एक कण प्राप्त करने की संभावना स्थिति में और दूसरा में स्थिति 0.5 है।
यदि a और b समान बोसोन हैं, तो समग्र प्रणाली में केवल तीन अलग-अलग अवस्थाएँ हैं: , , और . तब प्रयोग किया जाता है, तो दो कणों के प्राप्त होने की प्रायिकता पद अब 0.33 है; और एक कण प्राप्त करने की संभावना पद में और दूसरा में पद 0.33 है। ध्यान दें कि एक ही अवस्था में कणों को खोजने की संभावना अलग-अलग स्थितियों की तुलना में अपेक्षाकृत बड़ी है। यह बोसोन की क्लंप बनने की प्रवृत्ति को प्रदर्शित करता है।
यदि a और b समान फ़र्मियन हैं, तो समग्र प्रणाली के लिए केवल एकाकी ही अवस्था उपलब्ध है: जो पूरी तरह से विषम स्थिति . मे प्रयोग किया जाता है, तो कण मे सदैव अंदर होता है पद और दूसरा पद में है।
नतीजों को सूची में सार निकाला गया है:
कण | Both 0 | Both 1 | One 0 and one 1 |
---|---|---|---|
विशेषणीय | 0.25 | 0.25 | 0.5 |
बोसॉनों | 0.33 | 0.33 | 0.33 |
फरमिओन्स | 0 | 0 | 1 |
जैसा कि देखा जा सकता है, यहां तक कि दो कणों की प्रणाली अलग-अलग कणों, बोसॉन और फर्मिऑन के बीच अलग-अलग सांख्यिकीय व्यवहार प्रदर्शित करती है। फर्मी-डिराक सांख्यिकी और बोस-आइंस्टीन सांख्यिकी पर लेखों में, इन सिद्धांतों को गुणात्मक रूप से समान परिणामों के साथ बड़ी संख्या में कणों तक विस्तारित किया गया है।
समरूपता वर्ग
यह समझने के लिए कि कण आँकड़े उस तरह से क्यों काम करते हैं, जैसा वे करते हैं, पहले ध्यान दें कि कण बिंदु-स्थानबद्ध ऊर्जन हैं और जो कण अलग-अलग हैं, वे परस्पर क्रिया नहीं करते हैं। एक खंड में d-विमीय स्थान M, किसी भी समय, दो समान कणों के विन्यास को तत्व के रूप में निर्दिष्ट किया जा सकता है M × M. यदि कणों के बीच कोई अधिव्यापन नहीं है, जिससे वे सीधे बातचीत न करें, तो उनके स्थान अंतर से संबंधित होने चाहिए [M × M] \ संयोग अंक, संपाती बिंदुओं के साथ उप-स्थान हटा दिया गया। तत्व (x, y) कण के साथ विन्यास का वर्णन करता है x और कण पर y, जबकि (y, x) परस्पर विन्यास का वर्णन करता है। समान कणों के साथ, द्वारा वर्णित पद (x, y) द्वारा वर्णित पद से अप्रभेद्य होना चाहिए (y, x). अब से निरंतर पथों के समस्थेयता वर्ग पर विचार करें (x, y) को (y, x), अंतर के अंदर [M × M] \ संयोग अंक. यदि M है तो d ≥ 3, तो इस समरूपता वर्ग में केवल एकाकी तत्व है। यदि M है, तो इस समस्थेयता वर्ग में कई तत्व हैं (आधे मोड़ से वामावर्त पस्पर विनिमय द्वारा डेढ़ मोड़, ढाई मोड़, आदि, दक्षिणावर्त पस्पर विनिमय आधा मोड़, आदि) . विशेष रूप से, आधे मोड़ से वामावर्त पस्पर विनिमय आधे मोड़ से दक्षिणावर्त पस्पर विनिमय के लिए समस्थानी नहीं है। अंत में, यदि M है, तो यह समस्थेयता श्रेणी खाली है।
मान लीजिए कि पहले d ≥ 3. का सार्वभौमिक आवरण स्थान [M × M] \ संयोग अंक, जो और कोई नहीं है [M × M] \ संयोग अंक ही, केवल दो बिंदु हैं जो शारीरिक रूप से अप्रभेद्य हैं (x, y), अर्थात् (x, y) स्वयं और (y, x). इसलिए, दोनों कणों की अदला-बदली करने के लिए केवल अनुमत विनिमय है। यह आदान-प्रदान उलटाव (गणित) है, इसलिए इसका एकमात्र प्रभाव चरण को 1 के वर्गमूल से गुणा करना है। यदि मूल +1 है, तो अंकों में बोस आँकड़े हैं, और यदि मूल -1 है, तो अंक फर्मी सांख्यिकी हैं।
यदि का सार्वभौमिक आवरण स्थान [M × M] \ संयोग अंक में अपरिमित रूप से अनेक बिंदु हैं, जो भौतिक रूप से अप्रभेद्य हैं (x, y). यह वामावर्त अर्ध-मोड़ पस्पर विनिमय बनाकर उत्पन्न अनंत चक्रीय समूह द्वारा वर्णित है। पिछले स्थितियों के विपरीत, इस पस्पर विनिमय को लगातार दो बार करने से मूल स्थिति ठीक नहीं होती है; इसलिए इस तरह के आदान-प्रदान का परिणाम सामान्य रूप से गुणा में हो सकता है उदाहरण(iθ) किसी भी वास्तविक के लिए θ (केन्द्रीकरण द्वारा, गुणन का निरपेक्ष मान 1 होना चाहिए)। इसे ऋणायनी सांख्यिकी कहा जाता है। वास्तव में, तथापि दो अलग-अलग कणों के साथ (x, y) अब शारीरिक रूप से भिन्न है (y, x), सार्वभौमिक आवरण अंतराल में अभी भी अनेक रूप से कई बिंदु हैं, जो मूल बिंदु से भौतिक रूप से अप्रभेद्य हैं, जो अब एक पूर्ण मोड़ द्वारा दक्षिणावर्त नियमित आवर्तन द्वारा उत्पन्न होते हैं। यह उत्पादक, तब, गुणा में परिणत होता है उदाहरण(iφ). यहाँ इस चरण कारक को पारस्परिक आँकड़े कहा जाता है।
अंत में, स्थितियों में अंतर [M × M] \ संयोग अंक जुड़ा नहीं है, इसलिए तथापि कण समान हों, फिर भी उन्हें बाईं ओर के कण और दाईं ओर के कण जैसे नामपत्र के माध्यम से पहचाना जा सकता है। यहाँ कोई पस्पर विनिमय समरूपता नहीं है।
यह भी देखें
- अर्ध-सेट सिद्धांत
- डेब्रोग्ली परिकल्पना
फुटनोट्स
- ↑ "2.3 Identical particles".
- ↑ Tuckerman (2010, p. 385)
- ↑ Liboff, Richard (2003). परिचयात्मक क्वांटम यांत्रिकी. Addison-Wesley. p. 597. ISBN 978-0805387148.
- ↑ Bach, Alexaner (1993). "अप्रभेद्य कणों का वर्गीकरण". Europhysics Letters. 21 (5): 515–520. Bibcode:1993EL.....21..515B. doi:10.1209/0295-5075/21/5/002. S2CID 250835341.
संदर्भ
- Tuckerman, Mark (2010), Statistical Mechanics, ISBN 978-0198525264
बाहरी संबंध
- The Feynman Lectures on Physics Vol. III Ch. 4: Identical Particles
- Exchange of Identical and Possibly Indistinguishable Particles by John S. Denker
- Identity and Individuality in Quantum Theory (Stanford Encyclopedia of Philosophy)
- Many-Electron States in E. Pavarini, E. Koch, and U. Schollwöck: Emergent Phenomena in Correlated Matter, Jülich 2013, ISBN 978-3-89336-884-6