इलिप्सोमेट्री: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Optical technique for characterizing thin films}} {{More footnotes|date=December 2010}} File:Ellipsometer at LAAS.jpg|thumb|सिस्टम्स क...")
 
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Optical technique for characterizing thin films}}
{{Short description|Optical technique for characterizing thin films}}
{{More footnotes|date=December 2010}}
[[File:Ellipsometer at LAAS.jpg|thumb|सिस्टम्स के विश्लेषण और वास्तुकला के लिए प्रयोगशाला में एक इलिप्सोमीटर | टूलूज़, फ़्रांस में LAAS-CNRS।]]'''इलिप्सोमेट्री''' ऐसी [[पतली फिल्म|पतली फिल्मों]] के [[ढांकता हुआ|प्रभावित]] गुणों (जटिल [[अपवर्तक सूचकांक]]) की जांच के लिए [[ऑप्टिकल]] तकनीक का उपयोग करता है। इलिप्सोमेट्री प्रतिबिंब या संचरण पर ध्रुवीकरण (तरंगों) के परिवर्तन को मापता है और इसकी तुलना इस प्रारूप से करता है।
[[File:Ellipsometer at LAAS.jpg|thumb|सिस्टम्स के विश्लेषण और वास्तुकला के लिए प्रयोगशाला में एक इलिप्सोमीटर | टूलूज़, फ़्रांस में LAAS-CNRS।]]इलिप्सोमेट्री [[पतली फिल्म]]ों के [[ढांकता हुआ]] गुणों (जटिल [[अपवर्तक सूचकांक]] या ढांकता हुआ कार्य) की जांच के लिए एक [[ऑप्टिकल]] तकनीक है। इलिप्सोमेट्री प्रतिबिंब या संचरण पर ध्रुवीकरण (तरंगों) के परिवर्तन को मापता है और इसकी तुलना एक मॉडल से करता है।


इसका उपयोग सामग्री विज्ञान, [[सतह खुरदरापन]], मोटाई (गहराई), [[क्रिस्टलीय]], डोपिंग (अर्धचालक), विद्युत चालकता और अन्य भौतिक गुणों को चिह्नित करने के लिए किया जा सकता है। यह घटना विकिरण की ऑप्टिकल प्रतिक्रिया में परिवर्तन के प्रति बहुत संवेदनशील है जो जांच की जा रही सामग्री के साथ संपर्क करता है।
इसका उपयोग सामग्री विज्ञान, [[सतह खुरदरापन]], मोटाई (गहराई), [[क्रिस्टलीय]], डोपिंग (अर्धचालक), विद्युत चालकता और अन्य भौतिक गुणों को चिह्नित करने के लिए किया जा सकता है। यह घटना विकिरण की ऑप्टिकल प्रतिक्रिया में परिवर्तन के प्रति बहुत संवेदनशील है जो जांच की जा रही सामग्री के साथ संपर्क करता है।


अधिकांश पतली फिल्म विश्लेषणात्मक प्रयोगशालाओं में एक स्पेक्ट्रोस्कोपिक इलिप्सोमीटर पाया जा सकता है। जीव विज्ञान और चिकित्सा जैसे अन्य विषयों में शोधकर्ताओं के लिए इलिप्सोमेट्री भी अधिक दिलचस्प होती जा रही है। ये क्षेत्र तकनीक के लिए नई चुनौतियाँ पेश करते हैं, जैसे अस्थिर तरल सतहों पर माप और सूक्ष्म इमेजिंग।
अधिकांश पतली फिल्म विश्लेषणात्मक प्रयोगशालाओं में स्पेक्ट्रोस्कोपिक इलिप्सोमीटर पाया जा सकता है। इस प्रकार जीव विज्ञान और चिकित्सा जैसे अन्य विषयों में शोधकर्ताओं के लिए इलिप्सोमेट्री भी अधिक रोचक होती जा रही है। ये क्षेत्र तकनीक के लिए नई चुनौतियाँ प्रस्तुत करते हैं, जैसे अस्थिर तरल सतहों पर माप और सूक्ष्म इमेजिंग का उपयोग किया जाता हैं।


== व्युत्पत्ति ==
== इटिमोलाॅजी ==
इलिप्सोमेट्री नाम इस तथ्य से उपजा है कि प्रकाश के [[अण्डाकार ध्रुवीकरण]] का उपयोग किया जाता है। स्पेक्ट्रोस्कोपिक शब्द इस तथ्य से संबंधित है कि प्राप्त जानकारी प्रकाश की तरंग दैर्ध्य या ऊर्जा (स्पेक्ट्रा) का एक कार्य है। इस तकनीक को कम से कम 1888 से [[पॉल ड्रूड]] के काम से जाना जाता है<ref>P. Drude, Ueber die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbirender Krystalle, Annalen der Physik, Volume 268, Issue 12, 1887, Pages: 584–625, DOI: 10.1002/andp.18872681205; Ueber Oberflächenschichten. I. Theil, Annalen der Physik,  Volume 272, Issue 2, 1889, Pages: 532–560, DOI: 10.1002/andp.18892720214; Ueber Oberflächenschichten. II. Theil, Annalen der Physik, Volume 272, Issue 4, 1889, Pages: 865–897, DOI: 10.1002/andp.18892720409 (in German).</ref> और आज इसके कई अनुप्रयोग हैं।
इलिप्सोमेट्री मुख्यतः इस तथ्य उत्पादित हुआ हैं कि प्रकाश के [[अण्डाकार ध्रुवीकरण]] का उपयोग किया जाता है। स्पेक्ट्रोस्कोपिक शब्द इस तथ्य से संबंधित है कि प्राप्त जानकारी प्रकाश की तरंग दैर्ध्य या ऊर्जा (स्पेक्ट्रा) का कार्य करता है। इस तकनीक को कम से कम 1888 से [[पॉल ड्रूड]] के कार्य से जाना जाता है<ref>P. Drude, Ueber die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbirender Krystalle, Annalen der Physik, Volume 268, Issue 12, 1887, Pages: 584–625, DOI: 10.1002/andp.18872681205; Ueber Oberflächenschichten. I. Theil, Annalen der Physik,  Volume 272, Issue 2, 1889, Pages: 532–560, DOI: 10.1002/andp.18892720214; Ueber Oberflächenschichten. II. Theil, Annalen der Physik, Volume 272, Issue 4, 1889, Pages: 865–897, DOI: 10.1002/andp.18892720409 (in German).</ref> और आज इसके कई अनुप्रयोग हैं।


इलिप्सोमेट्री शब्द का पहला प्रलेखित उपयोग 1945 में हुआ था।<ref>{{Cite journal|last=Rothen|first=Alexandre|date=1945|title=एलिप्सोमीटर, पतली सतह फिल्मों की मोटाई मापने के लिए एक उपकरण|url=|journal=Review of Scientific Instruments|volume=16|issue=2|pages=26–30|doi=10.1063/1.1770315|bibcode=1945RScI...16...26R |issn=0034-6748}}</ref>{{Primary source inline|date=September 2021}}
इलिप्सोमेट्री शब्द का पहला प्रलेखित उपयोग 1945 में हुआ था।<ref>{{Cite journal|last=Rothen|first=Alexandre|date=1945|title=एलिप्सोमीटर, पतली सतह फिल्मों की मोटाई मापने के लिए एक उपकरण|url=|journal=Review of Scientific Instruments|volume=16|issue=2|pages=26–30|doi=10.1063/1.1770315|bibcode=1945RScI...16...26R |issn=0034-6748}}</ref>


== मूल सिद्धांत ==
== मौलिक सिद्धांत ==
मापा गया संकेत ध्रुवीकरण में परिवर्तन है क्योंकि घटना विकिरण (ज्ञात अवस्था में) ब्याज की भौतिक संरचना ([[परावर्तित प्रकाश]], [[अवशोषण (विद्युत चुम्बकीय विकिरण)]], [[बिखरा हुआ विकिरण]], या [[प्रेषित प्रकाश]]) के साथ संपर्क करता है। ध्रुवीकरण परिवर्तन आयाम अनुपात, Ψ, और चरण अंतर, Δ (नीचे परिभाषित) द्वारा निर्धारित किया जाता है। क्योंकि संकेत मोटाई के साथ-साथ भौतिक गुणों पर निर्भर करता है, इलिप्सोमेट्री सभी प्रकार की फिल्मों की मोटाई और ऑप्टिकल स्थिरांक के संपर्क मुक्त निर्धारण के लिए एक सार्वभौमिक उपकरण हो सकता है।<ref name="TompkinsIrene2005">{{cite book|author1=Harland Tompkins|author2=Eugene A Irene|title=इलिप्सोमेट्री की हैंडबुक|url=https://books.google.com/books?id=6PQf1fSzHHEC|date=6 January 2005|publisher=William Andrew|isbn=978-0-8155-1747-4}}</ref>
इस सिद्धांत के अनुसार मापे गये इस संकेत के ध्रुवीकरण में परिवर्तन होते हैं क्योंकि इस घटना के विकिरण (अर्ताथ ज्ञात अवस्था में) ब्याज की भौतिक संरचना ([[परावर्तित प्रकाश]], [[अवशोषण (विद्युत चुम्बकीय विकिरण)]], [[बिखरा हुआ विकिरण]], या [[प्रेषित प्रकाश]]) के साथ संपर्क करता है। इस ध्रुवीकरण परिवर्तन आयाम अनुपात, Ψ, और चरण अंतर, Δ (नीचे परिभाषित) द्वारा निर्धारित किया जाता है। क्योंकि संकेत मोटाई के साथ-साथ भौतिक गुणों पर निर्भर करता है, इलिप्सोमेट्री सभी प्रकार की फिल्मों की मोटाई और ऑप्टिकल स्थिरांक के संपर्क मुक्त निर्धारण के लिए सार्वभौमिक उपकरण हो सकता है।<ref name="TompkinsIrene2005">{{cite book|author1=Harland Tompkins|author2=Eugene A Irene|title=इलिप्सोमेट्री की हैंडबुक|url=https://books.google.com/books?id=6PQf1fSzHHEC|date=6 January 2005|publisher=William Andrew|isbn=978-0-8155-1747-4}}</ref> इस प्रकार इस प्रकाश के ध्रुवीकरण (तरंगों) के परिवर्तन के विश्लेषण पर, इलिप्सोमेट्री उन परतों के बारे में जानकारी दे सकती है जो जांच प्रकाश की [[तरंग दैर्ध्य]] की तुलना में पतली होती हैं, यहां तक ​​कि एकल परमाणु परत तक भी किया जाता हैं। इलिप्सोमेट्री जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर की जांच कर सकती है, जो ऊपर सूचीबद्ध मूलभूत भौतिक मानकों तक पहुंच प्रदान करती है। यह सामान्यतः एकल परतों या जटिल बहुपरत के समूह के लिए फिल्म की मोटाई को चिह्नित करने के लिए उपयोग किया जाता है, जिसमें कुछ [[एंगस्ट्रॉम]] या [[नैनोमीटर]] के दसवें हिस्से से लेकर कई [[माइक्रोमीटर]] उत्कृष्ट सटीकता के साथ होते हैं।
प्रकाश के ध्रुवीकरण (तरंगों) के परिवर्तन के विश्लेषण पर, इलिप्सोमेट्री उन परतों के बारे में जानकारी दे सकती है जो जांच प्रकाश की [[तरंग दैर्ध्य]] की तुलना में पतली होती हैं, यहां तक ​​कि एक एकल परमाणु परत तक भी। इलिप्सोमेट्री जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर की जांच कर सकती है, जो ऊपर सूचीबद्ध मूलभूत भौतिक मानकों तक पहुंच प्रदान करती है। यह आमतौर पर एकल परतों या जटिल बहुपरत ढेर के लिए फिल्म की मोटाई को चिह्नित करने के लिए उपयोग किया जाता है, जिसमें कुछ [[एंगस्ट्रॉम]] या [[नैनोमीटर]] के दसवें हिस्से से लेकर कई [[माइक्रोमीटर]] उत्कृष्ट सटीकता के साथ होते हैं।


== प्रायोगिक विवरण ==
== प्रायोगिक विवरण ==
आमतौर पर, इलिप्सोमेट्री केवल प्रतिबिंब सेटअप में ही की जाती है। ध्रुवीकरण परिवर्तन की सटीक प्रकृति नमूने के गुणों (मोटाई, जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर) द्वारा निर्धारित की जाती है। हालांकि ऑप्टिकल तकनीकें स्वाभाविक रूप से [[विवर्तन-सीमित प्रणाली]] हैं। विवर्तन-सीमित, इलिप्सोमेट्री चरण (तरंगों) की जानकारी (ध्रुवीकरण स्थिति) का शोषण करती है, और सब-नैनोमीटर रिज़ॉल्यूशन प्राप्त कर सकती है। अपने सरलतम रूप में, यह तकनीक एक नैनोमीटर से लेकर कई माइक्रोमीटर तक की मोटाई वाली पतली फिल्मों पर लागू होती है। अधिकांश मॉडल मानते हैं कि नमूना कम संख्या में असतत, अच्छी तरह से परिभाषित परतों से बना है जो वैकल्पिक रूप से एकरूपता (भौतिकी) और [[ समदैशिक ]] हैं। इन मान्यताओं के उल्लंघन के लिए तकनीक के अधिक उन्नत रूपों की आवश्यकता होती है (नीचे देखें)।
सामान्यतः इलिप्सोमेट्री केवल प्रतिबिंब सेटअप में ही की जाती है। ध्रुवीकरण परिवर्तन की त्रुटिहीन प्रकृति प्रमाण के गुणों (मोटाई, जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर) द्वारा निर्धारित की जाती है। चूंकि ऑप्टिकल तकनीकें स्वाभाविक रूप से [[विवर्तन-सीमित प्रणाली]] हैं। विवर्तन-सीमित, इलिप्सोमेट्री चरण (तरंगों) की जानकारी (ध्रुवीकरण स्थिति) का शोषण करती है, और सब-नैनोमीटर रिज़ॉल्यूशन प्राप्त कर सकती है। अपने सरलतम रूप में, यह तकनीक नैनोमीटर से लेकर कई माइक्रोमीटर तक की मोटाई वाली पतली फिल्मों पर लागू होती है। अधिकांश प्रारूप मानते हैं कि प्रमाण कम संख्या में असतत, अच्छी तरह से परिभाषित परतों से बना है जो वैकल्पिक रूप से एकरूपता (भौतिकी) और [[ समदैशिक |समदैशिक]] हैं। इन मान्यताओं के उल्लंघन के लिए तकनीक के अधिक उन्नत रूपों की आवश्यकता होती है।
 
किसी न किसी नमूना सतह या विषम मीडिया की उपस्थिति के साथ सामग्री के ऑप्टिकल स्थिरांक को खोजने के लिए विसर्जन या बहुकोणीय दीर्घवृत्त के तरीके लागू होते हैं। ऑप्टिकल विस्तार की सतह परत अमानवीय होने की स्थिति में नए पद्धतिगत दृष्टिकोण ढाल तत्वों की भौतिक और तकनीकी विशेषताओं को मापने के लिए प्रतिबिंब इलिप्सोमेट्री के उपयोग की अनुमति देते हैं।<ref>{{cite journal|url=http://ntv.ifmo.ru/en/article/13460/primenenie_metoda_ellipsometrii_v_optikeneodnorodnyh_sred.htm|title=अमानवीय मीडिया के प्रकाशिकी में इलिप्सोमेट्री विधि का अनुप्रयोग।|author1=Gorlyak A.N. |author2=Khramtsovky I.A. |author3=Solonukha V.M. |journal=Scientific and Technical Journal of Information Technologies, Mechanics and Optics|volume=15|issue=3|pages=378–386|year=2015|doi=10.17586/2226-1494-2015-15-3-378-386 |doi-access=free}}</ref>
 


किसी न किसी प्रमाण सतह या विषम मीडिया की उपस्थिति के साथ सामग्री के ऑप्टिकल स्थिरांक को खोजने के लिए विसर्जन या बहुकोणीय दीर्घवृत्त के तरीके लागू होते हैं। ऑप्टिकल विस्तार की सतह परत अमानवीय होने की स्थिति में नए पद्धतिगत दृष्टिकोण ढाल तत्वों की भौतिक और तकनीकी विशेषताओं को मापने के लिए प्रतिबिंब इलिप्सोमेट्री के उपयोग की अनुमति देते हैं।<ref>{{cite journal|url=http://ntv.ifmo.ru/en/article/13460/primenenie_metoda_ellipsometrii_v_optikeneodnorodnyh_sred.htm|title=अमानवीय मीडिया के प्रकाशिकी में इलिप्सोमेट्री विधि का अनुप्रयोग।|author1=Gorlyak A.N. |author2=Khramtsovky I.A. |author3=Solonukha V.M. |journal=Scientific and Technical Journal of Information Technologies, Mechanics and Optics|volume=15|issue=3|pages=378–386|year=2015|doi=10.17586/2226-1494-2015-15-3-378-386 |doi-access=free}}</ref>
=== प्रायोगिक सेटअप ===
=== प्रायोगिक सेटअप ===
[[Image:Ellipsometry setup.svg|thumb|right|400px|इलिप्सोमेट्री प्रयोग का योजनाबद्ध सेटअप]][[विद्युत चुम्बकीय विकिरण]] एक प्रकाश स्रोत द्वारा उत्सर्जित होता है और एक [[ polarizer ]] द्वारा रैखिक रूप से ध्रुवीकृत होता है। यह एक वैकल्पिक कम्पेसाटर ([[वेव प्लेट]], वेव प्लेट) से गुजर सकता है और नमूने पर गिर सकता है। परावर्तन के बाद विकिरण एक कम्पेसाटर (वैकल्पिक) और एक दूसरा पोलराइज़र, जिसे एक विश्लेषक कहा जाता है, से गुजरता है और डिटेक्टर में गिर जाता है। कम्पेसाटर के बजाय, कुछ इलिप्सोमीटर घटना प्रकाश किरण के मार्ग में एक [[फोटोलेस्टिक न्यूनाधिक]] | चरण-मॉड्यूलेटर का उपयोग करते हैं। इलिप्सोमेट्री एक [[ परावर्तक प्रतिबिंब ]] ऑप्टिकल तकनीक है (घटना का कोण (ऑप्टिक्स) प्रतिबिंब के कोण के बराबर होता है)। घटना और परावर्तित किरण घटना के विमान को फैलाती है। प्रकाश जो इस समतल के समान्तर ध्रुवित होता है उसे p-ध्रुवीकृत कहते हैं। एक ध्रुवीकरण दिशा लंबवत को तदनुसार एस-ध्रुवीकृत (एस-ध्रुवीकृत) कहा जाता है। जर्मन से एस का योगदान है{{lang|de|senkrecht}} (लंबवत)।
[[Image:Ellipsometry setup.svg|thumb|right|400px|इलिप्सोमेट्री प्रयोग का योजनाबद्ध सेटअप]][[विद्युत चुम्बकीय विकिरण]] प्रकाश स्रोत द्वारा उत्सर्जित होता है और एक [[ पोलाइजर ]] द्वारा रैखिक रूप से ध्रुवीकृत होता है। यह एक वैकल्पिक कम्पेसाटर ([[तरंग प्लेट]], तरंग प्लेट) से गुजर सकता है और नमूने पर गिर सकता है। इस परावर्तन के पश्चात विकिरण कम्पेसाटर (वैकल्पिक) और एक दूसरा पोलराइज़र, जिसे एक विश्लेषक कहा जाता है, से गुजरता है और डिटेक्टर में गिर जाता है। कम्पेसाटर के अतिरिक्त, कुछ इलिप्सोमीटर घटना प्रकाश किरण के मार्ग में एक [[फोटोलेस्टिक न्यूनाधिक]] | चरण-मॉड्यूलेटर का उपयोग करते हैं। इलिप्सोमेट्री एक [[ परावर्तक प्रतिबिंब ]] ऑप्टिकल तकनीक है (घटना का कोण (ऑप्टिक्स) प्रतिबिंब के कोण के बराबर होता है)। घटना और परावर्तित किरण घटना के विमान को फैलाती है। इस प्रकाश को जो इस समतल के समान्तर ध्रुवित होता है उसे p-ध्रुवीकृत कहते हैं। एक ध्रुवीकरण दिशा लंबवत को तदनुसार एस-ध्रुवीकृत (एस-ध्रुवीकृत) कहा जाता है। जर्मन से एस का योगदान है {{lang|de|senkrecht }} (लंबवत)।


{{See also|Fresnel equations}}
{{See also|फ्रिजनल समीकरण}}


=== डेटा अधिग्रहण ===
=== डेटा अधिग्रहण ===
इलिप्सोमेट्री जटिल परावर्तन अनुपात को मापता है <math>\rho</math> एक प्रणाली का, जिसे आयाम घटक द्वारा पैरामीट्रिज किया जा सकता है <math>\Psi</math> और चरण अंतर <math>\Delta</math>. नमूने पर प्रकाश की घटना की ध्रुवीकरण स्थिति को एस और एपी घटक में विघटित किया जा सकता है (एस घटक घटना के विमान के लंबवत और नमूना सतह के समानांतर दोलन कर रहा है, और पी घटक घटना के विमान के समानांतर दोलन कर रहा है। ). परावर्तन (भौतिकी) के बाद एस और पी घटकों के आयाम और उनके प्रारंभिक मूल्य के लिए सामान्यीकृत, द्वारा निरूपित किया जाता है <math>r_s</math> और <math>r_p</math> क्रमश। अधिकतम अंतर सुनिश्चित करने के लिए घटना के कोण को नमूने के [[ब्रूस्टर कोण]] के करीब चुना जाता है <math>r_p</math> और <math>r_s</math>.<ref>Butt, Hans-Jürgen, Kh Graf, and Michael Kappl. "Measurement of Adsorption Isotherms". Physics and Chemistry of Interfaces. Weinheim: Wiley-VCH, 2006. 206-09.</ref> इलिप्सोमेट्री जटिल परावर्तन अनुपात को मापता है <math>\rho</math> (एक जटिल मात्रा), जो का अनुपात है  <math>r_p</math> ऊपर <math>r_s</math>:
इलिप्सोमेट्री जटिल परावर्तन <math>\rho</math> प्रणाली के अनुपात को मापता है, जिसे आयाम घटक <math>\Psi</math> और चरण अंतर <math>\Delta</math> द्वारा पैरामीट्रिज किया जा सकता है। इस प्रमाण पर प्रकाश की घटना की ध्रुवीकरण स्थिति को एस और एपी घटक में विघटित किया जा सकता है (एस घटक घटना के विमान के लंबवत और प्रमाण सतह के समानांतर दोलन कर रहा है, और पी घटक घटना के विमान के समानांतर दोलन कर रहा है।) इसके परावर्तन (भौतिकी) के पश्चात एस और पी घटकों के आयाम और उनके प्रारंभिक मानों  <math>r_s</math> और <math>r_p</math> क्रमशः के लिए सामान्यीकृत मान द्वारा निरूपित किया जाता है। इसके अधिकतम अंतर सुनिश्चित करने के लिए घटना के कोण को प्रमाण के [[ब्रूस्टर कोण]] <math>r_p</math> और <math>r_s</math> के समीप चुना जाता है।<ref>Butt, Hans-Jürgen, Kh Graf, and Michael Kappl. "Measurement of Adsorption Isotherms". Physics and Chemistry of Interfaces. Weinheim: Wiley-VCH, 2006. 206-09.</ref> इस प्रकार इलिप्सोमेट्री जटिल परावर्तन अनुपात <math>\rho</math> को मापता है, जो <math>r_p</math> ऊपर <math>r_s</math> का अनुपात है :
: <math>\rho = \frac{r_p}{r_s} = \tan \Psi \cdot e^{i\Delta}.</math>
: <math>\rho = \frac{r_p}{r_s} = \tan \Psi \cdot e^{i\Delta}.</math>
इस प्रकार, <math>\tan\Psi</math> प्रतिबिंब (भौतिकी) पर आयाम अनुपात है, और <math>\Delta</math> चरण बदलाव (अंतर) है। (ध्यान दें कि समीकरण का दाहिना पक्ष एक जटिल संख्या का प्रतिनिधित्व करने का एक और तरीका है।) चूंकि इलिप्सोमेट्री दो मानों के अनुपात (या अंतर) को माप रहा है (या तो पूर्ण मान के बजाय), यह बहुत मजबूत, सटीक है, और प्रतिलिपि प्रस्तुत करने योग्य। उदाहरण के लिए, यह बिखराव और उतार-चढ़ाव के प्रति अपेक्षाकृत असंवेदनशील है और इसके लिए किसी मानक नमूने या संदर्भ बीम की आवश्यकता नहीं है।
इस प्रकार, <math>\tan\Psi</math> प्रतिबिंब (भौतिकी) पर आयाम अनुपात है, और <math>\Delta</math> चरण अंतर को प्रकट करता है। (ध्यान दें कि समीकरण का दाहिना पक्ष जटिल संख्या का प्रतिनिधित्व करने का और विधि है।) चूंकि इलिप्सोमेट्री दो मानों के अनुपात (या अंतर) को माप रहा है (या तो पूर्ण मान के अतिरिक्त), यह बहुत शक्तिशाली व त्रुटिहीन है, और प्रतिलिपि प्रस्तुत करने के योग्य माना जाता हैं। इस प्रकार उदाहरण के लिए, यह बिखराव और उतार-चढ़ाव के प्रति अपेक्षाकृत असंवेदनशील है और इसके लिए किसी मानक प्रमाण या संदर्भ बीम की आवश्यकता नहीं है।


=== डेटा विश्लेषण ===
=== डेटा विश्लेषण ===
इलिप्सोमेट्री एक अप्रत्यक्ष विधि है, अर्थात सामान्य तौर पर मापा जाता है <math>\Psi</math> और <math>\Delta</math> सीधे नमूने के ऑप्टिकल स्थिरांक में परिवर्तित नहीं किया जा सकता है। आम तौर पर, एक मॉडल विश्लेषण किया जाना चाहिए, उदाहरण के लिए फोरोही-ब्लूमर मॉडल। यह इलिप्सोमेट्री की एक कमजोरी है। मॉडल शारीरिक रूप से ऊर्जा संक्रमण या डेटा को फिट करने के लिए उपयोग किए जाने वाले मुक्त मापदंडों पर आधारित हो सकते हैं।
इलिप्सोमेट्री अप्रत्यक्ष विधि है, अर्थात सामान्यतः <math>\Psi</math> और <math>\Delta</math> द्वारा मापा जाता है, इस प्रकार सीधे प्रमाण के आधार पर इसको ऑप्टिकल स्थिरांक में परिवर्तित नहीं किया जा सकता है। सामान्यतः प्रारूप विश्लेषण किया जाना चाहिए, उदाहरण के लिए फोरोही-ब्लूमर प्रारूप। यह इलिप्सोमेट्री की कमजोरी है। प्रारूप शारीरिक रूप से ऊर्जा संक्रमण या डेटा को फिट करने के लिए उपयोग किए जाने वाले मुक्त मापदंडों पर आधारित हो सकते हैं।
   
   
का प्रत्यक्ष उलटा <math>\Psi</math> और <math>\Delta</math> आइसोट्रोपिक, विक्षनरी: एकरूपता और असीम रूप से मोटी फिल्मों के बहुत ही सरल मामलों में ही संभव है। अन्य सभी मामलों में एक परत मॉडल स्थापित किया जाना चाहिए, जो ऑप्टिकल स्थिरांक (अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर) और सही परत अनुक्रम सहित नमूने की सभी अलग-अलग परतों की मोटाई के मापदंडों पर विचार करता है। पुनरावृत्त प्रक्रिया (न्यूनतम-वर्ग न्यूनीकरण) का उपयोग करते हुए अज्ञात ऑप्टिकल स्थिरांक और/या मोटाई पैरामीटर भिन्न होते हैं, और <math>\Psi</math> और <math>\Delta</math> मानों की गणना [[फ्रेस्नेल समीकरण]]ों का उपयोग करके की जाती है। परिकलित <math>\Psi</math> और <math>\Delta</math> मूल्य जो प्रयोगात्मक डेटा से मेल खाते हैं, वे नमूने के ऑप्टिकल स्थिरांक और मोटाई पैरामीटर प्रदान करते हैं।
<math>\Psi</math> और <math>\Delta</math> आइसोट्रोपिक, विक्षनरी का प्रत्यक्ष व्युत्क्रम: एकरूपता और असीम रूप से मोटी फिल्मों के बहुत ही सरल स्थितियोंमें ही संभव है। अन्य सभी स्थितियोंमें परत प्रारूप स्थापित किया जाना चाहिए, जो ऑप्टिकल स्थिरांक (अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर) और सही परत अनुक्रम सहित प्रमाण की सभी अलग-अलग परतों की मोटाई के मापदंडों पर विचार करता है। इस प्रकार  पुनरावृत्त प्रक्रिया (न्यूनतम-वर्ग न्यूनीकरण) का उपयोग करते हुए अज्ञात ऑप्टिकल स्थिरांक और/या मोटाई पैरामीटर भिन्न होते हैं, और <math>\Psi</math> और <math>\Delta</math> मानों की गणना [[फ्रेस्नेल समीकरण]] का उपयोग करके की जाती है। इस प्रकार परिकलित <math>\Psi</math> और <math>\Delta</math> मूल्य जो प्रयोगात्मक डेटा से मेल खाते हैं, वे प्रमाण के ऑप्टिकल स्थिरांक और मोटाई पैरामीटर प्रदान करते हैं।


== परिभाषाएँ ==
== परिभाषा ==
आधुनिक इलिप्सोमीटर जटिल उपकरण हैं जिनमें विभिन्न प्रकार के विकिरण स्रोत, डिटेक्टर, डिजिटल इलेक्ट्रॉनिक्स और सॉफ्टवेयर शामिल हैं। नियोजित तरंग दैर्ध्य की सीमा जो दिखाई देती है उससे बहुत अधिक है इसलिए सख्ती से ये अब ऑप्टिकल उपकरण नहीं हैं।
आधुनिक इलिप्सोमीटर जटिल उपकरण हैं जिनमें विभिन्न प्रकार के विकिरण स्रोत, सूचक, डिजिटल इलेक्ट्रॉनिक्स और सॉफ्टवेयर सम्मिलित हैं। नियोजित तरंग दैर्ध्य की सीमा जो दिखाई देती है उससे बहुत अधिक है इसलिए सख्ती से ये अब ऑप्टिकल उपकरण नहीं हैं।


=== एकल-तरंग दैर्ध्य बनाम स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री ===
=== सिंगल वेवलेंथ तथा स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री में अंतर ===
सिंगल-वेवलेंथ इलिप्सोमेट्री एक [[एकरंगा]] प्रकाश स्रोत को नियोजित करती है। यह आमतौर पर दृश्यमान स्पेक्ट्रम वर्णक्रमीय क्षेत्र में एक [[लेज़र]] होता है, उदाहरण के लिए, 632.8 एनएम के तरंग दैर्ध्य के साथ एक HeNe लेज़र। इसलिए, सिंगल-वेवलेंथ इलिप्सोमेट्री को लेजर इलिप्सोमेट्री भी कहा जाता है। लेजर इलिप्सोमेट्री का लाभ यह है कि लेजर बीम को एक छोटे स्थान के आकार पर केंद्रित किया जा सकता है। इसके अलावा, लेज़रों में व्यापक बैंड प्रकाश स्रोतों की तुलना में अधिक शक्ति होती है। इसलिए, इमेजिंग के लिए लेजर इलिप्सोमेट्री का उपयोग किया जा सकता है (नीचे देखें)। हालाँकि, प्रायोगिक आउटपुट के एक सेट तक ही सीमित है <math>\Psi</math> और <math>\Delta</math> मान प्रति माप। स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री (एसई) व्यापक बैंड प्रकाश स्रोतों को नियोजित करती है, जो [[अवरक्त]], दृश्यमान या [[पराबैंगनी]] वर्णक्रमीय क्षेत्र में एक निश्चित वर्णक्रमीय श्रेणी को कवर करती है। इसके द्वारा संबंधित वर्णक्रमीय क्षेत्र में जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर प्राप्त किया जा सकता है, जो बड़ी संख्या में मौलिक भौतिक गुणों तक पहुंच प्रदान करता है। इन्फ्रारेड स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री (IRSE) लैटिस वाइब्रेशनल ([[फोनन]]) और फ्री [[ प्रभारी वाहक ]] ([[plasmon]]) गुणों की जांच कर सकता है। निकट अवरक्त में स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री, पराबैंगनी वर्णक्रमीय क्षेत्र तक दिखाई देती है, पारदर्शिता या नीचे-बैंड गैप | बैंड-गैप क्षेत्र और इलेक्ट्रॉनिक गुणों में अपवर्तक सूचकांक का अध्ययन करती है, उदाहरण के लिए, बैंड-टू-बैंड संक्रमण या [[ exciton ]]।
सिंगल-वेवलेंथ इलिप्सोमेट्री [[एकरंगा]] प्रकाश स्रोत को नियोजित करती है। यह सामान्यतः दृश्यमान स्पेक्ट्रम वर्णक्रमीय क्षेत्र में [[लेज़र]] होता है, उदाहरण के लिए, 632.8 एनएम के तरंग दैर्ध्य के साथ HeNe लेज़र इसका मुख्य उदाहरण हैं। इसलिए सिंगल-वेवलेंथ इलिप्सोमेट्री को लेजर इलिप्सोमेट्री भी कहा जाता है। इस प्रकार लेजर इलिप्सोमेट्री का लाभ यह है कि लेजर बीम को छोटे स्थान के आकार पर केंद्रित किया जा सकता है। इसके अतिरिक्त, लेज़रों में व्यापक बैंड प्रकाश स्रोतों की तुलना में अधिक शक्ति होती है। इसलिए इमेजिंग के लिए लेजर इलिप्सोमेट्री का उपयोग किया जा सकता है। चूँकि इस प्रकार प्रायोगिक आउटपुट के समूह तक ही सीमित है <math>\Psi</math> और <math>\Delta</math> मान प्रति माप। स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री (एसई) व्यापक बैंड प्रकाश स्रोतों को नियोजित करती है, जो [[अवरक्त]], दृश्यमान या [[पराबैंगनी]] वर्णक्रमीय क्षेत्र में निश्चित वर्णक्रमीय श्रेणी को कवर करती है। इसके द्वारा संबंधित वर्णक्रमीय क्षेत्र में जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर प्राप्त किया जा सकता है, जो बड़ी संख्या में मौलिक भौतिक गुणों तक पहुंच प्रदान करता है। इन्फ्रारेड स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री (IRSE) लैटिस वाइब्रेशनल ([[फोनन]]) और फ्री [[ प्रभारी वाहक |प्रभारी वाहक]] ([[plasmon|प्लासमौन]]) गुणों की जांच कर सकता है। निकट अवरक्त में स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री, पराबैंगनी वर्णक्रमीय क्षेत्र तक दिखाई देती है, पारदर्शिता या नीचे-बैंड गैप या बैंड-गैप क्षेत्र और इलेक्ट्रॉनिक गुणों में अपवर्तक सूचकांक का अध्ययन करती है, उदाहरण के लिए, बैंड-टू-बैंड संक्रमण या [[ exciton |एक्साइशन]] इसका उदाहरण हैं


=== मानक बनाम सामान्यीकृत इलिप्सोमेट्री (अनिसोट्रॉपी) ===
=== मानक तथा सामान्यीकृत इलिप्सोमेट्री (अनिसोट्रॉपी) में अंतर ===
मानक इलिप्सोमेट्री (या सिर्फ लघु 'एलीप्सोमेट्री') लागू किया जाता है, जब न तो ध्रुवीकृत प्रकाश को पी ध्रुवीकृत प्रकाश में परिवर्तित किया जाता है और न ही इसके विपरीत। यह वैकल्पिक रूप से आइसोट्रोपिक नमूनों का मामला है, उदाहरण के लिए, [[घन क्रिस्टल]] संरचना के साथ अनाकार सामग्री या क्रिस्टलीय सामग्री। मानक इलिप्सोमेट्री विशेष मामले में वैकल्पिक रूप से एक-[[अक्षीय]] नमूनों के लिए भी पर्याप्त है, जब ऑप्टिकल अक्ष को सामान्य सतह के समानांतर संरेखित किया जाता है। अन्य सभी मामलों में, जब s ध्रुवीकृत प्रकाश को p ध्रुवीकृत प्रकाश में परिवर्तित किया जाता है और/या इसके विपरीत, सामान्यीकृत इलिप्सोमेट्री दृष्टिकोण को लागू किया जाना चाहिए। उदाहरण मनमाने ढंग से संरेखित, वैकल्पिक रूप से एक-अक्षीय नमूने या वैकल्पिक रूप से द्विअक्षीय नमूने हैं।
मानक इलिप्सोमेट्री (या सिर्फ लघु 'एलीप्सोमेट्री') लागू किया जाता है, जब न तो ध्रुवीकृत प्रकाश को पी ध्रुवीकृत प्रकाश में परिवर्तित किया जाता है और न ही इसके विपरीत करता हैं। यह वैकल्पिक रूप से आइसोट्रोपिक प्रमाणों की स्थिति है, उदाहरण के लिए, [[घन क्रिस्टल]] संरचना के साथ अनाकार सामग्री या क्रिस्टलीय सामग्री के रूप में इसका उपयोग किया जाता हैं। इस प्रकार मानक इलिप्सोमेट्री विशेष स्थितियोंमें वैकल्पिक रूप से एक-[[अक्षीय]] प्रमाणों के लिए भी पर्याप्त है, जब ऑप्टिकल अक्ष को सामान्य सतह के समानांतर संरेखित किया जाता है। अन्य सभी स्थितियोंमें, जब s ध्रुवीकृत प्रकाश को p ध्रुवीकृत प्रकाश में परिवर्तित किया जाता है और इसके विपरीत, सामान्यीकृत इलिप्सोमेट्री दृष्टिकोण को लागू किया जाना चाहिए। उदाहरण मनमाने ढंग से संरेखित, वैकल्पिक रूप से एक-अक्षीय प्रमाण या वैकल्पिक रूप से द्विअक्षीय प्रमाण हैं।


===[[जोन्स मैट्रिक्स]] बनाम [[मुलर मैट्रिक्स]] औपचारिकता (विध्रुवण)===
===[[जोन्स मैट्रिक्स|जोन्स आव्यूह]] तथा [[मुलर मैट्रिक्स|म्यूलर आव्यूह]] की औपचारिकता अर्ताथ विध्रुवीकरण में अंतर===
आमतौर पर गणितीय रूप से वर्णन करने के दो अलग-अलग तरीके हैं कि कैसे एक विद्युत चुम्बकीय तरंग दीर्घवृत्ताभ (नमूना सहित) के भीतर तत्वों के साथ इंटरैक्ट करती है: जोन्स मैट्रिक्स और मुलर मैट्रिक्स औपचारिकताएं। जोन्स मैट्रिक्स औपचारिकता में, विद्युत चुम्बकीय तरंग को जोन्स वेक्टर द्वारा विद्युत क्षेत्र के लिए दो ऑर्थोगोनल जटिल-मूल्यवान प्रविष्टियों के साथ वर्णित किया गया है (आमतौर पर <math>E_x</math> और <math>E_y</math>), और उस पर एक ऑप्टिकल तत्व (या नमूना) का प्रभाव जटिल-मूल्यवान 2×2 जोन्स मैट्रिक्स द्वारा वर्णित है। मुलर मैट्रिक्स औपचारिकता में, विद्युत चुम्बकीय तरंग को [[स्टोक्स वेक्टर]] द्वारा चार वास्तविक-मूल्यवान प्रविष्टियों के साथ वर्णित किया गया है, और उनके परिवर्तन को वास्तविक-मूल्यवान 4x4 म्यूएलर मैट्रिक्स द्वारा वर्णित किया गया है। जब कोई विध्रुवण नहीं होता है तो दोनों औपचारिकताएं पूरी तरह से संगत होती हैं। इसलिए, गैर-विध्रुवण नमूनों के लिए, सरल जोन्स मैट्रिक्स औपचारिकता पर्याप्त है। यदि नमूना विध्रुवण कर रहा है तो मुलर मैट्रिक्स औपचारिकता का उपयोग किया जाना चाहिए, क्योंकि यह विध्रुवण की मात्रा भी देता है। विध्रुवण के कारण, उदाहरण के लिए, मोटाई गैर-समानता या पारदर्शी सब्सट्रेट से बैकसाइड-प्रतिबिंब हैं।
सामान्यतः गणितीय रूप से वर्णन करने के दो अलग-अलग तरीके हैं कि कैसे विद्युत चुम्बकीय तरंग दीर्घवृत्ताभ (प्रमाण सहित) के भीतर तत्वों के साथ इंटरैक्ट करती है: जोन्स आव्यूह और मुलर आव्यूह औपचारिकताएं। जोन्स आव्यूह औपचारिकता में, विद्युत चुम्बकीय तरंग को जोन्स वेक्टर द्वारा विद्युत क्षेत्र के लिए दो ऑर्थोगोनल जटिल-मूल्यवान प्रविष्टियों के साथ वर्णित किया गया है (सामान्यतः <math>E_x</math> और <math>E_y</math>), और उस पर ऑप्टिकल तत्व (या प्रमाण) का प्रभाव जटिल-मूल्यवान 2×2 जोन्स आव्यूह द्वारा वर्णित है। मुलर आव्यूह औपचारिकता में, विद्युत चुम्बकीय तरंग को [[स्टोक्स वेक्टर]] द्वारा चार वास्तविक-मूल्यवान प्रविष्टियों के साथ वर्णित किया गया है, और उनके परिवर्तन को वास्तविक-मूल्यवान 4x4 म्यूएलर आव्यूह द्वारा वर्णित किया गया है। जब कोई विध्रुवण नहीं होता है तो दोनों औपचारिकताएं पूर्ण रूप से संगत होती हैं। इसलिए गैर-विध्रुवण प्रमाणों के लिए, सरल जोन्स आव्यूह औपचारिकता पर्याप्त है। यदि प्रमाण विध्रुवण कर रहा है तो मुलर आव्यूह औपचारिकता का उपयोग किया जाना चाहिए, क्योंकि यह विध्रुवण की मात्रा भी देता है। विध्रुवण के कारण, उदाहरण के लिए, मोटाई गैर-समानता या पारदर्शी सब्सट्रेट से बैकसाइड-प्रतिबिंब हैं।


== उन्नत प्रयोगात्मक दृष्टिकोण ==
== उन्नत प्रयोगात्मक दृष्टिकोण ==


=== [[इमेजिंग इलिप्सोमेट्री]] ===
=== [[इमेजिंग इलिप्सोमेट्री|काल्पनिक इलिप्सोमेट्री]] ===
इलिप्सोमेट्री को एक डिटेक्टर के रूप में चार्ज-युग्मित डिवाइस कैमरा का उपयोग करके इमेजिंग इलिप्सोमेट्री के रूप में भी किया जा सकता है। यह नमूने की वास्तविक समय विपरीत छवि प्रदान करता है, जो फिल्म की मोटाई और अपवर्तक सूचकांक के बारे में जानकारी प्रदान करता है। उन्नत इमेजिंग इलिप्सोमीटर तकनीक क्लासिकल नल इलिप्सोमेट्री और रीयल-टाइम इलिप्सोमेट्रिक कंट्रास्ट इमेजिंग के सिद्धांत पर काम करती है। इमेजिंग इलिप्सोमेट्री अशक्तता की अवधारणा पर आधारित है। इलिप्सोमेट्री में, जांच की जा रही फिल्म को एक परावर्तक सब्सट्रेट पर रखा जाता है। फिल्म और सब्सट्रेट में अलग-अलग अपवर्तक सूचकांक होते हैं। फिल्म की मोटाई के बारे में डेटा प्राप्त करने के लिए, सब्सट्रेट से परावर्तित प्रकाश को अशक्त होना चाहिए। विश्लेषक और पोलराइज़र को समायोजित करके अशक्तता प्राप्त की जाती है ताकि सब्सट्रेट से सभी परावर्तित प्रकाश बुझ जाए। अपवर्तक सूचकांकों में अंतर के कारण, यह नमूना बहुत उज्ज्वल और स्पष्ट रूप से दिखाई देने की अनुमति देगा। [[प्रकाश स्रोत]] में वांछित तरंग दैर्ध्य का एक मोनोक्रोमैटिक लेजर होता है।<ref>{{cite book | last=Tompkins | first=Harland | year=2005 | title= इलिप्सोमेट्री की हैंडबुक| url=https://archive.org/details/handbookellipsom00tomp | url-access=limited | pages= [https://archive.org/details/handbookellipsom00tomp/page/n29 13]| bibcode=2005hael.book.....T }}</ref> एक सामान्य तरंगदैर्घ्य जिसका उपयोग किया जाता है वह है 532 nm हरा लेज़र प्रकाश। चूंकि केवल प्रकाश माप की तीव्रता की आवश्यकता होती है, लगभग किसी भी प्रकार के कैमरे को सीसीडी के रूप में लागू किया जा सकता है, जो भागों से एक दीर्घवृत्त बनाने के लिए उपयोगी होता है। आमतौर पर, इमेजिंग इलिप्सोमीटर इस तरह से कॉन्फ़िगर किए जाते हैं ताकि लेजर (एल) प्रकाश की किरण को आग लगा दे जो तुरंत एक रैखिक ध्रुवीकरण (पी) से गुजरता है। रैखिक रूप से ध्रुवीकृत प्रकाश तब एक चौथाई तरंग दैर्ध्य कम्पेसाटर (C) से होकर गुजरता है जो प्रकाश को अण्डाकार रूप से ध्रुवीकृत प्रकाश में बदल देता है।<ref name="auto">{{cite book | last=Tompkins | first=Harland | year=2005 | title= इलिप्सोमेट्री की हैंडबुक| url=https://archive.org/details/handbookellipsom00tomp | url-access=limited | pages=[https://archive.org/details/handbookellipsom00tomp/page/n343 329]| bibcode=2005hael.book.....T }}</ref> यह अण्डाकार रूप से ध्रुवीकृत प्रकाश तब नमूना (एस) को प्रतिबिंबित करता है, विश्लेषक (ए) के माध्यम से गुजरता है और सीसीडी कैमरे पर एक लंबी कार्य दूरी के उद्देश्य से चित्रित किया जाता है। यहाँ विश्लेषक P के समान एक अन्य ध्रुवीकरणकर्ता है, हालाँकि, यह ध्रुवीकरणकर्ता ध्रुवीकरण में परिवर्तन की मात्रा निर्धारित करने में मदद करता है और इस प्रकार इसे विश्लेषक नाम दिया जाता है। इस डिज़ाइन को आमतौर पर एलपीसीएसए कॉन्फ़िगरेशन के रूप में जाना जाता है।
इलिप्सोमेट्री को सूचक के रूप में चार्ज-युग्मित डिवाइस कैमरा का उपयोग करके इमेजिंग इलिप्सोमेट्री के रूप में भी किया जा सकता है। यह प्रमाण की वास्तविक समय विपरीत छवि प्रदान करता है, जो फिल्म की मोटाई और अपवर्तक सूचकांक के बारे में जानकारी प्रदान करता है। इस प्रकार उन्नत इमेजिंग इलिप्सोमीटर तकनीक मौलिक रूप से नल इलिप्सोमेट्री और रीयल-टाइम इलिप्सोमेट्रिक कंट्रास्ट इमेजिंग के सिद्धांत पर कार्य करती है। इमेजिंग इलिप्सोमेट्री अशक्तता की अवधारणा पर आधारित है। इलिप्सोमेट्री में, जांच की जा रही फिल्म को परावर्तक सब्सट्रेट पर रखा जाता है। फिल्म और सब्सट्रेट में अलग-अलग अपवर्तक सूचकांक होते हैं। फिल्म की मोटाई के बारे में डेटा प्राप्त करने के लिए, सब्सट्रेट से परावर्तित प्रकाश को अशक्त होना चाहिए। विश्लेषक और पोलराइज़र को समायोजित करके अशक्तता प्राप्त की जाती है जिससे कि सब्सट्रेट से सभी परावर्तित प्रकाश बुझ जाए। अपवर्तक सूचकांकों में अंतर के कारण, यह प्रमाण बहुत उज्ज्वल और स्पष्ट रूप से दिखाई देने की अनुमति देगा। [[प्रकाश स्रोत]] में वांछित तरंग दैर्ध्य का मोनोक्रोमैटिक लेजर होता है।<ref>{{cite book | last=Tompkins | first=Harland | year=2005 | title= इलिप्सोमेट्री की हैंडबुक| url=https://archive.org/details/handbookellipsom00tomp | url-access=limited | pages= [https://archive.org/details/handbookellipsom00tomp/page/n29 13]| bibcode=2005hael.book.....T }}</ref> सामान्य तरंगदैर्घ्य जिसका उपयोग 532 nm हरे लेज़र प्रकाश द्वारा किया जाता है चूंकि केवल प्रकाश माप की तीव्रता की आवश्यकता होती है, लगभग किसी भी प्रकार के कैमरे को सीसीडी के रूप में लागू किया जा सकता है, जो भागों से दीर्घवृत्त बनाने के लिए उपयोगी होता है। सामान्यतः, इमेजिंग इलिप्सोमीटर इस तरह से कॉन्फ़िगर किए जाते हैं जिससे कि लेजर (एल) प्रकाश की किरण को आग लगा दे जो तुरंत रैखिक ध्रुवीकरण (पी) से गुजरता है। रैखिक रूप से ध्रुवीकृत प्रकाश तब चौथाई तरंग दैर्ध्य कम्पेसाटर (सी) से होकर गुजरता है जो प्रकाश को अण्डाकार रूप से ध्रुवीकृत प्रकाश में बदल देता है।<ref name="auto">{{cite book | last=Tompkins | first=Harland | year=2005 | title= इलिप्सोमेट्री की हैंडबुक| url=https://archive.org/details/handbookellipsom00tomp | url-access=limited | pages=[https://archive.org/details/handbookellipsom00tomp/page/n343 329]| bibcode=2005hael.book.....T }}</ref> यह अण्डाकार रूप से ध्रुवीकृत प्रकाश तब प्रमाण (एस) को प्रतिबिंबित करता है, विश्लेषक (ए) के माध्यम से गुजरता है और सीसीडी कैमरे पर लंबी कार्य दूरी के उद्देश्य से चित्रित किया जाता है। यहाँ विश्लेषक P के समान अन्य ध्रुवीकरणकर्ता है, चूँकि, यह ध्रुवीकरणकर्ता ध्रुवीकरण में परिवर्तन की मात्रा निर्धारित करने में मदद करता है और इस प्रकार इसे विश्लेषक नाम दिया जाता है। इस डिज़ाइन को सामान्यतः एलपीसीएसए कॉन्फ़िगरेशन के रूप में जाना जाता है।
 
पी और सी के कोणों का अभिविन्यास इस तरह से चुना जाता है कि अण्डाकार रूप से ध्रुवीकृत प्रकाश पूरी तरह से रैखिक रूप से ध्रुवीकृत हो जाता है, जब यह प्रमाण से परिलक्षित होता है। भविष्य की गणना के सरलीकरण के लिए, कम्पेसाटर को लेजर बीम की घटना के तल के सापेक्ष 45 डिग्री के कोण पर तय किया जा सकता है।<ref name="auto"/> इस सेट अप के लिए अशक्त स्थितियों को प्राप्त करने के लिए विश्लेषक और ध्रुवीकरणकर्ता के रोटेशन की आवश्यकता होती है। इलिप्सोमेट्रिक अशक्त स्थिति तब प्राप्त होती है जब A पूर्ण विनाशकारी हस्तक्षेप को प्राप्त करने वाले परावर्तित प्रकाश के ध्रुवीकरण अक्ष के संबंध में लंबवत होता है, अर्थात, वह स्थिति जिस पर CCD कैमरे में पूर्ण न्यूनतम प्रकाश प्रवाह का पता लगाया जाता है। इस सामग्री के Ψ और Δ मानों को निर्धारित करने के लिए प्राप्त P, C, और A के कोणों का उपयोग किया जाता है।<ref name="auto"/> इस प्रकार <math>\Psi = A</math> और <math>\Delta = 2P + \pi/2,</math>


पी और सी के कोणों का अभिविन्यास इस तरह से चुना जाता है कि अण्डाकार रूप से ध्रुवीकृत प्रकाश पूरी तरह से रैखिक रूप से ध्रुवीकृत हो जाता है, जब यह नमूना से परिलक्षित होता है। भविष्य की गणना के सरलीकरण के लिए, कम्पेसाटर को लेजर बीम की घटना के तल के सापेक्ष 45 डिग्री के कोण पर तय किया जा सकता है।<ref name="auto"/>  इस सेट अप के लिए अशक्त स्थितियों को प्राप्त करने के लिए विश्लेषक और ध्रुवीकरणकर्ता के रोटेशन की आवश्यकता होती है। इलिप्सोमेट्रिक अशक्त स्थिति तब प्राप्त होती है जब A पूर्ण विनाशकारी हस्तक्षेप को प्राप्त करने वाले परावर्तित प्रकाश के ध्रुवीकरण अक्ष के संबंध में लंबवत होता है, अर्थात, वह स्थिति जिस पर CCD कैमरे में पूर्ण न्यूनतम प्रकाश प्रवाह का पता लगाया जाता है। सामग्री के Ψ और Δ मानों को निर्धारित करने के लिए प्राप्त P, C, और A के कोणों का उपयोग किया जाता है।<ref name="auto"/>: <math>\Psi = A</math> और <math>\Delta = 2P + \pi/2,</math>
समीकरण में जहाँ A और P क्रमशः अशक्त परिस्थितियों में विश्लेषक और ध्रुवक के कोण हैं। विश्लेषक और पोलराइज़र को घुमाकर और प्रतिबिंब पर प्रकाश की तीव्रता में परिवर्तन को मापकर, कम्प्यूटरीकृत ऑप्टिकल मॉडलिंग के उपयोग से मापे गए डेटा के विश्लेषण से स्थानिक रूप से हल की गई फिल्म मोटाई और जटिल अपवर्तक सूचकांक मूल्यों में कटौती हो सकती है।
जहाँ A और P क्रमशः अशक्त परिस्थितियों में विश्लेषक और ध्रुवक के कोण हैं। विश्लेषक और पोलराइज़र को घुमाकर और छवि पर प्रकाश की तीव्रता में परिवर्तन को मापकर, कम्प्यूटरीकृत ऑप्टिकल मॉडलिंग के उपयोग से मापे गए डेटा के विश्लेषण से स्थानिक रूप से हल की गई फिल्म मोटाई और जटिल अपवर्तक सूचकांक मूल्यों में कटौती हो सकती है।


इस तथ्य के कारण कि इमेजिंग एक कोण पर की जाती है, दृश्य के पूरे क्षेत्र की केवल एक छोटी सी रेखा वास्तव में फोकस में होती है। फ़ोकस में रेखा को फ़ोकस समायोजित करके दृश्य क्षेत्र के साथ-साथ ले जाया जा सकता है। रुचि के पूरे क्षेत्र का विश्लेषण करने के लिए, प्रत्येक स्थान पर लिए गए फ़ोटो के साथ फ़ोकस को धीरे-धीरे रुचि के क्षेत्र में स्थानांतरित किया जाना चाहिए। सभी छवियों को तब नमूने की एकल, फोकस छवि में संकलित किया जाता है।
इस तथ्य के कारण कि इमेजिंग कोण पर की जाती है, दृश्य के पूरे क्षेत्र की केवल छोटी सी रेखा वास्तव में फोकस में होती है। फ़ोकस में रेखा को फ़ोकस समायोजित करके दृश्य क्षेत्र के साथ-साथ ले जाया जा सकता है। रुचि के पूरे क्षेत्र का विश्लेषण करने के लिए, प्रत्येक स्थान पर लिए गए फ़ोटो के साथ फ़ोकस को धीरे-धीरे रुचि के क्षेत्र में स्थानांतरित किया जाना चाहिए। सभी प्रतिबिंबों को तब प्रमाण की एकल, फोकस छवि में संकलित किया जाता है।


=== [[साइट पर]] इलिप्सोमेट्री ===
=== इन सिटू इलिप्सोमेट्री ===
सीटू इलिप्सोमेट्री एक नमूने की संशोधन प्रक्रिया के दौरान गतिशील माप को संदर्भित करता है। इस प्रक्रिया का अध्ययन करने के लिए इस्तेमाल किया जा सकता है, उदाहरण के लिए, एक पतली फिल्म की वृद्धि,<ref>P. Koirala, D. Attygalle, P. Aryal, P. Pradhan, J. Chen, S. Marsillac, A.S. Ferlauto, N.J. Podraza, R.W. Collins, "Real time spectroscopic ellipsometry for analysis and control of thin film
इन सिटू इलिप्सोमेट्री प्रमाण की संशोधन प्रक्रिया के समय गतिशील माप को संदर्भित करता है। इस प्रक्रिया का अध्ययन करने के लिए उपयोग किया जा सकता है, उदाहरण के लिए, पतली फिल्म की वृद्धि,<ref>P. Koirala, D. Attygalle, P. Aryal, P. Pradhan, J. Chen, S. Marsillac, A.S. Ferlauto, N.J. Podraza, R.W. Collins, "Real time spectroscopic ellipsometry for analysis and control of thin film
polycrystalline semiconductor deposition in photovoltaics"</ref> एयर-लिक्विड इंटरफेस में कैल्शियम फॉस्फेट मिनरलाइजेशन सहित,<ref>R. Shahlori, A. R. J. Nelson, G. I. N. Waterhouse, D. J. McGillivray, "Morphological, chemical and kinetic characterisation of zein protein-induced biomimetic calcium phosphate films"</ref> नमूने की नक़्क़ाशी या सफाई। सीटू इलिप्सोमेट्री मापन द्वारा मौलिक प्रक्रिया मापदंडों को निर्धारित करना संभव है, जैसे कि विकास या ईच दर, समय के साथ ऑप्टिकल गुणों की भिन्नता। सीटू इलिप्सोमेट्री माप में कई अतिरिक्त विचारों की आवश्यकता होती है: नमूना स्थान आमतौर पर प्रक्रिया कक्ष के बाहर पूर्व सीटू माप के लिए आसानी से सुलभ नहीं होता है। इसलिए, यांत्रिक सेटअप को समायोजित करना पड़ता है, जिसमें प्रकाश किरण को पुनर्निर्देशित करने या ध्यान केंद्रित करने के लिए अतिरिक्त ऑप्टिकल तत्व (दर्पण, प्रिज्म या लेंस) शामिल हो सकते हैं। क्योंकि प्रक्रिया के दौरान पर्यावरण की स्थिति कठोर हो सकती है, इलिप्सोमेट्री सेटअप के संवेदनशील ऑप्टिकल तत्वों को गर्म क्षेत्र से अलग किया जाना चाहिए। सबसे सरल मामले में यह ऑप्टिकल व्यू पोर्ट्स द्वारा किया जाता है, हालांकि (ग्लास-) विंडो के स्ट्रेन प्रेरित बायरफ्रिंजेंस को ध्यान में रखा जाना चाहिए या कम किया जाना चाहिए। इसके अलावा, नमूने ऊंचे तापमान पर हो सकते हैं, जो कमरे के तापमान पर नमूनों की तुलना में अलग-अलग ऑप्टिकल गुणों का तात्पर्य है। इन सभी समस्याओं के बावजूद, पतली फिल्म जमाव और संशोधन उपकरणों के लिए प्रक्रिया नियंत्रण तकनीक के रूप में सीटू इलिप्सोमेट्री अधिक से अधिक महत्वपूर्ण हो जाती है। सीटू इलिप्सोमीटर एकल-तरंग दैर्ध्य या स्पेक्ट्रोस्कोपिक प्रकार के हो सकते हैं। सीटू इलिप्सोमीटर में स्पेक्ट्रोस्कोपिक मल्टीचैनल डिटेक्टरों का उपयोग करते हैं, उदाहरण के लिए सीसीडी डिटेक्टर, जो एक साथ अध्ययन किए गए वर्णक्रमीय रेंज में सभी तरंग दैर्ध्य के लिए इलिप्सोमेट्रिक पैरामीटर को मापते हैं।
polycrystalline semiconductor deposition in photovoltaics"</ref> एयर-लिक्विड इंटरफेस में कैल्शियम फॉस्फेट मिनरलाइजेशन सहित,<ref>R. Shahlori, A. R. J. Nelson, G. I. N. Waterhouse, D. J. McGillivray, "Morphological, chemical and kinetic characterisation of zein protein-induced biomimetic calcium phosphate films"</ref> प्रमाण की संरचना या सफाई को प्रकट करता हैं। इन सिटू इलिप्सोमेट्री मापन द्वारा मौलिक प्रक्रिया मापदंडों को निर्धारित करना संभव है, जैसे कि विकास या ईच दर, समय के साथ ऑप्टिकल गुणों की भिन्नता। इन सिटू इलिप्सोमेट्री माप में कई अतिरिक्त विचारों की आवश्यकता होती है: प्रमाण स्थान सामान्यतः प्रक्रिया कक्ष के बाहर पूर्व इन सिटू माप के लिए आसानी से सुलभ नहीं होता है। इसलिए, यांत्रिक सेटअप को समायोजित करना पड़ता है, जिसमें प्रकाश किरण को पुनर्निर्देशित करने या ध्यान केंद्रित करने के लिए अतिरिक्त ऑप्टिकल तत्व (दर्पण, प्रिज्म या लेंस) सम्मिलित हो सकते हैं। क्योंकि प्रक्रिया के समय पर्यावरण की स्थिति कठोर हो सकती है, इलिप्सोमेट्री सेटअप के संवेदनशील ऑप्टिकल तत्वों को गर्म क्षेत्र से अलग किया जाना चाहिए। इस प्रकार सबसे सरल स्थितियोंमें यह ऑप्टिकल व्यू पोर्ट्स द्वारा किया जाता है, चूंकि ग्लास विंडो के तनाव को प्रेरित बायरफ्रिंजेंस को ध्यान में रखा जाना चाहिए या कम किया जाना चाहिए। इसके अतिरिक्त, प्रमाण ऊंचे तापमान पर हो सकते हैं, जो कमरे के तापमान पर प्रमाणों की तुलना में अलग-अलग ऑप्टिकल गुणों का तात्पर्य है। इन सभी समस्याओं के अतिरिक्त, पतली फिल्म जमाव और संशोधन उपकरणों के लिए प्रक्रिया नियंत्रण तकनीक के रूप में इन सिटू इलिप्सोमेट्री अधिक से अधिक महत्वपूर्ण हो जाती है। इस प्रकार इन सिटू इलिप्सोमीटर एकल-तरंग दैर्ध्य या स्पेक्ट्रोस्कोपिक प्रकार के हो सकते हैं। इन सिटू इलिप्सोमीटर में स्पेक्ट्रोस्कोपिक मल्टीचैनल सूचकों का उपयोग करते हैं, उदाहरण के लिए सीसीडी सूचक, जो साथ अध्ययन किए गए वर्णक्रमीय रेंज में सभी तरंग दैर्ध्य के लिए इलिप्सोमेट्रिक पैरामीटर को मापते हैं।


=== इलिप्सोमेट्रिक पोरोसिमेट्री ===
=== इलिप्सोमेट्रिक पोरोसिमेट्री ===
इलिप्सोमेट्रिक पोरोसिमेट्री वायुमंडलीय दबाव पर या आवेदन के आधार पर कम दबाव के तहत वाष्पशील प्रजातियों के सोखना और desorption के दौरान ऑप्टिकल गुणों और सामग्रियों की मोटाई में परिवर्तन को मापता है।<ref>{{Cite web|url=https://semilab.com/category/products/ellipsometric-porosimetry-rd|title=Semilab &#124; Products|website=semilab.com}}</ref> ईपी तकनीक बहुत पतली फिल्मों की सरंध्रता को 10 एनएम तक मापने की क्षमता, इसकी प्रजनन क्षमता और माप की गति में अद्वितीय है। पारंपरिक पोरोसिमीटर की तुलना में, इलिप्सोमीटर पोरोसिमीटर बहुत पतली फिल्म ताकना आकार और ताकना आकार वितरण माप के लिए उपयुक्त हैं। फिल्म सरंध्रता सिलिकॉन आधारित तकनीक में कम-κ डाइइलेक्ट्रिक | कम-κ सामग्री, जैविक उद्योग (एनकैप्सुलेटेड कार्बनिक प्रकाश उत्सर्जक डायोड) के साथ-साथ [[ सन जेल ]] तकनीकों का उपयोग करके कोटिंग उद्योग में एक महत्वपूर्ण कारक है।
इलिप्सोमेट्रिक पोरोसिमेट्री वायुमंडलीय दबाव पर या आवेदन के आधार पर कम दबाव के अनुसार वाष्पशील प्रजातियों के सोखना और अवशोषण के समय ऑप्टिकल गुणों और सामग्रियों की मोटाई में परिवर्तन को मापता है।<ref>{{Cite web|url=https://semilab.com/category/products/ellipsometric-porosimetry-rd|title=Semilab &#124; Products|website=semilab.com}}</ref> ईपी तकनीक बहुत पतली फिल्मों की सरंध्रता को 10 एनएम तक मापने की क्षमता, इसकी प्रजनन क्षमता और माप की गति में अद्वितीय है। पारंपरिक पोरोसिमीटर की तुलना में, इलिप्सोमीटर पोरोसिमीटर बहुत पतली फिल्म ताकना आकार और ताकना आकार वितरण माप के लिए उपयुक्त हैं। फिल्म सरंध्रता सिलिकॉन आधारित तकनीक में कम-κ डाइइलेक्ट्रिक या कम-κ सामग्री, जैविक उद्योग (एनकैप्सुलेटेड कार्बनिक प्रकाश उत्सर्जक डायोड) के साथ-साथ [[ सन जेल |सन जेल]] तकनीकों का उपयोग करके कोटिंग उद्योग में महत्वपूर्ण कारक है।


=== मैग्नेटो-ऑप्टिक सामान्यीकृत इलिप्सोमेट्री ===
=== चुम्बकीय ऑप्टिक्स की सामान्यीकृत इलिप्सोमेट्री ===
मैग्नेटो-ऑप्टिक सामान्यीकृत इलिप्सोमेट्री (MOGE) [[विद्युत कंडक्टर]] नमूनों में फ्री चार्ज वाहक गुणों का अध्ययन करने के लिए एक उन्नत इन्फ्रारेड स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री तकनीक है। बाहरी [[चुंबकीय क्षेत्र]] को लागू करके स्वतंत्र रूप से [[इलेक्ट्रॉन घनत्व]], ऑप्टिकल [[इलेक्ट्रॉन गतिशीलता]] पैरामीटर और चार्ज वाहकों के प्रभावी द्रव्यमान (ठोस-राज्य भौतिकी) पैरामीटर को निर्धारित करना संभव है। चुंबकीय क्षेत्र के बिना तीन आवेश वाहक मापदंडों में से केवल दो को स्वतंत्र रूप से निकाला जा सकता है।
मैग्नेटो-ऑप्टिक सामान्यीकृत इलिप्सोमेट्री (एमओजीई) [[विद्युत कंडक्टर]] प्रमाणों में मुक्त आवेश वाहक गुणों का अध्ययन करने के लिए उन्नत इन्फ्रारेड स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री तकनीक है। इस कारण बाहरी [[चुंबकीय क्षेत्र]] को लागू करके स्वतंत्र रूप से [[इलेक्ट्रॉन घनत्व]], ऑप्टिकल [[इलेक्ट्रॉन गतिशीलता]] पैरामीटर और चार्ज वाहकों के प्रभावी द्रव्यमान (ठोस-राज्य भौतिकी) पैरामीटर को निर्धारित करना संभव है। इस प्रकार चुंबकीय क्षेत्र के बिना तीन आवेश वाहक मापदंडों में से केवल दो को स्वतंत्र रूप से निकाला जा सकता है।


== अनुप्रयोग ==
== '''उपयोग''' ==
इस तकनीक को कई अलग-अलग क्षेत्रों में आवेदन मिला है, [[अर्धचालक]] भौतिकी से लेकर [[microelectronics]] और जीव विज्ञान तक, बुनियादी अनुसंधान से लेकर औद्योगिक अनुप्रयोगों तक। इलिप्सोमेट्री एक बहुत ही संवेदनशील माप तकनीक है और पतली फिल्म [[ मैट्रोलोजी ]] के लिए असमान क्षमताएं प्रदान करती है। एक ऑप्टिकल तकनीक के रूप में, स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री गैर-विनाशकारी परीक्षण | गैर-विनाशकारी और संपर्क रहित है। क्योंकि आपतित विकिरण पर ध्यान केंद्रित किया जा सकता है, छोटे नमूने के आकार को चित्रित किया जा सकता है और वांछित विशेषताओं को एक बड़े क्षेत्र (एम) पर मैप किया जा सकता है<sup>2</sup>).
इस तकनीक को कई अलग-अलग क्षेत्रों में उपयोग किया जाता है, [[अर्धचालक]] भौतिकी से लेकर [[microelectronics|माइक्रो इलेक्ट्राॅनिक्स]] और जीव विज्ञान तक, बुनियादी अनुसंधान से लेकर औद्योगिक अनुप्रयोगों तक। इलिप्सोमेट्री बहुत ही संवेदनशील माप विधि है और पतली फिल्म [[ मैट्रोलोजी |मैट्रोलोजी]] के लिए असमान क्षमताएं प्रदान करती है। इस प्रका ऑप्टिकल तकनीक के रूप में, स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री गैर-विनाशकारी परीक्षण | गैर-विनाशकारी और संपर्क रहित है। क्योंकि आपतित विकिरण पर ध्यान केंद्रित किया जा सकता है, इस प्रकार कम अनुप्रयोगों के आधार पर इस आकार को चित्रित किया जा सकता है और इसके अनुसार वांछित विशेषताओं को बड़े क्षेत्र (एम) पर मैप किया जा सकता है)


== लाभ ==
== लाभ ==
मानक प्रतिबिंब तीव्रता माप की तुलना में इलिप्सोमेट्री के कई फायदे हैं:
मानक प्रतिबिंब तीव्रता माप की तुलना में इलिप्सोमेट्री के कई लाभ हैं:


* इलिप्सोमेट्री स्पेक्ट्रम के प्रत्येक तरंग दैर्ध्य पर कम से कम दो मापदंडों को मापती है। यदि सामान्यीकृत इलिप्सोमेट्री को लागू किया जाता है, तो प्रत्येक तरंग दैर्ध्य पर 16 मापदंडों को मापा जा सकता है।
* इलिप्सोमेट्री स्पेक्ट्रम के प्रत्येक तरंग दैर्ध्य पर कम से कम दो मापदंडों को मापती है। यदि सामान्यीकृत इलिप्सोमेट्री को अधिक्रत किया जाता है, तो प्रत्येक तरंग दैर्ध्य पर 16 मापदंडों को मापा जा सकता है।
* इलिप्सोमेट्री शुद्ध तीव्रता के बजाय तीव्रता अनुपात को मापता है। इसलिए, दीर्घवृत्तमिति प्रकाश स्रोत या वायुमंडलीय अवशोषण की तीव्रता की अस्थिरता से कम प्रभावित होती है।
* इलिप्सोमेट्री शुद्ध तीव्रता के अतिरिक्त तीव्रता अनुपात को मापता है। इसलिए दीर्घवृत्तमिति प्रकाश स्रोत या वायुमंडलीय अवशोषण की तीव्रता की अस्थिरता से कम प्रभावित होती है।
* ध्रुवीकृत प्रकाश का उपयोग करके, सामान्य परिवेशी अप्रकाशित [[आवारा प्रकाश]] माप को महत्वपूर्ण रूप से प्रभावित नहीं करता है, कोई डार्क बॉक्स आवश्यक नहीं है।
* ध्रुवीकृत प्रकाश का उपयोग करके, सामान्य परिस्थिति में अप्रकाशित [[आवारा प्रकाश|स्टेरी प्रकाश]] माप को महत्वपूर्ण रूप से प्रभावित नहीं करता है, कोई डार्क बॉक्स आवश्यक नहीं है।
* कोई संदर्भ माप आवश्यक नहीं है।
* कोई संदर्भ माप आवश्यक नहीं है।
अनिसोट्रोपिक नमूनों का अध्ययन करते समय इलिप्सोमेट्री विशेष रूप से परावर्तन माप से बेहतर होती है।
अनिसोट्रोपिक प्रमाणों का अध्ययन करते समय इलिप्सोमेट्री विशेष रूप से परावर्तन माप से उत्तम होती है।


== यह भी देखें ==
== यह भी देखें ==
Line 90: Line 87:


{{reflist}}
{{reflist}}
==अग्रिम पठन==
==अग्रिम पठन==
* R. M. A. Azzam and N. M. Bashara, ''Ellipsometry and Polarized Light'', Elsevier Science Pub Co (1987) {{ISBN|0-444-87016-4}}
* R. M. A. Azzam and N. M. Bashara, ''Ellipsometry and Polarized Light'', Elsevier Science Pub Co (1987) {{ISBN|0-444-87016-4}}
Line 100: Line 95:
* M. Schubert, ''Infrared Ellipsometry on semiconductor layer structures: Phonons, Plasmons, and Polaritons'', Series: Springer Tracts in Modern Physics, Vol. 209, Springer (2004), {{ISBN|3-540-23249-4}}
* M. Schubert, ''Infrared Ellipsometry on semiconductor layer structures: Phonons, Plasmons, and Polaritons'', Series: Springer Tracts in Modern Physics, Vol. 209, Springer (2004), {{ISBN|3-540-23249-4}}
* H. G. Tompkins and E. A. Irene (Editors), ''Handbook of Ellipsometry'' William Andrews Publications, Norwich, NY (2005), {{ISBN|0-8155-1499-9}}
* H. G. Tompkins and E. A. Irene (Editors), ''Handbook of Ellipsometry'' William Andrews Publications, Norwich, NY (2005), {{ISBN|0-8155-1499-9}}
* H. Fujiwara, '' Spectroscopic Ellipsometry: Principles and Applications'', John Wiley & Sons Inc (2007), {{ISBN|0-470-01608-6}}
* H. Fujiwara, ''Spectroscopic Ellipsometry: Principles and Applications'', John Wiley & Sons Inc (2007), {{ISBN|0-470-01608-6}}
* M. Losurdo and K. Hingerl (Editors), ''Ellipsometry at the Nanoscale'', Springer (2013), {{ISBN|978-3-642-33955-4}}
* M. Losurdo and K. Hingerl (Editors), ''Ellipsometry at the Nanoscale'', Springer (2013), {{ISBN|978-3-642-33955-4}}
* K. Hinrichs and K.-J. Eichhorn (Editors), ''Ellipsometry of Functional Organic Surfaces and Films'', Springer (2014), {{ISBN|978-3-642-40128-2}}
* K. Hinrichs and K.-J. Eichhorn (Editors), ''Ellipsometry of Functional Organic Surfaces and Films'', Springer (2014), {{ISBN|978-3-642-40128-2}}
[[Category: ऑप्टिकल मेट्रोलॉजी]] [[Category: रेडियोमेट्री]] [[Category: स्पेक्ट्रोस्कोपी]]


[[Category: Machine Translated Page]]
[[Category:Articles containing German-language text]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 03/04/2023]]
[[Category:Created On 03/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ऑप्टिकल मेट्रोलॉजी]]
[[Category:रेडियोमेट्री]]
[[Category:स्पेक्ट्रोस्कोपी]]

Latest revision as of 16:31, 3 May 2023

टूलूज़, फ़्रांस में LAAS-CNRS।

इलिप्सोमेट्री ऐसी पतली फिल्मों के प्रभावित गुणों (जटिल अपवर्तक सूचकांक) की जांच के लिए ऑप्टिकल तकनीक का उपयोग करता है। इलिप्सोमेट्री प्रतिबिंब या संचरण पर ध्रुवीकरण (तरंगों) के परिवर्तन को मापता है और इसकी तुलना इस प्रारूप से करता है।

इसका उपयोग सामग्री विज्ञान, सतह खुरदरापन, मोटाई (गहराई), क्रिस्टलीय, डोपिंग (अर्धचालक), विद्युत चालकता और अन्य भौतिक गुणों को चिह्नित करने के लिए किया जा सकता है। यह घटना विकिरण की ऑप्टिकल प्रतिक्रिया में परिवर्तन के प्रति बहुत संवेदनशील है जो जांच की जा रही सामग्री के साथ संपर्क करता है।

अधिकांश पतली फिल्म विश्लेषणात्मक प्रयोगशालाओं में स्पेक्ट्रोस्कोपिक इलिप्सोमीटर पाया जा सकता है। इस प्रकार जीव विज्ञान और चिकित्सा जैसे अन्य विषयों में शोधकर्ताओं के लिए इलिप्सोमेट्री भी अधिक रोचक होती जा रही है। ये क्षेत्र तकनीक के लिए नई चुनौतियाँ प्रस्तुत करते हैं, जैसे अस्थिर तरल सतहों पर माप और सूक्ष्म इमेजिंग का उपयोग किया जाता हैं।

इटिमोलाॅजी

इलिप्सोमेट्री मुख्यतः इस तथ्य उत्पादित हुआ हैं कि प्रकाश के अण्डाकार ध्रुवीकरण का उपयोग किया जाता है। स्पेक्ट्रोस्कोपिक शब्द इस तथ्य से संबंधित है कि प्राप्त जानकारी प्रकाश की तरंग दैर्ध्य या ऊर्जा (स्पेक्ट्रा) का कार्य करता है। इस तकनीक को कम से कम 1888 से पॉल ड्रूड के कार्य से जाना जाता है[1] और आज इसके कई अनुप्रयोग हैं।

इलिप्सोमेट्री शब्द का पहला प्रलेखित उपयोग 1945 में हुआ था।[2]

मौलिक सिद्धांत

इस सिद्धांत के अनुसार मापे गये इस संकेत के ध्रुवीकरण में परिवर्तन होते हैं क्योंकि इस घटना के विकिरण (अर्ताथ ज्ञात अवस्था में) ब्याज की भौतिक संरचना (परावर्तित प्रकाश, अवशोषण (विद्युत चुम्बकीय विकिरण), बिखरा हुआ विकिरण, या प्रेषित प्रकाश) के साथ संपर्क करता है। इस ध्रुवीकरण परिवर्तन आयाम अनुपात, Ψ, और चरण अंतर, Δ (नीचे परिभाषित) द्वारा निर्धारित किया जाता है। क्योंकि संकेत मोटाई के साथ-साथ भौतिक गुणों पर निर्भर करता है, इलिप्सोमेट्री सभी प्रकार की फिल्मों की मोटाई और ऑप्टिकल स्थिरांक के संपर्क मुक्त निर्धारण के लिए सार्वभौमिक उपकरण हो सकता है।[3] इस प्रकार इस प्रकाश के ध्रुवीकरण (तरंगों) के परिवर्तन के विश्लेषण पर, इलिप्सोमेट्री उन परतों के बारे में जानकारी दे सकती है जो जांच प्रकाश की तरंग दैर्ध्य की तुलना में पतली होती हैं, यहां तक ​​कि एकल परमाणु परत तक भी किया जाता हैं। इलिप्सोमेट्री जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर की जांच कर सकती है, जो ऊपर सूचीबद्ध मूलभूत भौतिक मानकों तक पहुंच प्रदान करती है। यह सामान्यतः एकल परतों या जटिल बहुपरत के समूह के लिए फिल्म की मोटाई को चिह्नित करने के लिए उपयोग किया जाता है, जिसमें कुछ एंगस्ट्रॉम या नैनोमीटर के दसवें हिस्से से लेकर कई माइक्रोमीटर उत्कृष्ट सटीकता के साथ होते हैं।

प्रायोगिक विवरण

सामान्यतः इलिप्सोमेट्री केवल प्रतिबिंब सेटअप में ही की जाती है। ध्रुवीकरण परिवर्तन की त्रुटिहीन प्रकृति प्रमाण के गुणों (मोटाई, जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर) द्वारा निर्धारित की जाती है। चूंकि ऑप्टिकल तकनीकें स्वाभाविक रूप से विवर्तन-सीमित प्रणाली हैं। विवर्तन-सीमित, इलिप्सोमेट्री चरण (तरंगों) की जानकारी (ध्रुवीकरण स्थिति) का शोषण करती है, और सब-नैनोमीटर रिज़ॉल्यूशन प्राप्त कर सकती है। अपने सरलतम रूप में, यह तकनीक नैनोमीटर से लेकर कई माइक्रोमीटर तक की मोटाई वाली पतली फिल्मों पर लागू होती है। अधिकांश प्रारूप मानते हैं कि प्रमाण कम संख्या में असतत, अच्छी तरह से परिभाषित परतों से बना है जो वैकल्पिक रूप से एकरूपता (भौतिकी) और समदैशिक हैं। इन मान्यताओं के उल्लंघन के लिए तकनीक के अधिक उन्नत रूपों की आवश्यकता होती है।

किसी न किसी प्रमाण सतह या विषम मीडिया की उपस्थिति के साथ सामग्री के ऑप्टिकल स्थिरांक को खोजने के लिए विसर्जन या बहुकोणीय दीर्घवृत्त के तरीके लागू होते हैं। ऑप्टिकल विस्तार की सतह परत अमानवीय होने की स्थिति में नए पद्धतिगत दृष्टिकोण ढाल तत्वों की भौतिक और तकनीकी विशेषताओं को मापने के लिए प्रतिबिंब इलिप्सोमेट्री के उपयोग की अनुमति देते हैं।[4]

प्रायोगिक सेटअप

इलिप्सोमेट्री प्रयोग का योजनाबद्ध सेटअप

विद्युत चुम्बकीय विकिरण प्रकाश स्रोत द्वारा उत्सर्जित होता है और एक पोलाइजर द्वारा रैखिक रूप से ध्रुवीकृत होता है। यह एक वैकल्पिक कम्पेसाटर (तरंग प्लेट, तरंग प्लेट) से गुजर सकता है और नमूने पर गिर सकता है। इस परावर्तन के पश्चात विकिरण कम्पेसाटर (वैकल्पिक) और एक दूसरा पोलराइज़र, जिसे एक विश्लेषक कहा जाता है, से गुजरता है और डिटेक्टर में गिर जाता है। कम्पेसाटर के अतिरिक्त, कुछ इलिप्सोमीटर घटना प्रकाश किरण के मार्ग में एक फोटोलेस्टिक न्यूनाधिक | चरण-मॉड्यूलेटर का उपयोग करते हैं। इलिप्सोमेट्री एक परावर्तक प्रतिबिंब ऑप्टिकल तकनीक है (घटना का कोण (ऑप्टिक्स) प्रतिबिंब के कोण के बराबर होता है)। घटना और परावर्तित किरण घटना के विमान को फैलाती है। इस प्रकाश को जो इस समतल के समान्तर ध्रुवित होता है उसे p-ध्रुवीकृत कहते हैं। एक ध्रुवीकरण दिशा लंबवत को तदनुसार एस-ध्रुवीकृत (एस-ध्रुवीकृत) कहा जाता है। जर्मन से एस का योगदान है senkrecht (लंबवत)।

डेटा अधिग्रहण

इलिप्सोमेट्री जटिल परावर्तन प्रणाली के अनुपात को मापता है, जिसे आयाम घटक और चरण अंतर द्वारा पैरामीट्रिज किया जा सकता है। इस प्रमाण पर प्रकाश की घटना की ध्रुवीकरण स्थिति को एस और एपी घटक में विघटित किया जा सकता है (एस घटक घटना के विमान के लंबवत और प्रमाण सतह के समानांतर दोलन कर रहा है, और पी घटक घटना के विमान के समानांतर दोलन कर रहा है।) इसके परावर्तन (भौतिकी) के पश्चात एस और पी घटकों के आयाम और उनके प्रारंभिक मानों और क्रमशः के लिए सामान्यीकृत मान द्वारा निरूपित किया जाता है। इसके अधिकतम अंतर सुनिश्चित करने के लिए घटना के कोण को प्रमाण के ब्रूस्टर कोण और के समीप चुना जाता है।[5] इस प्रकार इलिप्सोमेट्री जटिल परावर्तन अनुपात को मापता है, जो ऊपर का अनुपात है :

इस प्रकार, प्रतिबिंब (भौतिकी) पर आयाम अनुपात है, और चरण अंतर को प्रकट करता है। (ध्यान दें कि समीकरण का दाहिना पक्ष जटिल संख्या का प्रतिनिधित्व करने का और विधि है।) चूंकि इलिप्सोमेट्री दो मानों के अनुपात (या अंतर) को माप रहा है (या तो पूर्ण मान के अतिरिक्त), यह बहुत शक्तिशाली व त्रुटिहीन है, और प्रतिलिपि प्रस्तुत करने के योग्य माना जाता हैं। इस प्रकार उदाहरण के लिए, यह बिखराव और उतार-चढ़ाव के प्रति अपेक्षाकृत असंवेदनशील है और इसके लिए किसी मानक प्रमाण या संदर्भ बीम की आवश्यकता नहीं है।

डेटा विश्लेषण

इलिप्सोमेट्री अप्रत्यक्ष विधि है, अर्थात सामान्यतः और द्वारा मापा जाता है, इस प्रकार सीधे प्रमाण के आधार पर इसको ऑप्टिकल स्थिरांक में परिवर्तित नहीं किया जा सकता है। सामान्यतः प्रारूप विश्लेषण किया जाना चाहिए, उदाहरण के लिए फोरोही-ब्लूमर प्रारूप। यह इलिप्सोमेट्री की कमजोरी है। प्रारूप शारीरिक रूप से ऊर्जा संक्रमण या डेटा को फिट करने के लिए उपयोग किए जाने वाले मुक्त मापदंडों पर आधारित हो सकते हैं।

और आइसोट्रोपिक, विक्षनरी का प्रत्यक्ष व्युत्क्रम: एकरूपता और असीम रूप से मोटी फिल्मों के बहुत ही सरल स्थितियोंमें ही संभव है। अन्य सभी स्थितियोंमें परत प्रारूप स्थापित किया जाना चाहिए, जो ऑप्टिकल स्थिरांक (अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर) और सही परत अनुक्रम सहित प्रमाण की सभी अलग-अलग परतों की मोटाई के मापदंडों पर विचार करता है। इस प्रकार पुनरावृत्त प्रक्रिया (न्यूनतम-वर्ग न्यूनीकरण) का उपयोग करते हुए अज्ञात ऑप्टिकल स्थिरांक और/या मोटाई पैरामीटर भिन्न होते हैं, और और मानों की गणना फ्रेस्नेल समीकरण का उपयोग करके की जाती है। इस प्रकार परिकलित और मूल्य जो प्रयोगात्मक डेटा से मेल खाते हैं, वे प्रमाण के ऑप्टिकल स्थिरांक और मोटाई पैरामीटर प्रदान करते हैं।

परिभाषा

आधुनिक इलिप्सोमीटर जटिल उपकरण हैं जिनमें विभिन्न प्रकार के विकिरण स्रोत, सूचक, डिजिटल इलेक्ट्रॉनिक्स और सॉफ्टवेयर सम्मिलित हैं। नियोजित तरंग दैर्ध्य की सीमा जो दिखाई देती है उससे बहुत अधिक है इसलिए सख्ती से ये अब ऑप्टिकल उपकरण नहीं हैं।

सिंगल वेवलेंथ तथा स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री में अंतर

सिंगल-वेवलेंथ इलिप्सोमेट्री एकरंगा प्रकाश स्रोत को नियोजित करती है। यह सामान्यतः दृश्यमान स्पेक्ट्रम वर्णक्रमीय क्षेत्र में लेज़र होता है, उदाहरण के लिए, 632.8 एनएम के तरंग दैर्ध्य के साथ HeNe लेज़र इसका मुख्य उदाहरण हैं। इसलिए सिंगल-वेवलेंथ इलिप्सोमेट्री को लेजर इलिप्सोमेट्री भी कहा जाता है। इस प्रकार लेजर इलिप्सोमेट्री का लाभ यह है कि लेजर बीम को छोटे स्थान के आकार पर केंद्रित किया जा सकता है। इसके अतिरिक्त, लेज़रों में व्यापक बैंड प्रकाश स्रोतों की तुलना में अधिक शक्ति होती है। इसलिए इमेजिंग के लिए लेजर इलिप्सोमेट्री का उपयोग किया जा सकता है। चूँकि इस प्रकार प्रायोगिक आउटपुट के समूह तक ही सीमित है और मान प्रति माप। स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री (एसई) व्यापक बैंड प्रकाश स्रोतों को नियोजित करती है, जो अवरक्त, दृश्यमान या पराबैंगनी वर्णक्रमीय क्षेत्र में निश्चित वर्णक्रमीय श्रेणी को कवर करती है। इसके द्वारा संबंधित वर्णक्रमीय क्षेत्र में जटिल अपवर्तक सूचकांक या ढांकता हुआ फ़ंक्शन टेंसर प्राप्त किया जा सकता है, जो बड़ी संख्या में मौलिक भौतिक गुणों तक पहुंच प्रदान करता है। इन्फ्रारेड स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री (IRSE) लैटिस वाइब्रेशनल (फोनन) और फ्री प्रभारी वाहक (प्लासमौन) गुणों की जांच कर सकता है। निकट अवरक्त में स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री, पराबैंगनी वर्णक्रमीय क्षेत्र तक दिखाई देती है, पारदर्शिता या नीचे-बैंड गैप या बैंड-गैप क्षेत्र और इलेक्ट्रॉनिक गुणों में अपवर्तक सूचकांक का अध्ययन करती है, उदाहरण के लिए, बैंड-टू-बैंड संक्रमण या एक्साइशन इसका उदाहरण हैं ।

मानक तथा सामान्यीकृत इलिप्सोमेट्री (अनिसोट्रॉपी) में अंतर

मानक इलिप्सोमेट्री (या सिर्फ लघु 'एलीप्सोमेट्री') लागू किया जाता है, जब न तो ध्रुवीकृत प्रकाश को पी ध्रुवीकृत प्रकाश में परिवर्तित किया जाता है और न ही इसके विपरीत करता हैं। यह वैकल्पिक रूप से आइसोट्रोपिक प्रमाणों की स्थिति है, उदाहरण के लिए, घन क्रिस्टल संरचना के साथ अनाकार सामग्री या क्रिस्टलीय सामग्री के रूप में इसका उपयोग किया जाता हैं। इस प्रकार मानक इलिप्सोमेट्री विशेष स्थितियोंमें वैकल्पिक रूप से एक-अक्षीय प्रमाणों के लिए भी पर्याप्त है, जब ऑप्टिकल अक्ष को सामान्य सतह के समानांतर संरेखित किया जाता है। अन्य सभी स्थितियोंमें, जब s ध्रुवीकृत प्रकाश को p ध्रुवीकृत प्रकाश में परिवर्तित किया जाता है और इसके विपरीत, सामान्यीकृत इलिप्सोमेट्री दृष्टिकोण को लागू किया जाना चाहिए। उदाहरण मनमाने ढंग से संरेखित, वैकल्पिक रूप से एक-अक्षीय प्रमाण या वैकल्पिक रूप से द्विअक्षीय प्रमाण हैं।

जोन्स आव्यूह तथा म्यूलर आव्यूह की औपचारिकता अर्ताथ विध्रुवीकरण में अंतर

सामान्यतः गणितीय रूप से वर्णन करने के दो अलग-अलग तरीके हैं कि कैसे विद्युत चुम्बकीय तरंग दीर्घवृत्ताभ (प्रमाण सहित) के भीतर तत्वों के साथ इंटरैक्ट करती है: जोन्स आव्यूह और मुलर आव्यूह औपचारिकताएं। जोन्स आव्यूह औपचारिकता में, विद्युत चुम्बकीय तरंग को जोन्स वेक्टर द्वारा विद्युत क्षेत्र के लिए दो ऑर्थोगोनल जटिल-मूल्यवान प्रविष्टियों के साथ वर्णित किया गया है (सामान्यतः और ), और उस पर ऑप्टिकल तत्व (या प्रमाण) का प्रभाव जटिल-मूल्यवान 2×2 जोन्स आव्यूह द्वारा वर्णित है। मुलर आव्यूह औपचारिकता में, विद्युत चुम्बकीय तरंग को स्टोक्स वेक्टर द्वारा चार वास्तविक-मूल्यवान प्रविष्टियों के साथ वर्णित किया गया है, और उनके परिवर्तन को वास्तविक-मूल्यवान 4x4 म्यूएलर आव्यूह द्वारा वर्णित किया गया है। जब कोई विध्रुवण नहीं होता है तो दोनों औपचारिकताएं पूर्ण रूप से संगत होती हैं। इसलिए गैर-विध्रुवण प्रमाणों के लिए, सरल जोन्स आव्यूह औपचारिकता पर्याप्त है। यदि प्रमाण विध्रुवण कर रहा है तो मुलर आव्यूह औपचारिकता का उपयोग किया जाना चाहिए, क्योंकि यह विध्रुवण की मात्रा भी देता है। विध्रुवण के कारण, उदाहरण के लिए, मोटाई गैर-समानता या पारदर्शी सब्सट्रेट से बैकसाइड-प्रतिबिंब हैं।

उन्नत प्रयोगात्मक दृष्टिकोण

काल्पनिक इलिप्सोमेट्री

इलिप्सोमेट्री को सूचक के रूप में चार्ज-युग्मित डिवाइस कैमरा का उपयोग करके इमेजिंग इलिप्सोमेट्री के रूप में भी किया जा सकता है। यह प्रमाण की वास्तविक समय विपरीत छवि प्रदान करता है, जो फिल्म की मोटाई और अपवर्तक सूचकांक के बारे में जानकारी प्रदान करता है। इस प्रकार उन्नत इमेजिंग इलिप्सोमीटर तकनीक मौलिक रूप से नल इलिप्सोमेट्री और रीयल-टाइम इलिप्सोमेट्रिक कंट्रास्ट इमेजिंग के सिद्धांत पर कार्य करती है। इमेजिंग इलिप्सोमेट्री अशक्तता की अवधारणा पर आधारित है। इलिप्सोमेट्री में, जांच की जा रही फिल्म को परावर्तक सब्सट्रेट पर रखा जाता है। फिल्म और सब्सट्रेट में अलग-अलग अपवर्तक सूचकांक होते हैं। फिल्म की मोटाई के बारे में डेटा प्राप्त करने के लिए, सब्सट्रेट से परावर्तित प्रकाश को अशक्त होना चाहिए। विश्लेषक और पोलराइज़र को समायोजित करके अशक्तता प्राप्त की जाती है जिससे कि सब्सट्रेट से सभी परावर्तित प्रकाश बुझ जाए। अपवर्तक सूचकांकों में अंतर के कारण, यह प्रमाण बहुत उज्ज्वल और स्पष्ट रूप से दिखाई देने की अनुमति देगा। प्रकाश स्रोत में वांछित तरंग दैर्ध्य का मोनोक्रोमैटिक लेजर होता है।[6] सामान्य तरंगदैर्घ्य जिसका उपयोग 532 nm हरे लेज़र प्रकाश द्वारा किया जाता है । चूंकि केवल प्रकाश माप की तीव्रता की आवश्यकता होती है, लगभग किसी भी प्रकार के कैमरे को सीसीडी के रूप में लागू किया जा सकता है, जो भागों से दीर्घवृत्त बनाने के लिए उपयोगी होता है। सामान्यतः, इमेजिंग इलिप्सोमीटर इस तरह से कॉन्फ़िगर किए जाते हैं जिससे कि लेजर (एल) प्रकाश की किरण को आग लगा दे जो तुरंत रैखिक ध्रुवीकरण (पी) से गुजरता है। रैखिक रूप से ध्रुवीकृत प्रकाश तब चौथाई तरंग दैर्ध्य कम्पेसाटर (सी) से होकर गुजरता है जो प्रकाश को अण्डाकार रूप से ध्रुवीकृत प्रकाश में बदल देता है।[7] यह अण्डाकार रूप से ध्रुवीकृत प्रकाश तब प्रमाण (एस) को प्रतिबिंबित करता है, विश्लेषक (ए) के माध्यम से गुजरता है और सीसीडी कैमरे पर लंबी कार्य दूरी के उद्देश्य से चित्रित किया जाता है। यहाँ विश्लेषक P के समान अन्य ध्रुवीकरणकर्ता है, चूँकि, यह ध्रुवीकरणकर्ता ध्रुवीकरण में परिवर्तन की मात्रा निर्धारित करने में मदद करता है और इस प्रकार इसे विश्लेषक नाम दिया जाता है। इस डिज़ाइन को सामान्यतः एलपीसीएसए कॉन्फ़िगरेशन के रूप में जाना जाता है।

पी और सी के कोणों का अभिविन्यास इस तरह से चुना जाता है कि अण्डाकार रूप से ध्रुवीकृत प्रकाश पूरी तरह से रैखिक रूप से ध्रुवीकृत हो जाता है, जब यह प्रमाण से परिलक्षित होता है। भविष्य की गणना के सरलीकरण के लिए, कम्पेसाटर को लेजर बीम की घटना के तल के सापेक्ष 45 डिग्री के कोण पर तय किया जा सकता है।[7] इस सेट अप के लिए अशक्त स्थितियों को प्राप्त करने के लिए विश्लेषक और ध्रुवीकरणकर्ता के रोटेशन की आवश्यकता होती है। इलिप्सोमेट्रिक अशक्त स्थिति तब प्राप्त होती है जब A पूर्ण विनाशकारी हस्तक्षेप को प्राप्त करने वाले परावर्तित प्रकाश के ध्रुवीकरण अक्ष के संबंध में लंबवत होता है, अर्थात, वह स्थिति जिस पर CCD कैमरे में पूर्ण न्यूनतम प्रकाश प्रवाह का पता लगाया जाता है। इस सामग्री के Ψ और Δ मानों को निर्धारित करने के लिए प्राप्त P, C, और A के कोणों का उपयोग किया जाता है।[7] इस प्रकार और

समीकरण में जहाँ A और P क्रमशः अशक्त परिस्थितियों में विश्लेषक और ध्रुवक के कोण हैं। विश्लेषक और पोलराइज़र को घुमाकर और प्रतिबिंब पर प्रकाश की तीव्रता में परिवर्तन को मापकर, कम्प्यूटरीकृत ऑप्टिकल मॉडलिंग के उपयोग से मापे गए डेटा के विश्लेषण से स्थानिक रूप से हल की गई फिल्म मोटाई और जटिल अपवर्तक सूचकांक मूल्यों में कटौती हो सकती है।

इस तथ्य के कारण कि इमेजिंग कोण पर की जाती है, दृश्य के पूरे क्षेत्र की केवल छोटी सी रेखा वास्तव में फोकस में होती है। फ़ोकस में रेखा को फ़ोकस समायोजित करके दृश्य क्षेत्र के साथ-साथ ले जाया जा सकता है। रुचि के पूरे क्षेत्र का विश्लेषण करने के लिए, प्रत्येक स्थान पर लिए गए फ़ोटो के साथ फ़ोकस को धीरे-धीरे रुचि के क्षेत्र में स्थानांतरित किया जाना चाहिए। सभी प्रतिबिंबों को तब प्रमाण की एकल, फोकस छवि में संकलित किया जाता है।

इन सिटू इलिप्सोमेट्री

इन सिटू इलिप्सोमेट्री प्रमाण की संशोधन प्रक्रिया के समय गतिशील माप को संदर्भित करता है। इस प्रक्रिया का अध्ययन करने के लिए उपयोग किया जा सकता है, उदाहरण के लिए, पतली फिल्म की वृद्धि,[8] एयर-लिक्विड इंटरफेस में कैल्शियम फॉस्फेट मिनरलाइजेशन सहित,[9] प्रमाण की संरचना या सफाई को प्रकट करता हैं। इन सिटू इलिप्सोमेट्री मापन द्वारा मौलिक प्रक्रिया मापदंडों को निर्धारित करना संभव है, जैसे कि विकास या ईच दर, समय के साथ ऑप्टिकल गुणों की भिन्नता। इन सिटू इलिप्सोमेट्री माप में कई अतिरिक्त विचारों की आवश्यकता होती है: प्रमाण स्थान सामान्यतः प्रक्रिया कक्ष के बाहर पूर्व इन सिटू माप के लिए आसानी से सुलभ नहीं होता है। इसलिए, यांत्रिक सेटअप को समायोजित करना पड़ता है, जिसमें प्रकाश किरण को पुनर्निर्देशित करने या ध्यान केंद्रित करने के लिए अतिरिक्त ऑप्टिकल तत्व (दर्पण, प्रिज्म या लेंस) सम्मिलित हो सकते हैं। क्योंकि प्रक्रिया के समय पर्यावरण की स्थिति कठोर हो सकती है, इलिप्सोमेट्री सेटअप के संवेदनशील ऑप्टिकल तत्वों को गर्म क्षेत्र से अलग किया जाना चाहिए। इस प्रकार सबसे सरल स्थितियोंमें यह ऑप्टिकल व्यू पोर्ट्स द्वारा किया जाता है, चूंकि ग्लास विंडो के तनाव को प्रेरित बायरफ्रिंजेंस को ध्यान में रखा जाना चाहिए या कम किया जाना चाहिए। इसके अतिरिक्त, प्रमाण ऊंचे तापमान पर हो सकते हैं, जो कमरे के तापमान पर प्रमाणों की तुलना में अलग-अलग ऑप्टिकल गुणों का तात्पर्य है। इन सभी समस्याओं के अतिरिक्त, पतली फिल्म जमाव और संशोधन उपकरणों के लिए प्रक्रिया नियंत्रण तकनीक के रूप में इन सिटू इलिप्सोमेट्री अधिक से अधिक महत्वपूर्ण हो जाती है। इस प्रकार इन सिटू इलिप्सोमीटर एकल-तरंग दैर्ध्य या स्पेक्ट्रोस्कोपिक प्रकार के हो सकते हैं। इन सिटू इलिप्सोमीटर में स्पेक्ट्रोस्कोपिक मल्टीचैनल सूचकों का उपयोग करते हैं, उदाहरण के लिए सीसीडी सूचक, जो साथ अध्ययन किए गए वर्णक्रमीय रेंज में सभी तरंग दैर्ध्य के लिए इलिप्सोमेट्रिक पैरामीटर को मापते हैं।

इलिप्सोमेट्रिक पोरोसिमेट्री

इलिप्सोमेट्रिक पोरोसिमेट्री वायुमंडलीय दबाव पर या आवेदन के आधार पर कम दबाव के अनुसार वाष्पशील प्रजातियों के सोखना और अवशोषण के समय ऑप्टिकल गुणों और सामग्रियों की मोटाई में परिवर्तन को मापता है।[10] ईपी तकनीक बहुत पतली फिल्मों की सरंध्रता को 10 एनएम तक मापने की क्षमता, इसकी प्रजनन क्षमता और माप की गति में अद्वितीय है। पारंपरिक पोरोसिमीटर की तुलना में, इलिप्सोमीटर पोरोसिमीटर बहुत पतली फिल्म ताकना आकार और ताकना आकार वितरण माप के लिए उपयुक्त हैं। फिल्म सरंध्रता सिलिकॉन आधारित तकनीक में कम-κ डाइइलेक्ट्रिक या कम-κ सामग्री, जैविक उद्योग (एनकैप्सुलेटेड कार्बनिक प्रकाश उत्सर्जक डायोड) के साथ-साथ सन जेल तकनीकों का उपयोग करके कोटिंग उद्योग में महत्वपूर्ण कारक है।

चुम्बकीय ऑप्टिक्स की सामान्यीकृत इलिप्सोमेट्री

मैग्नेटो-ऑप्टिक सामान्यीकृत इलिप्सोमेट्री (एमओजीई) विद्युत कंडक्टर प्रमाणों में मुक्त आवेश वाहक गुणों का अध्ययन करने के लिए उन्नत इन्फ्रारेड स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री तकनीक है। इस कारण बाहरी चुंबकीय क्षेत्र को लागू करके स्वतंत्र रूप से इलेक्ट्रॉन घनत्व, ऑप्टिकल इलेक्ट्रॉन गतिशीलता पैरामीटर और चार्ज वाहकों के प्रभावी द्रव्यमान (ठोस-राज्य भौतिकी) पैरामीटर को निर्धारित करना संभव है। इस प्रकार चुंबकीय क्षेत्र के बिना तीन आवेश वाहक मापदंडों में से केवल दो को स्वतंत्र रूप से निकाला जा सकता है।

उपयोग

इस तकनीक को कई अलग-अलग क्षेत्रों में उपयोग किया जाता है, अर्धचालक भौतिकी से लेकर माइक्रो इलेक्ट्राॅनिक्स और जीव विज्ञान तक, बुनियादी अनुसंधान से लेकर औद्योगिक अनुप्रयोगों तक। इलिप्सोमेट्री बहुत ही संवेदनशील माप विधि है और पतली फिल्म मैट्रोलोजी के लिए असमान क्षमताएं प्रदान करती है। इस प्रका ऑप्टिकल तकनीक के रूप में, स्पेक्ट्रोस्कोपिक इलिप्सोमेट्री गैर-विनाशकारी परीक्षण | गैर-विनाशकारी और संपर्क रहित है। क्योंकि आपतित विकिरण पर ध्यान केंद्रित किया जा सकता है, इस प्रकार कम अनुप्रयोगों के आधार पर इस आकार को चित्रित किया जा सकता है और इसके अनुसार वांछित विशेषताओं को बड़े क्षेत्र (एम) पर मैप किया जा सकता है)।

लाभ

मानक प्रतिबिंब तीव्रता माप की तुलना में इलिप्सोमेट्री के कई लाभ हैं:

  • इलिप्सोमेट्री स्पेक्ट्रम के प्रत्येक तरंग दैर्ध्य पर कम से कम दो मापदंडों को मापती है। यदि सामान्यीकृत इलिप्सोमेट्री को अधिक्रत किया जाता है, तो प्रत्येक तरंग दैर्ध्य पर 16 मापदंडों को मापा जा सकता है।
  • इलिप्सोमेट्री शुद्ध तीव्रता के अतिरिक्त तीव्रता अनुपात को मापता है। इसलिए दीर्घवृत्तमिति प्रकाश स्रोत या वायुमंडलीय अवशोषण की तीव्रता की अस्थिरता से कम प्रभावित होती है।
  • ध्रुवीकृत प्रकाश का उपयोग करके, सामान्य परिस्थिति में अप्रकाशित स्टेरी प्रकाश माप को महत्वपूर्ण रूप से प्रभावित नहीं करता है, कोई डार्क बॉक्स आवश्यक नहीं है।
  • कोई संदर्भ माप आवश्यक नहीं है।

अनिसोट्रोपिक प्रमाणों का अध्ययन करते समय इलिप्सोमेट्री विशेष रूप से परावर्तन माप से उत्तम होती है।

यह भी देखें

संदर्भ

  1. P. Drude, Ueber die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbirender Krystalle, Annalen der Physik, Volume 268, Issue 12, 1887, Pages: 584–625, DOI: 10.1002/andp.18872681205; Ueber Oberflächenschichten. I. Theil, Annalen der Physik, Volume 272, Issue 2, 1889, Pages: 532–560, DOI: 10.1002/andp.18892720214; Ueber Oberflächenschichten. II. Theil, Annalen der Physik, Volume 272, Issue 4, 1889, Pages: 865–897, DOI: 10.1002/andp.18892720409 (in German).
  2. Rothen, Alexandre (1945). "एलिप्सोमीटर, पतली सतह फिल्मों की मोटाई मापने के लिए एक उपकरण". Review of Scientific Instruments. 16 (2): 26–30. Bibcode:1945RScI...16...26R. doi:10.1063/1.1770315. ISSN 0034-6748.
  3. Harland Tompkins; Eugene A Irene (6 January 2005). इलिप्सोमेट्री की हैंडबुक. William Andrew. ISBN 978-0-8155-1747-4.
  4. Gorlyak A.N.; Khramtsovky I.A.; Solonukha V.M. (2015). "अमानवीय मीडिया के प्रकाशिकी में इलिप्सोमेट्री विधि का अनुप्रयोग।". Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 15 (3): 378–386. doi:10.17586/2226-1494-2015-15-3-378-386.
  5. Butt, Hans-Jürgen, Kh Graf, and Michael Kappl. "Measurement of Adsorption Isotherms". Physics and Chemistry of Interfaces. Weinheim: Wiley-VCH, 2006. 206-09.
  6. Tompkins, Harland (2005). इलिप्सोमेट्री की हैंडबुक. pp. 13. Bibcode:2005hael.book.....T.
  7. 7.0 7.1 7.2 Tompkins, Harland (2005). इलिप्सोमेट्री की हैंडबुक. pp. 329. Bibcode:2005hael.book.....T.
  8. P. Koirala, D. Attygalle, P. Aryal, P. Pradhan, J. Chen, S. Marsillac, A.S. Ferlauto, N.J. Podraza, R.W. Collins, "Real time spectroscopic ellipsometry for analysis and control of thin film polycrystalline semiconductor deposition in photovoltaics"
  9. R. Shahlori, A. R. J. Nelson, G. I. N. Waterhouse, D. J. McGillivray, "Morphological, chemical and kinetic characterisation of zein protein-induced biomimetic calcium phosphate films"
  10. "Semilab | Products". semilab.com.

अग्रिम पठन

  • R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, Elsevier Science Pub Co (1987) ISBN 0-444-87016-4
  • A. Roeseler, Infrared Spectroscopic Ellipsometry, Akademie-Verlag, Berlin (1990), ISBN 3-05-500623-2
  • H. G. Tompkins, A Users's Guide to Ellipsometry, Academic Press Inc, London (1993), ISBN 0-12-693950-0
  • H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry, John Wiley & Sons Inc (1999) ISBN 0-471-18172-2
  • I. Ohlidal and D. Franta, Ellipsometry of Thin Film Systems, in Progress in Optics, vol. 41, ed. E. Wolf, Elsevier, Amsterdam, 2000, pp. 181–282
  • M. Schubert, Infrared Ellipsometry on semiconductor layer structures: Phonons, Plasmons, and Polaritons, Series: Springer Tracts in Modern Physics, Vol. 209, Springer (2004), ISBN 3-540-23249-4
  • H. G. Tompkins and E. A. Irene (Editors), Handbook of Ellipsometry William Andrews Publications, Norwich, NY (2005), ISBN 0-8155-1499-9
  • H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, John Wiley & Sons Inc (2007), ISBN 0-470-01608-6
  • M. Losurdo and K. Hingerl (Editors), Ellipsometry at the Nanoscale, Springer (2013), ISBN 978-3-642-33955-4
  • K. Hinrichs and K.-J. Eichhorn (Editors), Ellipsometry of Functional Organic Surfaces and Films, Springer (2014), ISBN 978-3-642-40128-2