स्टोकेस्टिक आंशिक अंतर समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
Line 14: Line 14:


== चर्चा ==
== चर्चा ==
एक कठिनाई उनकी नियमितता की कमी है। एक आयामी अंतरिक्ष में, स्टोकास्टिक गर्मी समीकरण के समाधान अंतरिक्ष में लगभग 1/2-होल्डर निरंतर और समय में 1/4-होल्डर निरंतर होते हैं। आयाम दो और उच्चतर के लिए, समाधान कार्य-मूल्यवान भी नहीं हैं, लेकिन उन्हें यादृच्छिक [[वितरण (गणित)]] के रूप में समझा जा सकता है।
उनमें एक कठिनाई नियमितता की कमी है। एक आयामी अंतरिक्ष में, स्टोकास्टिक गर्मी [[समीकरण]] के समाधान केवल लगभग 1/2-होल्डर अंतरिक्ष में निरंतर और 1/4-होल्डर समय में निरंतर होते हैं। [[आयाम]] दो और उच्चतर के लिए, समाधान कार्य-मूल्यवान भी नहीं हैं, लेकिन यादृच्छिक वितरण के रूप में इसका अर्थ लगाया जा सकता है।
 
एक कठिनाई उनकी नियमितता की कमी है। एक आयामी अंतरिक्ष में, स्टोकास्टिक गर्मी समीकरण के समाधान अंतरिक्ष में लगभग 1/2-होल्डर निरंतर और समय में 1/4-होल्डर निरंतर होते हैं। आयाम दो और उच्चतर के लिए, समाधान कार्य-मूल्यवान भी नहीं हैं, लेकिन उन्हें यादृच्छिक [[वितरण (गणित)]] के रूप में समझा जा सकता है।


रैखिक समीकरणों के लिए, आमतौर पर [[C0-सेमीग्रुप]] तकनीकों के माध्यम से एक [[हल्का समाधान]] खोजा जा सकता है।<ref>{{Cite journal|last=Walsh|first=John B.|date=1986|editor-last=Carmona|editor-first=René|editor2-last=Kesten|editor2-first=Harry|editor3-last=Walsh|editor3-first=John B.|editor4-last=Hennequin|editor4-first=P. L.|title=स्टोचैस्टिक आंशिक अंतर समीकरणों का परिचय|journal=École d'Été de Probabilités de Saint Flour XIV - 1984|series=Lecture Notes in Mathematics|volume=1180|language=en|publisher=Springer Berlin Heidelberg|pages=265–439|doi=10.1007/bfb0074920|hdl=10338.dmlcz/126035|isbn=978-3-540-39781-6|hdl-access=free}}</ref>
रैखिक समीकरणों के लिए, आमतौर पर [[C0-सेमीग्रुप]] तकनीकों के माध्यम से एक [[हल्का समाधान]] खोजा जा सकता है।<ref>{{Cite journal|last=Walsh|first=John B.|date=1986|editor-last=Carmona|editor-first=René|editor2-last=Kesten|editor2-first=Harry|editor3-last=Walsh|editor3-first=John B.|editor4-last=Hennequin|editor4-first=P. L.|title=स्टोचैस्टिक आंशिक अंतर समीकरणों का परिचय|journal=École d'Été de Probabilités de Saint Flour XIV - 1984|series=Lecture Notes in Mathematics|volume=1180|language=en|publisher=Springer Berlin Heidelberg|pages=265–439|doi=10.1007/bfb0074920|hdl=10338.dmlcz/126035|isbn=978-3-540-39781-6|hdl-access=free}}</ref>

Revision as of 00:18, 1 May 2023

स्टोचैस्टिक आंशिक अंतर समीकरण (एसपीडीई) आंशिक अंतर समीकरणों को अविभाज्य बल निबंधन और गुणांकों के माध्यम से सामान्यीकृत करते हैं, उसी तरह सामान्य स्टोकास्टिक अंतर समीकरण सामान्य अंतर समीकरणों को सामान्यीकृत करते हैं।

क्वांटम क्षेत्र सिद्धांत, सांख्यिकीय यांत्रिकी और स्थानिक विश्लेषण के लिए उनकी प्रासंगिकता है।[1][2]

उदाहरण

सबसे अधिक अध्ययन किए गए एसपीडीई में से एक स्टोकास्टिक गर्मी समीकरण है, जिसे औपचारिक रूप से लिखा जा सकता है

कहाँ लाप्लासियन है और अंतरिक्ष-समय वाइट रव को दर्शाता है। अन्य उदाहरणों में प्रसिद्ध रेखीय समीकरणों के स्टोकेस्टिक संस्करण भी शामिल हैं, जैसे तरंग समीकरण और श्रोडिंगर समीकरण है।

चर्चा

उनमें एक कठिनाई नियमितता की कमी है। एक आयामी अंतरिक्ष में, स्टोकास्टिक गर्मी समीकरण के समाधान केवल लगभग 1/2-होल्डर अंतरिक्ष में निरंतर और 1/4-होल्डर समय में निरंतर होते हैं। आयाम दो और उच्चतर के लिए, समाधान कार्य-मूल्यवान भी नहीं हैं, लेकिन यादृच्छिक वितरण के रूप में इसका अर्थ लगाया जा सकता है।

रैखिक समीकरणों के लिए, आमतौर पर C0-सेमीग्रुप तकनीकों के माध्यम से एक हल्का समाधान खोजा जा सकता है।[3] हालाँकि, गैर-रैखिक समीकरणों पर विचार करने पर समस्याएँ सामने आने लगती हैं। उदाहरण के लिए

कहाँ एक बहुपद है। इस मामले में यह भी स्पष्ट नहीं है कि किसी को समीकरण का अर्थ कैसे निकालना चाहिए। इस तरह के समीकरण में एक से बड़े आयाम में फ़ंक्शन-मूल्यवान समाधान भी नहीं होगा, और इसलिए कोई बिंदुवार अर्थ नहीं होगा। यह सर्वविदित है कि वितरण (गणित) के स्थान की कोई उत्पाद संरचना नहीं है। यह इस तरह के सिद्धांत की मूल समस्या है। इससे किसी प्रकार के पुनर्संरचना की आवश्यकता होती है।

कुछ विशिष्ट समीकरणों के लिए ऐसी समस्याओं को दरकिनार करने का एक प्रारंभिक प्रयास तथाकथित दा प्राटो-डेबस्चे ट्रिक था जिसमें ऐसे गैर-रैखिक समीकरणों का अध्ययन करना शामिल था जो रैखिक समीकरणों के क्षोभ के रूप में थे। हालाँकि, इसका उपयोग केवल बहुत ही प्रतिबंधात्मक सेटिंग्स में किया जा सकता है, क्योंकि यह गैर-रैखिक कारक और ड्राइविंग शोर अवधि की नियमितता दोनों पर निर्भर करता है। हाल के वर्षों में, इस क्षेत्र का काफी विस्तार हुआ है, और अब विभिन्न उप-महत्वपूर्ण एसपीडीई के लिए स्थानीय अस्तित्व की गारंटी देने के लिए एक बड़ी मशीनरी मौजूद है।[citation needed]

यह भी देखें

संदर्भ

  1. Prévôt, Claudia; Röckner, Michael (2007). स्टोचैस्टिक आंशिक विभेदक समीकरणों पर एक संक्षिप्त पाठ्यक्रम. Lecture Notes in Mathematics (in English). Berlin Heidelberg: Springer-Verlag. ISBN 978-3-540-70780-6.
  2. Krainski, Elias T.; Gómez-Rubio, Virgilio; Bakka, Haakon; Lenzi, Amanda; Castro-Camilo, Daniela; Simpson, Daniel; Lindgren, Finn; Rue, Håvard (2018). R और INLA का उपयोग करते हुए स्टोचैस्टिक आंशिक विभेदक समीकरणों के साथ उन्नत स्थानिक मॉडलिंग. Boca Raton, FL: Chapman and Hall/CRC Press. ISBN 978-1-138-36985-6.
  3. Walsh, John B. (1986). Carmona, René; Kesten, Harry; Walsh, John B.; Hennequin, P. L. (eds.). "स्टोचैस्टिक आंशिक अंतर समीकरणों का परिचय". École d'Été de Probabilités de Saint Flour XIV - 1984. Lecture Notes in Mathematics (in English). Springer Berlin Heidelberg. 1180: 265–439. doi:10.1007/bfb0074920. hdl:10338.dmlcz/126035. ISBN 978-3-540-39781-6.


अग्रिम पठन


बाहरी संबंध