थर्मोडायनामिक समीकरणों की तालिका: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 53: Line 53:
|-b  
|-b  


! scope="col" width="200" | Quantity (Common Name/s)  
! scope="col" width="200" | मात्रा (सामान्य नाम)  
! scope="col" width="125" | (Common) Symbol/s
! scope="col" width="125" | (सामान्य) प्रतीक
! scope="col" width="200" | Defining Equation  
! scope="col" width="200" | Defining Equation  
! scope="col" width="125" | SI Units
! scope="col" width="125" | एसआई इकाइयां
! scope="col" width="100" | Dimension
! scope="col" width="100" | आयाम
|-
|-
![[Thermodynamic beta]], Inverse temperature
![[Index.php?title=ऊष्मागतिकी बीटा|ऊष्मागतिकी बीटा]], प्रतिलोम तापमान
|| ''β''
|| ''β''
||<math> \beta = 1/k_B T \,\!</math>
||<math> \beta = 1/k_B T \,\!</math>
Line 65: Line 65:
|| [T]<sup>2</sup>[M]<sup>−1</sup>[L]<sup>−2</sup>
|| [T]<sup>2</sup>[M]<sup>−1</sup>[L]<sup>−2</sup>
|-
|-
![[Thermodynamic temperature]]
![[Index.php?title=ऊष्मागतिकी तापमान|ऊष्मागतिकी तापमान]]
| ''τ''
| ''τ''
|<math> \tau = k_B T \,\!</math>
|<math> \tau = k_B T \,\!</math>
Line 73: Line 73:
| [M] [L]<sup>2</sup> [T]<sup>−2</sup>
| [M] [L]<sup>2</sup> [T]<sup>−2</sup>
|-
|-
![[Entropy]]
![[Index.php?title=एन्ट्रॉपी|एन्ट्रॉपी]]
| ''S''
| ''S''
| <math>S = -k_B\sum_i p_i\ln p_i</math>
| <math>S = -k_B\sum_i p_i\ln p_i</math>
Line 81: Line 81:
| [M][L]<sup>2</sup>[T]<sup>−2</sup> [Θ]<sup>−1</sup>
| [M][L]<sup>2</sup>[T]<sup>−2</sup> [Θ]<sup>−1</sup>
|-
|-
![[Pressure]]
! [[Index.php?title= दाब|दाब]]
| ''P''  
| ''P''  
| <math> P = - \left (\partial F/\partial V \right )_{T,N} \,\!</math>
| <math> P = - \left (\partial F/\partial V \right )_{T,N} \,\!</math>
Line 88: Line 88:
| M  L<sup>−1</sup>T<sup>−2</sup>
| M  L<sup>−1</sup>T<sup>−2</sup>
|-
|-
![[Internal Energy]]
![[Index.php?title=आंतरिक ऊर्जा|आंतरिक ऊर्जा]]
| ''U''
| ''U''
|<math>U = \sum_i  E_i \!</math>
|<math>U = \sum_i  E_i \!</math>
Line 94: Line 94:
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
|-
|-
![[Enthalpy]]
![[Index.php?title=तापीय धारिता|तापीय धारिता]]
| ''H''
| ''H''
|<math> H = U+pV\,\!</math>
|<math> H = U+pV\,\!</math>
Line 100: Line 100:
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
|-
|-
![[Partition function (statistical mechanics)|Partition Function]]  
![[Index.php?title=संवितरण फलन (statistical mechanics)|संवितरण फलन]]
| ''Z''
| ''Z''
|
|
| dimensionless
| विमाहीन
| dimensionless
| विमाहीन
|-
|-
![[Gibbs free energy]]
![[Index.php?title=गिब्स मुक्त ऊर्जा|गिब्स मुक्त ऊर्जा]]
| ''G''
| ''G''
|<math> G = H - TS \,\!</math>
|<math> G = H - TS \,\!</math>
Line 112: Line 112:
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
|-
|-
![[Chemical potential]] (of
![[Index.php?title=रासायनिक विभव|रासायनिक विभव]] (एक मिश्रण में घटक)
component ''i'' in a mixture)
| ''μ<sub>i</sub>''
| ''μ<sub>i</sub>''
|<math> \mu_i = \left (\partial U/\partial N_i \right )_{N_{j \neq i}, S, V } \,\!</math>
|<math> \mu_i = \left (\partial U/\partial N_i \right )_{N_{j \neq i}, S, V } \,\!</math>
<math> \mu_i = \left (\partial F/\partial N_i \right )_{T, V } \,\!</math>, where F is not proportional to N because μ<sub>i</sub> depends on pressure.
<math> \mu_i = \left (\partial F/\partial N_i \right )_{T, V } \,\!</math>, जहाँ F, N के समानुपाती नहीं है क्योंकि μi दाब पर निर्भर करता है।<math> \mu_i = \left (\partial G/\partial N_i \right )_{T, P } \,\!</math>, जहाँ G, N के समानुपाती होता है (जब तक सिस्टम का मोलर अनुपात समान रहता है) क्योंकि μi केवल तापमान और दाब और संघटन पर निर्भर करता है।<math> \mu_i/\tau = -1/k_B \left (\partial S/\partial N_i \right )_{U,V} \,\!</math>
<math> \mu_i = \left (\partial G/\partial N_i \right )_{T, P } \,\!</math>, where G is proportional to N (as long as the molar ratio composition of the system remains the same) because μ<sub>i</sub> depends only on temperature and pressure and composition.
<math> \mu_i/\tau = -1/k_B \left (\partial S/\partial N_i \right )_{U,V} \,\!</math>
| J
| J
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
|-
|-
![[Helmholtz free energy]]
![[Index.php?title=हेल्महोल्त्स मुक्त ऊर्जा|हेल्महोल्त्स मुक्त ऊर्जा]]
| ''A, F''
| ''A, F''
|<math> F = U - TS \,\!</math>
|<math> F = U - TS \,\!</math>
Line 128: Line 125:
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
|-
|-
![[Grand potential|Landau potential]], Landau Free Energy, [[Grand potential]]
![[Index.php?title=अपार क्षमता|लैंडौ क्षमता]], लैंडौ मुक्त ऊर्जा, [[Index.php?title=अपार क्षमता|अपार क्षमता]]
| ''Ω'', ''Φ<sub>G</sub>''
| ''Ω'', ''Φ<sub>G</sub>''
|<math> \Omega = U - TS - \mu N\,\!</math>
|<math> \Omega = U - TS - \mu N\,\!</math>
Line 134: Line 131:
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
| [M][L]<sup>2</sup>[T]<sup>−2</sup>
|-
|-
!Massieu Potential, Helmholtz [[free entropy]]
!मासीउ संभावित, हेल्महोल्ट्ज़ मुक्त एन्ट्रापी
| ''Φ''
| ''Φ''
|<math> \Phi = S - U/T \,\!</math>
|<math> \Phi = S - U/T \,\!</math>
Line 140: Line 137:
| [M][L]<sup>2</sup>[T]<sup>−2</sup> [Θ]<sup>−1</sup>
| [M][L]<sup>2</sup>[T]<sup>−2</sup> [Θ]<sup>−1</sup>
|-
|-
!Planck potential, Gibbs [[free entropy]]
!प्लैंक क्षमता, गिब्स मुक्त एन्ट्रापी
| ''Ξ''
| ''Ξ''
|<math> \Xi = \Phi - pV/T \,\!</math>
|<math> \Xi = \Phi - pV/T \,\!</math>
Line 155: Line 152:
{| class="wikitable"
{| class="wikitable"
|-
|-
! scope="col" width="100" | Quantity (common name/s)  
! scope="col" width="100" | मात्रा (सामान्य नाम)  
! scope="col" width="100" | (Common) symbol/s
! scope="col" width="100" | (सामान्य) प्रतीक
! scope="col" width="300" | Defining equation  
! scope="col" width="300" | Defining equation  
! scope="col" width="125" | SI units
! scope="col" width="125" | एसआई इकाइयां
! scope="col" width="100" | Dimension
! scope="col" width="100" | आयाम
|-
|-
!General heat/thermal capacity  
!General heat/thermal capacity  
Line 212: Line 209:
|| ''γ''
|| ''γ''
||<math>\gamma = C_p/C_V = c_p/c_V = C_{mp}/C_{mV} \,\!</math>
||<math>\gamma = C_p/C_V = c_p/c_V = C_{mp}/C_{mV} \,\!</math>
|| dimensionless
|| विमाहीन
|| dimensionless
|| विमाहीन
|-
|-
|}
|}
Line 224: Line 221:
{| class="wikitable"
{| class="wikitable"
|-
|-
! scope="col" width="100" | Quantity (common name/s)  
! scope="col" width="100" | मात्रा (सामान्य नाम)  
! scope="col" width="100" | (Common) symbol/s
! scope="col" width="100" | (सामान्य) प्रतीक
! scope="col" width="300" | Defining equation  
! scope="col" width="300" | Defining equation  
! scope="col" width="125" | SI units
! scope="col" width="125" | एसआई इकाइयां
! scope="col" width="100" | Dimension
! scope="col" width="100" | आयाम
|-
|-
![[Temperature gradient]]
![[Temperature gradient|तापमान gradient]]
|| No standard symbol  
|| No standard symbol  
||<math> \nabla T \,\!</math>
||<math> \nabla T \,\!</math>
Line 325: Line 322:
<math>\frac{p_1 V_1}{p_2 V_2} = \frac{n_1 T_1}{n_2 T_2} = \frac{N_1 T_1}{N_2 T_2} \,\!</math>
<math>\frac{p_1 V_1}{p_2 V_2} = \frac{n_1 T_1}{n_2 T_2} = \frac{N_1 T_1}{N_2 T_2} \,\!</math>
|-
|-
! Pressure of an ideal gas
! दाब of an ideal gas
| {{plainlist}}
| {{plainlist}}
*''m'' = mass of ''one'' molecule
*''m'' = mass of ''one'' molecule
Line 364: Line 361:
||
||
|-
|-
! Internal Energy <br /> Δ''U''  
! आंतरिक ऊर्जा <br /> Δ''U''  
| align="center" | <math>\Delta U = C_V \Delta T\;</math>
| align="center" | <math>\Delta U = C_V \Delta T\;</math>
| align="center" | <math>Q + W\;</math><br><br><math>Q_p - p\Delta V\;</math>
| align="center" | <math>Q + W\;</math><br><br><math>Q_p - p\Delta V\;</math>
Line 371: Line 368:
| align="center" | <math>W\;</math><br><br><math>C_V\left ( T_2-T_1 \right )\;</math>
| align="center" | <math>W\;</math><br><br><math>C_V\left ( T_2-T_1 \right )\;</math>
|-
|-
! Enthalpy <br /> Δ''H''
! तापीय धारिता <br /> Δ''H''
| align="center" | <math>H=U+pV\;</math>
| align="center" | <math>H=U+pV\;</math>
| align="center" | <math>C_p\left ( T_2-T_1 \right )\;</math>
| align="center" | <math>C_p\left ( T_2-T_1 \right )\;</math>
Line 378: Line 375:
| align="center" | <math>C_p\left ( T_2-T_1 \right )\;</math>
| align="center" | <math>C_p\left ( T_2-T_1 \right )\;</math>
|-
|-
! Entropy <br /> Δ''s''
! एन्ट्रॉपी <br /> Δ''s''
| align="center" | <math>\Delta S = C_V \ln{T_2 \over T_1} + nR \ln{V_2 \over V_1}</math><br><math>\Delta S = C_p \ln{T_2 \over T_1} - nR \ln{p_2 \over p_1}</math><ref>Keenan, ''Thermodynamics'', Wiley, New York, 1947</ref>
| align="center" | <math>\Delta S = C_V \ln{T_2 \over T_1} + nR \ln{V_2 \over V_1}</math><br><math>\Delta S = C_p \ln{T_2 \over T_1} - nR \ln{p_2 \over p_1}</math><ref>Keenan, ''Thermodynamics'', Wiley, New York, 1947</ref>
| align="center" | <math>C_p\ln\frac{T_2}{T_1}\;</math>
| align="center" | <math>C_p\ln\frac{T_2}{T_1}\;</math>
Line 424: Line 421:
<math> f(p) = \frac{1}{4 \pi m^3 c^3 \theta K_2(1/\theta)} e^{-\gamma(p)/\theta}</math>
<math> f(p) = \frac{1}{4 \pi m^3 c^3 \theta K_2(1/\theta)} e^{-\gamma(p)/\theta}</math>
|-
|-
!Entropy [[logarithmic scale|Logarithm]] of the [[density of states]]
!एन्ट्रॉपी [[logarithmic scale|Logarithm]] of the [[density of states]]
|{{plainlist}}
|{{plainlist}}
* ''P<sub>i</sub>'' = probability of system in microstate ''i''
* ''P<sub>i</sub>'' = probability of system in microstate ''i''
Line 434: Line 431:
<math>P_i = 1/\Omega\,\!</math>
<math>P_i = 1/\Omega\,\!</math>
|-
|-
!Entropy change
!एन्ट्रॉपी change
|
|
|<math>\Delta S = \int_{Q_1}^{Q_2} \frac{\mathrm{d}Q}{T} \,\!</math><br />
|<math>\Delta S = \int_{Q_1}^{Q_2} \frac{\mathrm{d}Q}{T} \,\!</math><br />
Line 448: Line 445:
<math> \langle E_\mathrm{k} \rangle = \frac{1}{2}kT\,\!</math>
<math> \langle E_\mathrm{k} \rangle = \frac{1}{2}kT\,\!</math>


Internal energy
आंतरिक ऊर्जा
<math> U = d_f \langle E_\mathrm{k} \rangle = \frac{d_f}{2}kT\,\!</math>
<math> U = d_f \langle E_\mathrm{k} \rangle = \frac{d_f}{2}kT\,\!</math>
|-  
|-  
Line 505: Line 502:
! Differential
! Differential
|-
|-
! Internal energy
! आंतरिक ऊर्जा
|<math>dU\left(S,V,{N_{i}}\right) = TdS - pdV + \sum_{i} \mu_{i} dN_i</math>
|<math>dU\left(S,V,{N_{i}}\right) = TdS - pdV + \sum_{i} \mu_{i} dN_i</math>
|-
|-
! Enthalpy
! तापीय धारिता
|<math>dH\left(S,p,{N_{i}}\right) = TdS + Vdp + \sum_{i} \mu_{i} dN_{i}</math>
|<math>dH\left(S,p,{N_{i}}\right) = TdS + Vdp + \sum_{i} \mu_{i} dN_{i}</math>
|-
|-
!Helmholtz free energy
!हेल्महोल्त्स मुक्त ऊर्जा
|<math>dF\left(T,V,{N_{i}}\right) = -SdT - pdV + \sum_{i} \mu_{i} dN_{i}</math>
|<math>dF\left(T,V,{N_{i}}\right) = -SdT - pdV + \sum_{i} \mu_{i} dN_{i}</math>
|-
|-
!Gibbs free energy
!गिब्स मुक्त ऊर्जा
|<math>dG\left(T,p,{N_{i}}\right) = -SdT + Vdp + \sum_{i} \mu_{i} dN_{i}</math>
|<math>dG\left(T,p,{N_{i}}\right) = -SdT + Vdp + \sum_{i} \mu_{i} dN_{i}</math>
|-
|-
Line 530: Line 527:
! scope="col" width="10" | Equations
! scope="col" width="10" | Equations
|-
|-
!Thermodynamic potentials as functions of their natural variables
!ऊष्मागतिकीpotentials as functions of their natural variables
|{{plainlist}}
|{{plainlist}}
*<math>U(S,V)\,</math> = [[Internal energy]]
*<math>U(S,V)\,</math> = [[Internal energy]]
Line 596: Line 593:
|-
|-
!Degree of freedom
!Degree of freedom
!Partition function
!संवितरण फलन
|-
|-
!Translation
!Translation
Line 625: Line 622:
|<math>\mu_{JT} = \left(\frac{\partial T}{\partial p}\right)_H</math>
|<math>\mu_{JT} = \left(\frac{\partial T}{\partial p}\right)_H</math>
|-
|-
![[Compressibility]] (constant temperature)
![[Compressibility]] (constant तापमान)
|<math> K_T = -{ 1\over V } \left ( {\partial V\over \partial p} \right )_{T,N} </math>
|<math> K_T = -{ 1\over V } \left ( {\partial V\over \partial p} \right )_{T,N} </math>
|-
|-
! [[Coefficient of thermal expansion]] (constant pressure)
! [[Coefficient of thermal expansion]] (constant दाब)
|<math>\alpha_{p} = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_p</math>
|<math>\alpha_{p} = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_p</math>
|-
|-
! Heat capacity (constant pressure)
! Heat capacity (constant दाब)
| <math>C_p
| <math>C_p
= \left ( {\partial Q_{rev} \over \partial T} \right )_p
= \left ( {\partial Q_{rev} \over \partial T} \right )_p
Line 647: Line 644:


{| class="toccolours collapsible collapsed" width="80%" style="text-align:left"
{| class="toccolours collapsible collapsed" width="80%" style="text-align:left"
!Derivation of heat capacity (constant pressure)
!Derivation of heat capacity (constant दाब)
|-
|-
|
|
Line 719: Line 716:
|<math> I = \sigma \epsilon \left ( T_\mathrm{external}^4 - T_\mathrm{system}^4 \right ) \,\!</math>
|<math> I = \sigma \epsilon \left ( T_\mathrm{external}^4 - T_\mathrm{system}^4 \right ) \,\!</math>
|-
|-
!Internal energy of a substance
!आंतरिक ऊर्जा of a substance
| {{plainlist}}
| {{plainlist}}
*''C<sub>V</sub>'' = isovolumetric heat capacity of substance
*''C<sub>V</sub>'' = isovolumetric heat capacity of substance
Line 756: Line 753:
! scope="col" width="10" | Equations
! scope="col" width="10" | Equations
|-
|-
!Thermodynamic engines
!ऊष्मागतिकीengines
|{{plainlist}}
|{{plainlist}}
* ''η'' = efficiency
* ''η'' = efficiency
Line 765: Line 762:
* ''T<sub>L</sub>'' = temperature of lower temp. reservoir
* ''T<sub>L</sub>'' = temperature of lower temp. reservoir
{{endplainlist}}
{{endplainlist}}
|Thermodynamic engine:<br />
|ऊष्मागतिकीengine:<br />
<math>\eta = \left |\frac{W}{Q_H} \right|\,\!</math>
<math>\eta = \left |\frac{W}{Q_H} \right|\,\!</math>


Line 816: Line 813:


==बाहरी संबंध==
==बाहरी संबंध==
*[http://www.fxsolver.com/browse/?oc=3&cat=6&formulas=on Thermodynamic equation calculator]
*[http://www.fxsolver.com/browse/?oc=3&cat=6&formulas=on ऊष्मागतिकीequation calculator]


{{Physics-footer}}
{{Physics-footer}}

Revision as of 16:33, 24 April 2023

यह लेख ऊष्मप्रवैगिकी में सामान्य समीकरण और भौतिक मात्रा का सारांश है (अधिक विस्तार के लिए ऊष्मप्रवैगिकी समीकरण देखें)।

परिभाषाएँ

नीचे दी गई कई परिभाषाएँ रासायनिक प्रतिक्रियाओं के ऊष्मप्रवैगिकी में भी उपयोग की जाती हैं।

सामान्य मूल मात्रा

मात्रा (सामान्य नाम) (सामान्य) प्रतीक एसआई इकाइयां आयाम
अणुओं की संख्या N विमाहीन विमाहीन
मोल्स की संख्या n mol [N]
तापमान T K [Θ]
ऊष्मा ऊर्जा Q, q J [M][L]2[T]−2
गुप्त ऊष्मा QL J [M][L]2[T]−2


सामान्य व्युत्पन्न मात्रा

मात्रा (सामान्य नाम) (सामान्य) प्रतीक Defining Equation एसआई इकाइयां आयाम
ऊष्मागतिकी बीटा, प्रतिलोम तापमान β J−1 [T]2[M]−1[L]−2
ऊष्मागतिकी तापमान τ

J [M] [L]2 [T]−2
एन्ट्रॉपी S

,

J K−1 [M][L]2[T]−2 [Θ]−1
दाब P

Pa M L−1T−2
आंतरिक ऊर्जा U J [M][L]2[T]−2
तापीय धारिता H J [M][L]2[T]−2
संवितरण फलन Z विमाहीन विमाहीन
गिब्स मुक्त ऊर्जा G J [M][L]2[T]−2
रासायनिक विभव (एक मिश्रण में घटक) μi

, जहाँ F, N के समानुपाती नहीं है क्योंकि μi दाब पर निर्भर करता है।, जहाँ G, N के समानुपाती होता है (जब तक सिस्टम का मोलर अनुपात समान रहता है) क्योंकि μi केवल तापमान और दाब और संघटन पर निर्भर करता है।

J [M][L]2[T]−2
हेल्महोल्त्स मुक्त ऊर्जा A, F J [M][L]2[T]−2
लैंडौ क्षमता, लैंडौ मुक्त ऊर्जा, अपार क्षमता Ω, ΦG J [M][L]2[T]−2
मासीउ संभावित, हेल्महोल्ट्ज़ मुक्त एन्ट्रापी Φ J K−1 [M][L]2[T]−2 [Θ]−1
प्लैंक क्षमता, गिब्स मुक्त एन्ट्रापी Ξ J K−1 [M][L]2[T]−2 [Θ]−1


पदार्थ के ऊष्मीय गुण

मात्रा (सामान्य नाम) (सामान्य) प्रतीक Defining equation एसआई इकाइयां आयाम
General heat/thermal capacity C J K −1 [M][L]2[T]−2 [Θ]−1
Heat capacity (isobaric) Cp J K −1 [M][L]2[T]−2 [Θ]−1
Specific heat capacity (isobaric) Cmp J kg−1 K−1 [L]2[T]−2 [Θ]−1
Molar specific heat capacity (isobaric) Cnp J K −1 mol−1 [M][L]2[T]−2 [Θ]−1 [N]−1
Heat capacity (isochoric/volumetric) CV J K −1 [M][L]2[T]−2 [Θ]−1
Specific heat capacity (isochoric) CmV J kg−1 K−1 [L]2[T]−2 [Θ]−1
Molar specific heat capacity (isochoric) CnV J K −1 mol−1 [M][L]2[T]−2 [Θ]−1 [N]−1
Specific latent heat L J kg−1 [L]2[T]−2
Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index γ विमाहीन विमाहीन


थर्मल ट्रांसफर

मात्रा (सामान्य नाम) (सामान्य) प्रतीक Defining equation एसआई इकाइयां आयाम
तापमान gradient No standard symbol K m−1 [Θ][L]−1
Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P W = J s−1 [M] [L]2 [T]−3
Thermal intensity I W m−2 [M] [T]−3
Thermal/heat flux density (vector analogue of thermal intensity above) q W m−2 [M] [T]−3


समीकरण

इस लेख के समीकरणों को विषय द्वारा वर्गीकृत किया गया है।

ऊष्मागतिक प्रक्रियाएं

Physical situation Equations
Isentropic process (adiabatic and reversible)

For an ideal gas


Isothermal process

For an ideal gas

Isobaric process p1 = p2, p = constant

Isochoric process V1 = V2, V = constant

Free expansion
Work done by an expanding gas Process

Net Work Done in Cyclic Processes


गतिज सिद्धांत

Ideal gas equations
Physical situation Nomenclature Equations
Ideal gas law

दाब of an ideal gas
  • m = mass of one molecule
  • Mm = molar mass


आदर्श गैस

Quantity General Equation Isobaric
Δp = 0
Isochoric
ΔV = 0
Isothermal
ΔT = 0
Adiabatic
Work
W

Heat Capacity
C
(as for real gas)
(for monatomic ideal gas)


(for diatomic ideal gas)


(for monatomic ideal gas)


(for diatomic ideal gas)

आंतरिक ऊर्जा
ΔU








तापीय धारिता
ΔH
एन्ट्रॉपी
Δs

[1]

Constant


एंट्रॉपी

  • , जहां kB बोल्ट्ज़मैन स्थिरांक है, और Ω चरण स्थान में स्थूल अवस्था की मात्रा को दर्शाता है या अन्यथा ऊष्मागतिक संभाव्यता कहा जाता है।
  • , केवल प्रतिवर्ती प्रक्रियाओं के लिए

सांख्यिकीय भौतिकी

नीचे एक आदर्श गैस के लिए मैक्सवेल-बोल्ट्ज़मैन वितरण से उपयोगी परिणाम और एंट्रॉपी मात्रा के निहितार्थ हैं। वितरण आदर्श गैस बनाने वाले परमाणुओं या अणुओं के लिए मान्य है।

Physical situation Nomenclature Equations
Maxwell–Boltzmann distribution
  • v = velocity of atom/molecule,
  • m = mass of each molecule (all molecules are identical in kinetic theory),
  • γ(p) = Lorentz factor as function of momentum (see below)
  • Ratio of thermal to rest mass-energy of each molecule:

K2 is the Modified Bessel function of the second kind.

Non-relativistic speeds

Relativistic speeds (Maxwell-Jüttner distribution)

एन्ट्रॉपी Logarithm of the density of states
  • Pi = probability of system in microstate i
  • Ω = total number of microstates

where:

एन्ट्रॉपी change

Entropic force
Equipartition theorem df = degree of freedom Average kinetic energy per degree of freedom

आंतरिक ऊर्जा

गैर-सापेक्षवादी मैक्सवेल-बोल्ट्जमान वितरण के परिणाम नीचे दिए गए हैं।

Physical situation Nomenclature Equations
Mean speed
Root mean square speed
Modal speed
Mean free path
  • σ = Effective cross-section
  • n = Volume density of number of target particles
  • = Mean free path


अर्ध-स्थैतिक और प्रतिवर्ती प्रक्रियाएं

अर्ध-स्थैतिक प्रक्रिया | अर्ध-स्थैतिक और प्रतिवर्ती प्रक्रिया (ऊष्मागतिक्स) प्रक्रियाओं के लिए, ऊष्मप्रवैगिकी का पहला नियम है:

जहाँ δQ तंत्र को आपूर्ति की गई ऊष्मा है और δW निकाय द्वारा किया गया कार्य है।

ऊष्मागतिक क्षमता

निम्नलिखित ऊर्जाओं को ऊष्मागतिक क्षमता कहा जाता है,

Name Symbol Formula Natural variables
Internal energy
Helmholtz free energy
Enthalpy
Gibbs free energy
Landau potential, or
grand potential
,

और संबंधित मूलभूत ऊष्मागतिक संबंध या मास्टर समीकरण[2] हैं:

Potential Differential
आंतरिक ऊर्जा
तापीय धारिता
हेल्महोल्त्स मुक्त ऊर्जा
गिब्स मुक्त ऊर्जा


मैक्सवेल के संबंध

मैक्सवेल के चार सबसे आम संबंध हैं:

Physical situation Nomenclature Equations
ऊष्मागतिकीpotentials as functions of their natural variables

अधिक संबंधों में निम्नलिखित शामिल हैं।

अन्य अंतर समीकरण हैं:

Name H U G
Gibbs–Helmholtz equation


क्वांटम गुण

  • अप्रभेद्य कण

जहाँ N कणों की संख्या है, h प्लैंक नियतांक है, I जड़त्वाघूर्ण है, और Z विभिन्न रूपों में विभाजन फलन (सांख्यिकीय यांत्रिकी) है:

Degree of freedom संवितरण फलन
Translation
Vibration
Rotation


पदार्थ के ऊष्मीय गुण

Coefficients Equation
Joule-Thomson coefficient
Compressibility (constant तापमान)
Coefficient of thermal expansion (constant दाब)
Heat capacity (constant दाब)
Heat capacity (constant volume)


तापीय स्थानांतरण

Physical situation Nomenclature Equations
Net intensity emission/absorption
  • Texternal = external temperature (outside of system)
  • Tsystem = internal temperature (inside system)
  • ε = emmisivity
आंतरिक ऊर्जा of a substance
  • CV = isovolumetric heat capacity of substance
  • ΔT = temperature change of substance
Meyer's equation
  • Cp = isobaric heat capacity
  • CV = isovolumetric heat capacity
  • n = number of moles
Effective thermal conductivities
  • λi = thermal conductivity of substance i
  • λnet = equivalent thermal conductivity
Series

Parallel


तापीय क्षमता

Physical situation Nomenclature Equations
ऊष्मागतिकीengines
  • η = efficiency
  • W = work done by engine
  • QH = heat energy in higher temperature reservoir
  • QL = heat energy in lower temperature reservoir
  • TH = temperature of higher temp. reservoir
  • TL = temperature of lower temp. reservoir
ऊष्मागतिकीengine:

Carnot engine efficiency:

Refrigeration K = coefficient of refrigeration performance Refrigeration performance

Carnot refrigeration performance

यह भी देखें

संदर्भ

  1. Keenan, Thermodynamics, Wiley, New York, 1947
  2. Physical chemistry, P.W. Atkins, Oxford University Press, 1978, ISBN 0 19 855148 7
  • Atkins, Peter and de Paula, Julio Physical Chemistry, 7th edition, W.H. Freeman and Company, 2002 ISBN 0-7167-3539-3.
    • Chapters 1–10, Part 1: "Equilibrium".
  • Bridgman, P. W. (1 March 1914). "A Complete Collection of Thermodynamic Formulas". Physical Review. American Physical Society (APS). 3 (4): 273–281. doi:10.1103/physrev.3.273. ISSN 0031-899X.
  • Landsberg, Peter T. Thermodynamics and Statistical Mechanics. New York: Dover Publications, Inc., 1990. (reprinted from Oxford University Press, 1978).
  • Lewis, G.N., and Randall, M., "Thermodynamics", 2nd Edition, McGraw-Hill Book Company, New York, 1961.
  • Reichl, L.E., A Modern Course in Statistical Physics, 2nd edition, New York: John Wiley & Sons, 1998.
  • Schroeder, Daniel V. Thermal Physics. San Francisco: Addison Wesley Longman, 2000 ISBN 0-201-38027-7.
  • Silbey, Robert J., et al. Physical Chemistry, 4th ed. New Jersey: Wiley, 2004.
  • Callen, Herbert B. (1985). Thermodynamics and an Introduction to Themostatistics, 2nd edition, New York: John Wiley & Sons.


बाहरी संबंध