वर्ण सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 22: Line 22:
* यदि निरूपण उप-निरूपणों का प्रत्यक्ष योग है, तो संबंधित वर्ण उन उप-प्रतिनिधियों के वर्णों का योग है।
* यदि निरूपण उप-निरूपणों का प्रत्यक्ष योग है, तो संबंधित वर्ण उन उप-प्रतिनिधियों के वर्णों का योग है।
* यदि परिमित समूह {{mvar|G}} का लक्षण [[उपसमूह]] {{mvar|H}} तक सीमित है, तो परिणाम भी {{mvar|H}} का वर्ण है।  
* यदि परिमित समूह {{mvar|G}} का लक्षण [[उपसमूह]] {{mvar|H}} तक सीमित है, तो परिणाम भी {{mvar|H}} का वर्ण है।  
* प्रत्येक वर्ण मान {{math|''χ''(''g'')}} एकता के {{mvar|n}}-{{mvar|m}}वें मूल का योग है, जहाँ {{mvar|n}} वर्ण {{mvar|χ}} के साथ निरूपण की डिग्री (अर्थात संबंधित सदिश स्थान का आयाम) है और {{mvar|m}}, {{mvar|g}} की कोटि है। विशेष रूप से, जब {{math|1=''F'' = '''C'''}}, ऐसा प्रत्येक वर्ण मान [[बीजगणितीय पूर्णांक]] होता है।
* प्रत्येक वर्ण मान {{math|''χ''(''g'')}} एकता के {{mvar|n}}-{{mvar|m}}वें मूल का योग है, जहाँ {{mvar|n}} वर्ण {{mvar|χ}} के साथ निरूपण की डिग्री (अर्थात संबंधित सदिश स्थान का आयाम) है और {{mvar|m}}, {{mvar|g}} की कोटि है। विशेष रूप से, जब {{math|1=''F'' = '''C'''}}, ऐसा प्रत्येक वर्ण मान [[बीजगणितीय पूर्णांक]] होता है।
* यदि {{math|1=''F'' = '''C'''}} और {{mvar|χ}} तब अलघुकरणीय है: <math display="block">[G:C_G(x)]\frac{\chi(x)}{\chi(1)}</math>{{mvar|G}} में सभी {{mvar|x}} के लिए बीजगणितीय पूर्णांक है।
* यदि {{math|1=''F'' = '''C'''}} और {{mvar|χ}} तब अलघुकरणीय है: <math display="block">[G:C_G(x)]\frac{\chi(x)}{\chi(1)}</math>{{mvar|G}} में सभी {{mvar|x}} के लिए बीजगणितीय पूर्णांक है।
* यदि {{mvar|F}} [[बीजगणितीय रूप से बंद]] है और{{math|[[अंगूठी की विशेषता | चार]](''F'')}} {{mvar|G}} के क्रम को विभाजित नहीं करता है, तो {{mvar|G}} के अलघुकरणीय वर्णों की संख्या {{mvar|G}} के संयुग्मन वर्गों की संख्या के समान है। इसके अतिरिक्त, इस स्थिति में, अलघुकरणीय वर्णों की डिग्री {{mvar|G}} के क्रम के विभाजक हैं (और वे {{math|[''G'' : ''Z''(''G'')]}} को भी विभाजित करते हैं यदि {{math|''F'' {{=}} '''C'''}} हैं)।
* यदि {{mvar|F}} [[बीजगणितीय रूप से बंद]] है और{{math|[[अंगूठी की विशेषता | चार]](''F'')}} {{mvar|G}} के क्रम को विभाजित नहीं करता है, तो {{mvar|G}} के अलघुकरणीय वर्णों की संख्या {{mvar|G}} के संयुग्मन वर्गों की संख्या के समान है। इसके अतिरिक्त, इस स्थिति में, अलघुकरणीय वर्णों की डिग्री {{mvar|G}} के क्रम के विभाजक हैं (और वे {{math|[''G'' : ''Z''(''G'')]}} को भी विभाजित करते हैं यदि {{math|''F'' {{=}} '''C'''}} हैं)।
Line 37: Line 37:
== वर्ण तालिका ==
== वर्ण तालिका ==
{{Further|वर्ण तालिका}}
{{Further|वर्ण तालिका}}
परिमित समूह के अलघुकरणीय जटिल संख्या वर्ण तालिका बनाते हैं जो सघन रूप में समूह {{mvar|G}} के सम्बन्ध में अधिक उपयोगी सूचना को कूटबद्ध करता है। प्रत्येक पंक्ति को अलघुकरणीय प्रतिनिधित्व द्वारा लेबल किया जाता है और पंक्ति में प्रविष्टियाँ  {{mvar|G}} के संबंधित संयुग्मन वर्ग पर प्रतिनिधित्व के वर्ण हैं। स्तंभों को {{mvar|G}} के संयुग्मन वर्गों (प्रतिनिधियों) द्वारा लेबल किया जाता है। यह [[तुच्छ प्रतिनिधित्व|अल्प प्रतिनिधित्व]] के वर्ण द्वारा प्रथम पंक्ति को लेबल करने के लिए प्रथागत है, जो कि तुच्छ क्रिया है {{mvar|G}} द्वारा 1-आयामी सदिश स्थान पर <math> \rho(g)=1</math> सभी के लिए <math> g\in G </math>. पहली पंक्ति में प्रत्येक प्रविष्टि इसलिए 1 है। इसी तरह, पहले कॉलम को पहचान द्वारा लेबल करने की प्रथा है। इसलिए, पहले कॉलम में प्रत्येक अलघुकरणीय वर्ण की डिग्री होती है।
परिमित समूह के अलघुकरणीय जटिल संख्या वर्ण तालिका बनाते हैं जो सघन रूप में समूह {{mvar|G}} के सम्बन्ध में अधिक उपयोगी सूचना को कूटबद्ध करता है। प्रत्येक पंक्ति को अलघुकरणीय प्रतिनिधित्व द्वारा लेबल किया जाता है और पंक्ति में प्रविष्टियाँ  {{mvar|G}} के संबंधित संयुग्मन वर्ग पर प्रतिनिधित्व के वर्ण हैं। स्तंभों को {{mvar|G}} के संयुग्मन वर्गों (प्रतिनिधियों) द्वारा लेबल किया जाता है। यह [[तुच्छ प्रतिनिधित्व|अल्प प्रतिनिधित्व]] के वर्ण द्वारा प्रथम पंक्ति को लेबल करने के लिए प्रथागत है, जो कि 1-आयामी सदिश स्थान पर {{mvar|G}} की अल्प क्रिया है, <math> \rho(g)=1</math> सभी के लिए <math> g\in G </math> होती है। प्रथम पंक्ति में प्रत्येक प्रविष्टि इसलिए 1 है। इसी तरह, पहले कॉलम को पहचान द्वारा लेबल करने की प्रथा है। इसलिए, पहले कॉलम में प्रत्येक अलघुकरणीय वर्ण की डिग्री होती है।


यहाँ की वर्ण तालिका है
यहाँ की वर्ण तालिका है

Revision as of 12:30, 1 May 2023

गणित में, विशेष रूप से समूह सिद्धांत में, समूह प्रतिनिधित्व का वर्ण समूह पर फलन है, जो प्रत्येक समूह तत्व को संबंधित आव्यूह के चिह्न से युग्मित करता है। वर्ण अधिक संक्षिप्त रूप में प्रतिनिधित्व के सम्बन्ध में आवश्यक सूचना रखता है। जॉर्ज फ्रोबेनियस ने प्रारंभ में परिमित समूहों के प्रतिनिधित्व सिद्धांत को विकसित किया, जो प्रत्येक प्रकार से पात्रों पर आधारित था, और स्वयं प्रतिनिधित्व के किसी भी स्पष्ट आव्यूह प्राप्ति के बिना होता है। यह संभव है क्योंकि परिमित समूह का सम्मिश्र संख्या निरूपण उसके वर्ण द्वारा निर्धारित (समरूपता तक) होता है। तथाकथित मॉड्यूलर प्रतिनिधित्व सकारात्मक विशेषता के क्षेत्र पर प्रतिनिधित्व के साथ स्थिति अधिक कोमल है, किन्तु रिचर्ड ब्राउर ने इस स्थिति में भी वर्णों का शक्तिशाली सिद्धांत विकसित किया है। परिमित समूहों की संरचना पर विभिन्न गंभीर प्रमेय मॉड्यूलर प्रतिनिधित्व सिद्धांत के पात्रों का उपयोग करते हैं।

अनुप्रयोग

अलघुकरणीय अभ्यावेदन के वर्ण समूह के अनेक महत्वपूर्ण गुणों को कूटबद्ध करते हैं और इस प्रकार इसका उपयोग इसकी संरचना का अध्ययन करने के लिए किया जा सकता है। परिमित सरल समूहों के वर्गीकरण में वर्ण सिद्धांत आवश्यक उपकरण है। फ़ीट-थॉम्पसन प्रमेय के प्रमाण के अर्ध के निकट वर्ण मानों के साथ जटिल गणना सम्मिलित है। सरल, किन्तु फिर भी आवश्यक, परिणाम जो वर्ण सिद्धांत का उपयोग करते हैं उनमें बर्नसाइड के प्रमेय सम्मिलित हैं (बर्नसाइड के प्रमेय का विशुद्ध रूप से समूह-सैद्धांतिक प्रमाण तब से पाया गया है, किन्तु वह प्रमाण बर्नसाइड के मूल प्रमाण के अर्ध दशक पश्चात आया), और रिचर्ड ब्राउर का प्रमेय और मिचियो सुज़ुकी ने कहा कि परिमित सरल समूह में अपने साइलो 2-उपसमूह प्रमेय के रूप में सामान्यीकृत चतुष्कोणीय समूह नहीं हो सकता है।

परिभाषाएँ

मान लीजिये कि V क्षेत्र F पर परिमित-आयामी सदिश समष्टि है और ρ : G → GL(V) V पर समूह G का प्रतिनिधित्व करते हैं। ρ का वर्ण फलन χρ : GF द्वारा दिया गया है:

जहां Tr ट्रेस है।

वर्ण χρ को अलघुकरणीय या सरल कहा जाता है यदि ρ अलघुकरणीय प्रतिनिधित्व है। वर्ण χ की डिग्री ρ का आयाम है; विशेषता शून्य में यह मान χ(1) के समान है। डिग्री 1 के वर्ण को रैखिक कहा जाता है। जब G परिमित है और F में विशेषता शून्य है, तो वर्ण χρ का कर्नेल सामान्य उपसमूह है:

जो वास्तव में प्रतिनिधित्व ρ का कर्नेल है। चूँकि, वर्ण सामान्य रूप से समूह समरूपता नहीं है।

गुण

  • वर्ण वर्ग कार्य हैं, अर्थात, वे प्रत्येक दिए गए संयुग्मन वर्ग पर स्थिर मान लेते हैं। अधिक त्रुटिहीन रूप से, किसी दिए गए समूह G के क्षेत्र K में अलघुकरणीय वर्णों का समुच्चय सभी वर्ग फलनों GK के K-सदिश स्थान का आधार बनाते हैं।
  • आइसोमॉर्फिक प्रतिनिधित्व में समान वर्ण होते हैं। विशेषता 0 के क्षेत्र में, दो अभ्यावेदन आइसोमॉर्फिक हैं यदि केवल उनके समान वर्ण हैं।[1]
  • यदि निरूपण उप-निरूपणों का प्रत्यक्ष योग है, तो संबंधित वर्ण उन उप-प्रतिनिधियों के वर्णों का योग है।
  • यदि परिमित समूह G का लक्षण उपसमूह H तक सीमित है, तो परिणाम भी H का वर्ण है।
  • प्रत्येक वर्ण मान χ(g) एकता के n-mवें मूल का योग है, जहाँ n वर्ण χ के साथ निरूपण की डिग्री (अर्थात संबंधित सदिश स्थान का आयाम) है और m, g की कोटि है। विशेष रूप से, जब F = C, ऐसा प्रत्येक वर्ण मान बीजगणितीय पूर्णांक होता है।
  • यदि F = C और χ तब अलघुकरणीय है:
    G में सभी x के लिए बीजगणितीय पूर्णांक है।
  • यदि F बीजगणितीय रूप से बंद है और चार(F) G के क्रम को विभाजित नहीं करता है, तो G के अलघुकरणीय वर्णों की संख्या G के संयुग्मन वर्गों की संख्या के समान है। इसके अतिरिक्त, इस स्थिति में, अलघुकरणीय वर्णों की डिग्री G के क्रम के विभाजक हैं (और वे [G : Z(G)] को भी विभाजित करते हैं यदि F = C हैं)।

अंकगणितीय गुण

मान लीजिए ρ और σ, G का प्रतिनिधित्व करते हैं। तब निम्नलिखित पहचान धारण करते हैं:

जहां ρσ प्रत्यक्ष योग है, ρσ टेंसर गुणनफल है, जो ρρ के संयुग्मी स्थानांतरण को दर्शाता है, और Alt2 वैकल्पिक उत्पाद है Alt2ρ = ρρ और Sym2 सममित वर्ग है, जो इसके द्वारा निर्धारित किया जाता है:

वर्ण तालिका

परिमित समूह के अलघुकरणीय जटिल संख्या वर्ण तालिका बनाते हैं जो सघन रूप में समूह G के सम्बन्ध में अधिक उपयोगी सूचना को कूटबद्ध करता है। प्रत्येक पंक्ति को अलघुकरणीय प्रतिनिधित्व द्वारा लेबल किया जाता है और पंक्ति में प्रविष्टियाँ G के संबंधित संयुग्मन वर्ग पर प्रतिनिधित्व के वर्ण हैं। स्तंभों को G के संयुग्मन वर्गों (प्रतिनिधियों) द्वारा लेबल किया जाता है। यह अल्प प्रतिनिधित्व के वर्ण द्वारा प्रथम पंक्ति को लेबल करने के लिए प्रथागत है, जो कि 1-आयामी सदिश स्थान पर G की अल्प क्रिया है, सभी के लिए होती है। प्रथम पंक्ति में प्रत्येक प्रविष्टि इसलिए 1 है। इसी तरह, पहले कॉलम को पहचान द्वारा लेबल करने की प्रथा है। इसलिए, पहले कॉलम में प्रत्येक अलघुकरणीय वर्ण की डिग्री होती है।

यहाँ की वर्ण तालिका है

तीन तत्वों और जनरेटर यू के साथ चक्रीय समूह:

  (1) (u) (u2)
1 1 1 1
χ1 1 ω ω2
χ2 1 ω2 ω

कहाँ ω एकता की आदिम जड़ है, एकता की तीसरी जड़ है।

वर्ण तालिका हमेशा वर्गाकार होती है, क्योंकि अलघुकरणीय अभ्यावेदन की संख्या संयुग्मन वर्गों की संख्या के बराबर होती है।[2]

ऑर्थोगोनैलिटी संबंध

परिमित समूह के जटिल-मूल्यवान वर्ग कार्यों का स्थान G का प्राकृतिक आंतरिक उत्पाद है:

कहाँ β(g) का जटिल संयुग्म है β(g). इस आंतरिक उत्पाद के संबंध में, अप्रासंगिक वर्ण वर्ग-कार्यों के स्थान के लिए अलौकिक आधार बनाते हैं, और यह वर्ण तालिका की पंक्तियों के लिए ऑर्थोगोनलिटी संबंध उत्पन्न करता है:

के लिए g, h में G, उसी आंतरिक उत्पाद को वर्ण तालिका के स्तंभों पर लागू करने से प्राप्त होता है:

जहां योग सभी अप्रासंगिक वर्णों से अधिक है χi का G और प्रतीक |CG(g)| के केंद्रक के आदेश को दर्शाता है g. ध्यान दें कि जब से g और h संयुग्मित हैं यदि वे वर्ण तालिका के ही स्तंभ में हैं, इसका तात्पर्य है कि वर्ण तालिका के स्तंभ ओर्थोगोनल हैं।

ऑर्थोगोनलिटी संबंध कई संगणनाओं में सहायता कर सकते हैं जिनमें सम्मिलित हैं:

  • अलघुकरणीय वर्णों के रेखीय संयोजन के रूप में अज्ञात वर्ण को विघटित करना।
  • पूर्ण वर्ण तालिका का निर्माण जब केवल कुछ अलघुकरणीय वर्णों को जाना जाता है।
  • समूह के संयुग्मन वर्गों के प्रतिनिधियों के केंद्रीकरणकर्ताओं के आदेशों का पता लगाना।
  • समूह के क्रम का पता लगाना।

वर्ण तालिका गुण

समूह के कुछ गुण G इसकी वर्ण तालिका से निकाला जा सकता है:

  • के लिए G पहले कॉलम की प्रविष्टियों के वर्गों के योग द्वारा दिया जाता है (irreducible वर्णों की डिग्री)। (देखें परिमित समूहों का प्रतिनिधित्व सिद्धांत#शूर के लेम्मा को लागू करना।) अधिक सामान्यतः, किसी भी कॉलम में प्रविष्टियों के निरपेक्ष मूल्यों के वर्गों का योग संगत संयुग्मन वर्ग के तत्व के केंद्रक का क्रम देता है।
  • के सभी सामान्य उपसमूह G (और इस प्रकार चाहे या नहीं G सरल है) इसकी वर्ण तालिका से पहचाना जा सकता है। वर्ण का कर्नेल (समूह सिद्धांत)χ तत्वों का समूह है g में G जिसके लिए χ(g) = χ(1); यह का सामान्य उपसमूह है G. का प्रत्येक सामान्य उपसमूह G के कुछ अप्रासंगिक वर्णों की गुठली का प्रतिच्छेदन है G.
  • का कम्यूटेटर उपसमूह G के रैखिक वर्णों की गुठली का प्रतिच्छेदन है G.
  • अगर G परिमित है, तब चूँकि वर्ण तालिका वर्गाकार है और इसमें संयुग्मन वर्गों के रूप में कई पंक्तियाँ हैं, यह इस प्रकार है G एबेलियन समूह है यदि प्रत्येक संयुग्मन वर्ग सिंगलटन है यदि वर्ण तालिका G है iff प्रत्येक अलघुकरणीय वर्ण रैखिक है।
  • यह निम्नानुसार है, मॉड्यूलर प्रतिनिधित्व सिद्धांत से रिचर्ड ब्राउर के कुछ परिणामों का उपयोग करते हुए, कि परिमित समूह के प्रत्येक संयुग्मी वर्ग के तत्वों के आदेशों के प्रमुख विभाजक को इसकी वर्ण तालिका (ग्राहम हिगमैन का अवलोकन) से घटाया जा सकता है।

वर्ण तालिका सामान्य रूप से समूह समरूपता तक समूह को निर्धारित नहीं करती है: उदाहरण के लिए, चतुर्धातुक समूह Q और का डायहेड्रल समूह 8 तत्व, D4, समान वर्ण तालिका है। ब्राउर ने पूछा कि क्या वर्ण तालिका, इसके संयुग्मन वर्गों के तत्वों की शक्तियों को कैसे वितरित किया जाता है, इसके ज्ञान के साथ, समरूपता तक परिमित समूह निर्धारित करता है। 1964 में, इसका उत्तर ई.सी. डेड ने नकारात्मक में दिया।

का रैखिक प्रतिनिधित्व G स्वयं टेंसर उत्पाद के तहत समूह हैं, क्योंकि 1-आयामी वेक्टर रिक्त स्थान का टेंसर उत्पाद फिर से 1-आयामी है। यानी अगर और रैखिक प्रतिनिधित्व हैं, फिर नया रैखिक प्रतिनिधित्व परिभाषित करता है। यह ऑपरेशन के तहत वर्ण समूह नामक रैखिक वर्णों के समूह को जन्म देता है . यह समूह डिरिचलेट पात्रों और फूरियर विश्लेषण से जुड़ा है।

प्रेरित पात्र और फ्रोबेनियस पारस्परिकता

इस खंड में चर्चा किए गए पात्रों को जटिल-मूल्यवान माना जाता है। होने देना H परिमित समूह का उपसमूह हो G. पात्र दिया χ का G, होने देना χH इसके प्रतिबंध को निरूपित करें H. होने देना θ का पात्र हो H. फर्डिनेंड जॉर्ज फ्रोबेनियस ने दिखाया कि वर्ण का निर्माण कैसे किया जाता है G से θ, जिसे अब फ्रोबेनियस पारस्परिकता के रूप में जाना जाता है। के अलघुकरणीय पात्रों के बाद से G के जटिल-मूल्यवान वर्ग कार्यों के स्थान के लिए अलौकिक आधार बनाते हैं G, अद्वितीय वर्ग कार्य है θG का G उस संपत्ति के साथ

प्रत्येक अपूरणीय वर्ण के लिए χ का G (बाएं सबसे आंतरिक उत्पाद के वर्ग कार्यों के लिए है G और सबसे दाहिने आंतरिक उत्पाद के वर्ग कार्यों के लिए है H). के वर्ण के प्रतिबंध के बाद से G उपसमूह के लिए H फिर से वर्ण है H, यह परिभाषा यह स्पष्ट करती है कि θG के अलघुकरणीय वर्णों का गैर-ऋणात्मक पूर्णांक संयोजन है G, तो वास्तव में का वर्ण है G. के वर्ण के रूप में जाना जाता है G से प्रेरित θ. फ्रोबेनियस पारस्परिकता के परिभाषित सूत्र को सामान्य जटिल-मूल्यवान वर्ग कार्यों तक बढ़ाया जा सकता है।

आव्यूह प्रतिनिधित्व दिया ρ का H, फ्रोबेनियस ने बाद में आव्यूह प्रतिनिधित्व के निर्माण के लिए स्पष्ट तरीका दिया G, प्रतिनिधित्व प्रेरित प्रतिनिधित्व के रूप में जाना जाता है ρ, और समान रूप से लिखा गया है ρG. इससे प्रेरित वर्ण का वैकल्पिक वर्णन हुआ θG. यह प्रेरित वर्ण के सभी तत्वों पर गायब हो जाता है G जो किसी भी तत्व के संयुग्मी नहीं हैं H. चूंकि प्रेरित वर्ण का वर्ग कार्य है G, के तत्वों पर इसके मूल्यों का वर्णन करना अब केवल आवश्यक है H. अगर कोई लिखता है G के सही सहसमूहों के असंयुक्त संघ के रूप में H, कहना

फिर, तत्व दिया h का H, अपने पास:

क्योंकि θ का क्लास फंक्शन है H, यह मान कोसेट प्रतिनिधियों की विशेष पसंद पर निर्भर नहीं करता है।

प्रेरित वर्ण का यह वैकल्पिक विवरण कभी-कभी एम्बेडिंग के बारे में अपेक्षाकृत कम जानकारी से स्पष्ट गणना की अनुमति देता है H में G, और विशेष वर्ण तालिकाओं की गणना के लिए प्रायः उपयोगी होता है। कब θ का तुच्छ वर्ण है H, प्राप्त प्रेरित वर्ण को क्रमचय वर्ण के रूप में जाना जाता है G (कोसेट्स पर H).

कैरेक्टर इंडक्शन की सामान्य तकनीक और बाद में परिशोधन ने एमिल आर्टिन, रिचर्ड ब्राउर, वाल्टर फीट और मिचियो सुजुकी (गणितज्ञ) जैसे गणितज्ञों के साथ-साथ खुद फ्रोबेनियस के हाथों में Group_theory#Finite_group_theory और गणित में कहीं और कई अनुप्रयोगों को पाया।

मैकी अपघटन

मैकी अपघटन को लाइ समूहों के संदर्भ में जी मैके द्वारा परिभाषित और खोजा गया था, किन्तुवर्ण सिद्धांत और परिमित समूहों के प्रतिनिधित्व सिद्धांत में शक्तिशाली उपकरण है। इसका मूल रूप उपसमूह से प्रेरित वर्ण (या मॉड्यूल) के तरीके से संबंधित है H परिमित समूह का G (संभावित रूप से अलग) उपसमूह पर प्रतिबंध पर व्यवहार करता है K का G, और के अपघटन का उपयोग करता है G में (H, K)-डबल कोसेट।

अगर अलग संघ है, और θ का जटिल वर्ग कार्य है H, तब मैके का सूत्र बताता है कि

कहाँ θt का वर्ग कार्य है t−1Ht द्वारा परिभाषित θt(t−1ht) = θ(h) सभी के लिए h में H. उपसमूह के लिए प्रेरित मॉड्यूल के प्रतिबंध के लिए समान सूत्र है, जो किसी भी रिंग (गणित) पर प्रतिनिधित्व के लिए है, और बीजगणितीय और टोपोलॉजी संदर्भों की विस्तृत विविधता में अनुप्रयोग हैं।

मैके अपघटन, फ्रोबेनियस पारस्परिकता के संयोजन के साथ, दो वर्ग कार्यों के आंतरिक उत्पाद के लिए प्रसिद्ध और उपयोगी सूत्र उत्पन्न करता है θ और ψ संबंधित उपसमूहों से प्रेरित H और K, जिसकी उपयोगिता इस तथ्य में निहित है कि यह केवल इस बात पर निर्भर करता है कि यह किस प्रकार संयुग्मित होता है H और K दूसरे को काटते हैं। सूत्र (इसकी व्युत्पत्ति के साथ) है:

(कहाँ T का पूरा सेट है (H, K)-डबल कोसेट प्रतिनिधि, पहले की तरह)। यह सूत्र प्रायः तब प्रयोग किया जाता है जब θ और ψ रेखीय वर्ण हैं, जिस स्थिति में दाहिने हाथ में दिखाई देने वाले सभी आंतरिक गुणनफल या तो होते हैं 1 या 0, रैखिक वर्ण हैं या नहीं, इस पर निर्भर करता है θt और ψ पर समान प्रतिबंध है t−1HtK. अगर θ और ψ दोनों तुच्छ पात्र हैं, तो आंतरिक उत्पाद सरल हो जाता है |T|.

मुड़ा हुआ आयाम

कोई प्रतिनिधित्व के वर्ण को मुड़ आयाम (वेक्टर स्पेस) के रूप में व्याख्या कर सकता है।[3] वर्ण को समूह के तत्वों के कार्य के रूप में मानना χ(g), पहचान तत्व पर इसका मान अंतरिक्ष का आयाम है, क्योंकि χ(1) = Tr(ρ(1)) = Tr(IV) = dim(V). तदनुसार, वर्ण के अन्य मूल्यों को मुड़ आयामों के रूप में देखा जा सकता है।[clarification needed]

पात्रों या अभ्यावेदन के बारे में बयानों के आयाम के बारे में बयानों के अनुरूप या सामान्यीकरण पा सकते हैं। इसका परिष्कृत उदाहरण राक्षसी चन्द्रमा के सिद्धांत में पाया जाता है: जे-इनवेरिएंट |j-इनवेरिएंट राक्षस समूह के अनंत-आयामी वर्गीकृत प्रतिनिधित्व का वर्गीकृत आयाम है, और वर्ण के साथ आयाम को बदलकर राक्षस समूह के प्रत्येक तत्व के लिए मैके-थॉम्पसन श्रृंखला देता है।[3]

झूठ समूहों और झूठ बीजगणित के वर्ण

अगर झूठ समूह है और का परिमित आयामी प्रतिनिधित्व , वर्ण का किसी भी समूह के लिए सटीक रूप से परिभाषित किया गया है

.

इस बीच अगर झूठ बीजगणित है और का परिमित आयामी प्रतिनिधित्व , हम वर्ण को परिभाषित कर सकते हैं द्वारा

.

वर्ण से संतोष होगा सभी के लिए संबद्ध झूठ समूह में और सभी . यदि हमारे पास लाई समूह प्रतिनिधित्व और संबद्ध लाई बीजगणित प्रतिनिधित्व है, तो वर्ण झूठ बीजगणित प्रतिनिधित्व का वर्ण से संबंधित है सूत्र द्वारा समूह प्रतिनिधित्व का

.

मान लीजिए कि अब कार्टन सबलजेब्रा के साथ जटिल अर्ध-सरल झूठ बीजगणित है . वर्ण का मूल्य अलघुकरणीय प्रतिनिधित्व की का पर इसके मूल्यों द्वारा निर्धारित किया जाता है . वर्ण का प्रतिबंध वज़न स्थान (प्रतिनिधित्व सिद्धांत) के संदर्भ में आसानी से गणना की जा सकती है, इस प्रकार है:

,

जहां योग सभी वजन से अधिक है (प्रतिनिधित्व सिद्धांत) का और कहाँ की बहुलता है .[4] (प्रतिबंध of) वर्ण की गणना वेइल वर्ण सूत्र द्वारा अधिक स्पष्ट रूप से की जा सकती है।

यह भी देखें

संदर्भ

  1. Nicolas Bourbaki, Algèbre, Springer-Verlag, 2012, Chap. 8, p392
  2. Serre, §2.5
  3. 3.0 3.1 (Gannon 2006)
  4. Hall 2015 Proposition 10.12
  • Lecture 2 of Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics (in British English). Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103. online
  • Gannon, Terry (2006). Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics. ISBN 978-0-521-83531-2.
  • Hall, Brian C. (2015), Lie groups, Lie algebras, and representations: An elementary introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666
  • Isaacs, I.M. (1994). Character Theory of Finite Groups (Corrected reprint of the 1976 original, published by Academic Press. ed.). Dover. ISBN 978-0-486-68014-9.
  • James, Gordon; Liebeck, Martin (2001). Representations and Characters of Groups (2nd ed.). Cambridge University Press. ISBN 978-0-521-00392-6.
  • Serre, Jean-Pierre (1977). Linear Representations of Finite Groups. Graduate Texts in Mathematics. Vol. 42. Translated from the second French edition by Leonard L. Scott. New York-Heidelberg: Springer-Verlag. doi:10.1007/978-1-4684-9458-7. ISBN 978-0-387-90190-9. MR 0450380.


बाहरी संबंध