स्टोकेस्टिक आंशिक अंतर समीकरण: Difference between revisions
(Created page with "{{Differential equations}} स्टोचैस्टिक आंशिक अंतर समीकरण (एसपीडीई) यादृच्छिक बल...") |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Differential equations}} | {{Differential equations}} | ||
स्टोचैस्टिक | '''स्टोचैस्टिक आंशिक अंतर समीकरण''' (एसपीडीई) आंशिक अंतर समीकरणों को अविभाज्य बल निबंधन और गुणांकों के माध्यम से सामान्यीकृत करते हैं, उसी तरह सामान्य स्टोकास्टिक अंतर समीकरण सामान्य अंतर समीकरणों को सामान्यीकृत करते हैं। | ||
[[क्वांटम क्षेत्र सिद्धांत]], [[सांख्यिकीय यांत्रिकी]] और स्थानिक विश्लेषण के लिए उनकी प्रासंगिकता है।<ref>{{Cite book|last1=Prévôt|first1=Claudia|url=https://www.springer.com/gp/book/9783540707806|title=स्टोचैस्टिक आंशिक विभेदक समीकरणों पर एक संक्षिप्त पाठ्यक्रम|last2=Röckner|first2=Michael|date=2007|publisher=Springer-Verlag|isbn=978-3-540-70780-6|series=Lecture Notes in Mathematics|location=Berlin Heidelberg|language=en}}</ref><ref>{{Cite book|last1=Krainski|first1=Elias T.|url=https://www.crcpress.com/Advanced-Spatial-Modeling-with-Stochastic-Partial-Differential-Equations/Krainski-Gomez-Rubio-Bakka-Lenzi-Castro-Camilo-Simpson-Lindgren-Rue/p/book/9781138369856|title=R और INLA का उपयोग करते हुए स्टोचैस्टिक आंशिक विभेदक समीकरणों के साथ उन्नत स्थानिक मॉडलिंग|last2=Gómez-Rubio|first2=Virgilio|last3=Bakka|first3=Haakon|last4=Lenzi|first4=Amanda|last5=Castro-Camilo|first5=Daniela|last6=Simpson|first6=Daniel|last7=Lindgren|first7=Finn|last8=Rue|first8=Håvard|publisher=Chapman and Hall/CRC Press|year=2018|isbn=978-1-138-36985-6|location=Boca Raton, FL}}</ref> | [[क्वांटम क्षेत्र सिद्धांत]], [[सांख्यिकीय यांत्रिकी]] और स्थानिक विश्लेषण के लिए उनकी प्रासंगिकता है।<ref>{{Cite book|last1=Prévôt|first1=Claudia|url=https://www.springer.com/gp/book/9783540707806|title=स्टोचैस्टिक आंशिक विभेदक समीकरणों पर एक संक्षिप्त पाठ्यक्रम|last2=Röckner|first2=Michael|date=2007|publisher=Springer-Verlag|isbn=978-3-540-70780-6|series=Lecture Notes in Mathematics|location=Berlin Heidelberg|language=en}}</ref><ref>{{Cite book|last1=Krainski|first1=Elias T.|url=https://www.crcpress.com/Advanced-Spatial-Modeling-with-Stochastic-Partial-Differential-Equations/Krainski-Gomez-Rubio-Bakka-Lenzi-Castro-Camilo-Simpson-Lindgren-Rue/p/book/9781138369856|title=R और INLA का उपयोग करते हुए स्टोचैस्टिक आंशिक विभेदक समीकरणों के साथ उन्नत स्थानिक मॉडलिंग|last2=Gómez-Rubio|first2=Virgilio|last3=Bakka|first3=Haakon|last4=Lenzi|first4=Amanda|last5=Castro-Camilo|first5=Daniela|last6=Simpson|first6=Daniel|last7=Lindgren|first7=Finn|last8=Rue|first8=Håvard|publisher=Chapman and Hall/CRC Press|year=2018|isbn=978-1-138-36985-6|location=Boca Raton, FL}}</ref> | ||
== उदाहरण == | == उदाहरण == | ||
Line 12: | Line 11: | ||
\partial_t u = \Delta u + \xi\;, | \partial_t u = \Delta u + \xi\;, | ||
</math> | </math> | ||
जहाँ <math>\Delta</math> लाप्लासियन है और <math>\xi</math> अंतरिक्ष-समय वाइट रव को दर्शाता है। अन्य उदाहरणों में प्रसिद्ध रेखीय समीकरणों के स्टोकेस्टिक संस्करण भी सम्मिलित हैं, जैसे [[तरंग समीकरण]] और श्रोडिंगर समीकरण है। | |||
== विचार-विमर्श == | |||
उनमें एक कठिनाई नियमितता की कमी है। एक आयामी अंतरिक्ष में, स्टोकास्टिक गर्मी [[समीकरण]] के समाधान केवल लगभग 1/2-होल्डर अंतरिक्ष में निरंतर और 1/4-होल्डर समय में निरंतर होते हैं। [[आयाम]] दो और उच्चतर के लिए, समाधान कार्य-मूल्यवान भी नहीं हैं, लेकिन यादृच्छिक वितरण के रूप में इसका अर्थ लगाया जा सकता है। | |||
== | रैखिक समीकरणों के लिए, अर्धसमूह तकनीकों के माध्यम से साधारणतया एक हल्का समाधान खोजा जा सकता है।<ref>{{Cite journal|last=Walsh|first=John B.|date=1986|editor-last=Carmona|editor-first=René|editor2-last=Kesten|editor2-first=Harry|editor3-last=Walsh|editor3-first=John B.|editor4-last=Hennequin|editor4-first=P. L.|title=स्टोचैस्टिक आंशिक अंतर समीकरणों का परिचय|journal=École d'Été de Probabilités de Saint Flour XIV - 1984|series=Lecture Notes in Mathematics|volume=1180|language=en|publisher=Springer Berlin Heidelberg|pages=265–439|doi=10.1007/bfb0074920|hdl=10338.dmlcz/126035|isbn=978-3-540-39781-6|hdl-access=free}}</ref> | ||
हालाँकि, गैर-रैखिक समीकरणों पर विचार करने पर समस्याएँ सामने आने लगती हैं। उदाहरण के लिए | हालाँकि, गैर-रैखिक समीकरणों पर विचार करने पर समस्याएँ सामने आने लगती हैं। उदाहरण के लिए | ||
:<math> | :<math> | ||
\partial_t u = \Delta u + P(u) + \xi, | \partial_t u = \Delta u + P(u) + \xi, | ||
</math> | </math> | ||
जहाँ <math>P</math> एक बहुपद है। इस स्थिति में, यह भी स्पष्ट नहीं है कि समीकरण को कैसे समझा जाए। इस तरह के समीकरण में एक से बड़े आयाम में एक फ़ंक्शन-मूल्यवान समाधान भी नहीं होगा, और इसलिए कोई बिंदुवार अर्थ नहीं होगा। यह सर्वविदित है कि वितरण की जगह में कोई उत्पाद संरचना नहीं है। यह ऐसे सिद्धांत की मूल समस्या है। यह किसी प्रकार के पुनर्संरचना की आवश्यकता की ओर ले जाता है | |||
कुछ विशिष्ट समीकरणों के लिए | कुछ विशिष्ट समीकरणों के लिए इस तरह की समस्याओं को दरकिनार करने का एक प्रारंभिक प्रयास तथाकथित दा प्राटो-डेबस्चे ट्रिक था जिसमें ऐसे गैर-रैखिक समीकरणों का अध्ययन करना सम्मिलित था, जो रैखिक समीकरणों के क्षोभ के रूप में होते थे। हालांकि, इसका उपयोग केवल बहुत ही सीमित सेटिंग्स में किया जा सकता है, क्योंकि यह गैर-रेखीय कारक और ड्राइविंग शोर अवधि की नियमितता दोनों पर निर्भर करता है। हाल के वर्षों में, इस क्षेत्र का काफी विस्तार हुआ है, और अब विभिन्न उप-महत्वपूर्ण एसपीडीई के स्थानीय अस्तित्व की गारंटी के लिए एक बड़ी साधन उपस्थित है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 30: | Line 30: | ||
* कारदार-पेरिसी-झांग समीकरण | * कारदार-पेरिसी-झांग समीकरण | ||
* कुशनेर समीकरण | * कुशनेर समीकरण | ||
* मल्लियविन | * मल्लियविन कैलकुलस | ||
* [[बाती उत्पाद]] | * [[बाती उत्पाद|विक उत्पाद]] | ||
* जकाई समीकरण | * जकाई समीकरण | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
== अग्रिम पठन == | == अग्रिम पठन == | ||
*{{cite book |last1=Holden |first1=H. |last2=Øksendal |first2=B. |last3=Ubøe |first3=J. |last4=Zhang |first4=T. |year=2010 |title=Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach |series=Universitext |publisher=Springer |location=New York |edition=2nd |isbn=978-0-387-89487-4 |doi=10.1007/978-0-387-89488-1 }} | *{{cite book |last1=Holden |first1=H. |last2=Øksendal |first2=B. |last3=Ubøe |first3=J. |last4=Zhang |first4=T. |year=2010 |title=Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach |series=Universitext |publisher=Springer |location=New York |edition=2nd |isbn=978-0-387-89487-4 |doi=10.1007/978-0-387-89488-1 }} | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* {{cite web |url=https://web.math.rochester.edu/people/faculty/cmlr/Preprints/Utah-Summer-School.pdf |title=A Minicourse on Stochastic Partial Differential Equations |date=2006 }} | * {{cite web |url=https://web.math.rochester.edu/people/faculty/cmlr/Preprints/Utah-Summer-School.pdf |title=A Minicourse on Stochastic Partial Differential Equations |date=2006 }} | ||
* {{cite arXiv |title=An Introduction to Stochastic PDEs |first=Martin |last=Hairer |author-link=Martin Hairer |year=2009 |class=math.PR |eprint=0907.4178 }} | * {{cite arXiv |title=An Introduction to Stochastic PDEs |first=Martin |last=Hairer |author-link=Martin Hairer |year=2009 |class=math.PR |eprint=0907.4178 }} | ||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 26/04/2023]] | [[Category:Created On 26/04/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:आंशिक अंतर समीकरण]] | |||
[[Category:गणितीय वित्त| गणितीय वित्त ]] | |||
[[Category:स्टोचैस्टिक अंतर समीकरण]] |
Latest revision as of 10:43, 4 May 2023
अंतर समीकरण |
---|
दायरा |
वर्गीकरण |
समाधान |
लोग |
स्टोचैस्टिक आंशिक अंतर समीकरण (एसपीडीई) आंशिक अंतर समीकरणों को अविभाज्य बल निबंधन और गुणांकों के माध्यम से सामान्यीकृत करते हैं, उसी तरह सामान्य स्टोकास्टिक अंतर समीकरण सामान्य अंतर समीकरणों को सामान्यीकृत करते हैं।
क्वांटम क्षेत्र सिद्धांत, सांख्यिकीय यांत्रिकी और स्थानिक विश्लेषण के लिए उनकी प्रासंगिकता है।[1][2]
उदाहरण
सबसे अधिक अध्ययन किए गए एसपीडीई में से एक स्टोकास्टिक गर्मी समीकरण है, जिसे औपचारिक रूप से लिखा जा सकता है
जहाँ लाप्लासियन है और अंतरिक्ष-समय वाइट रव को दर्शाता है। अन्य उदाहरणों में प्रसिद्ध रेखीय समीकरणों के स्टोकेस्टिक संस्करण भी सम्मिलित हैं, जैसे तरंग समीकरण और श्रोडिंगर समीकरण है।
विचार-विमर्श
उनमें एक कठिनाई नियमितता की कमी है। एक आयामी अंतरिक्ष में, स्टोकास्टिक गर्मी समीकरण के समाधान केवल लगभग 1/2-होल्डर अंतरिक्ष में निरंतर और 1/4-होल्डर समय में निरंतर होते हैं। आयाम दो और उच्चतर के लिए, समाधान कार्य-मूल्यवान भी नहीं हैं, लेकिन यादृच्छिक वितरण के रूप में इसका अर्थ लगाया जा सकता है।
रैखिक समीकरणों के लिए, अर्धसमूह तकनीकों के माध्यम से साधारणतया एक हल्का समाधान खोजा जा सकता है।[3]
हालाँकि, गैर-रैखिक समीकरणों पर विचार करने पर समस्याएँ सामने आने लगती हैं। उदाहरण के लिए
जहाँ एक बहुपद है। इस स्थिति में, यह भी स्पष्ट नहीं है कि समीकरण को कैसे समझा जाए। इस तरह के समीकरण में एक से बड़े आयाम में एक फ़ंक्शन-मूल्यवान समाधान भी नहीं होगा, और इसलिए कोई बिंदुवार अर्थ नहीं होगा। यह सर्वविदित है कि वितरण की जगह में कोई उत्पाद संरचना नहीं है। यह ऐसे सिद्धांत की मूल समस्या है। यह किसी प्रकार के पुनर्संरचना की आवश्यकता की ओर ले जाता है
कुछ विशिष्ट समीकरणों के लिए इस तरह की समस्याओं को दरकिनार करने का एक प्रारंभिक प्रयास तथाकथित दा प्राटो-डेबस्चे ट्रिक था जिसमें ऐसे गैर-रैखिक समीकरणों का अध्ययन करना सम्मिलित था, जो रैखिक समीकरणों के क्षोभ के रूप में होते थे। हालांकि, इसका उपयोग केवल बहुत ही सीमित सेटिंग्स में किया जा सकता है, क्योंकि यह गैर-रेखीय कारक और ड्राइविंग शोर अवधि की नियमितता दोनों पर निर्भर करता है। हाल के वर्षों में, इस क्षेत्र का काफी विस्तार हुआ है, और अब विभिन्न उप-महत्वपूर्ण एसपीडीई के स्थानीय अस्तित्व की गारंटी के लिए एक बड़ी साधन उपस्थित है।
यह भी देखें
- ब्राउनियन सतह
- कारदार-पेरिसी-झांग समीकरण
- कुशनेर समीकरण
- मल्लियविन कैलकुलस
- विक उत्पाद
- जकाई समीकरण
संदर्भ
- ↑ Prévôt, Claudia; Röckner, Michael (2007). स्टोचैस्टिक आंशिक विभेदक समीकरणों पर एक संक्षिप्त पाठ्यक्रम. Lecture Notes in Mathematics (in English). Berlin Heidelberg: Springer-Verlag. ISBN 978-3-540-70780-6.
- ↑ Krainski, Elias T.; Gómez-Rubio, Virgilio; Bakka, Haakon; Lenzi, Amanda; Castro-Camilo, Daniela; Simpson, Daniel; Lindgren, Finn; Rue, Håvard (2018). R और INLA का उपयोग करते हुए स्टोचैस्टिक आंशिक विभेदक समीकरणों के साथ उन्नत स्थानिक मॉडलिंग. Boca Raton, FL: Chapman and Hall/CRC Press. ISBN 978-1-138-36985-6.
- ↑ Walsh, John B. (1986). Carmona, René; Kesten, Harry; Walsh, John B.; Hennequin, P. L. (eds.). "स्टोचैस्टिक आंशिक अंतर समीकरणों का परिचय". École d'Été de Probabilités de Saint Flour XIV - 1984. Lecture Notes in Mathematics (in English). Springer Berlin Heidelberg. 1180: 265–439. doi:10.1007/bfb0074920. hdl:10338.dmlcz/126035. ISBN 978-3-540-39781-6.
अग्रिम पठन
- Holden, H.; Øksendal, B.; Ubøe, J.; Zhang, T. (2010). Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach. Universitext (2nd ed.). New York: Springer. doi:10.1007/978-0-387-89488-1. ISBN 978-0-387-89487-4.
बाहरी संबंध
- "A Minicourse on Stochastic Partial Differential Equations" (PDF). 2006.
- Hairer, Martin (2009). "An Introduction to Stochastic PDEs". arXiv:0907.4178 [math.PR].