वैद्युत प्रतिघात: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Opposition to current by inductance or capacitance}}
{{Short description|Opposition to current by inductance or capacitance}}
{{use dmy dates|date=May 2021}}{{Redirect|प्रतियोगिता (भौतिकी)||प्रतिक्रिया (बहुविकल्पी){{!}}प्रतिक्रिया}}
{{use dmy dates|date=May 2021}}{{Redirect|प्रतियोगिता (भौतिकी)||प्रतिक्रिया (बहुविकल्पी){{!}}प्रतिक्रिया}}
विद्युत परिपथ में प्रतिघात वह विरोध है जो [[ प्रत्यावर्ती धारा ]] को [[ अधिष्ठापन ]] या [[ समाई | धारिता]] द्वारा प्रस्तुत करने के लिए उपयोग किया जाता हैं।<ref name="veley01">{{cite book |author-first= Victor F. C. |author-last=Veley |title=The Benchtop Electronics Reference Manual |edition=1st |location=New York |publisher=Tab Books |date=1987 |pages=229, 232|url=https://archive.org/details/benchtopelectron00vele }}</ref> ग्रेटर प्रतिक्रिया समान रूप से लागू होने वाले [[ वोल्टेज ]] के लिए अल्प मात्रा में धारा प्रदान करता हैं। इस प्रकार यह प्रतिक्रिया इस सम्बन्ध में विद्युत प्रतिरोध और चालन के समान है, किन्तु उस प्रतिक्रिया में भिन्नता [[ जूल हीटिंग | जूल ऊष्मा]] की ओर नहीं ले जाती है। इसके अतिरिक्त, ऊर्जा को प्रतिक्रिया में क्षणिक रूप से संग्रहीत किया जाता है, और एक चौथाई-टर्न (कोण) बाद में परिपथ में वापस आ जाता है, जबकि एक प्रतिरोध लगातार ऊर्जा खो देता है।
विद्युत परिपथ में प्रतिघात वह विरोध है जो [[ प्रत्यावर्ती धारा ]] को [[ अधिष्ठापन ]] या [[ समाई | धारिता]] द्वारा प्रस्तुत करने के लिए उपयोग किया जाता हैं।<ref name="veley01">{{cite book |author-first= Victor F. C. |author-last=Veley |title=The Benchtop Electronics Reference Manual |edition=1st |location=New York |publisher=Tab Books |date=1987 |pages=229, 232|url=https://archive.org/details/benchtopelectron00vele }}</ref> ग्रेटर प्रतिक्रिया समान रूप से लागू होने वाले [[ वोल्टेज ]] के लिए अल्प मात्रा में धारा प्रदान करता हैं। इस प्रकार यह प्रतिक्रिया इस सम्बन्ध में विद्युत प्रतिरोध और चालन के समान है, किन्तु उस प्रतिक्रिया में भिन्नता [[ जूल हीटिंग | जूल ऊष्मा]] की ओर नहीं ले जाती है। इसके अतिरिक्त, ऊर्जा को प्रतिक्रिया में क्षणिक रूप से संग्रहीत किया जाता है, और एक चौथाई-टर्न (कोण) बाद में परिपथ में वापस आ जाता है, जबकि एक प्रतिरोध निरंतर ऊर्जा खो देता है।


प्रतिक्रिया का उपयोग परिपथ तत्व से गुजरने वाली [[ साइन तरंग ]] प्रत्यावर्ती धारा  के [[ आयाम ]] और फेज (तरंगों) परिवर्तनों की गणना के लिए किया जाता है। प्रतिरोध के समान, प्रतिक्रिया को [[ ओम ]] में मापा जाता है, धनात्मक मान के साथ आगमनात्मक प्रतिक्रिया और ऋणात्मक संकेत धारिता युक्त प्रतिक्रिया इंगित करता है। यह प्रतीक के रूप में निरूपित किया जाता है <math>X</math>. एक आदर्श प्रतिरोधक में शून्य प्रतिघात होता है, जबकि आदर्श प्रेरकों और [[ संधारित्र ]] का प्रतिरोध शून्य होता है। जैसे-जैसे [[ आवृत्ति ]] बढ़ती है, आगमनात्मक प्रतिक्रिया बढ़ती है और धारिता युक्त प्रतिक्रिया घट जाती है।
प्रतिक्रिया का उपयोग परिपथ तत्व से गुजरने वाली [[ साइन तरंग ]] प्रत्यावर्ती धारा  के [[ आयाम ]] और फेज (तरंगों) परिवर्तनों की गणना के लिए किया जाता है। प्रतिरोध के समान प्रतिक्रिया को [[ ओम ]] में मापा जाता है, इस प्रकार धनात्मक मान के साथ आगमनात्मक प्रतिक्रिया और ऋणात्मक संकेत धारिता युक्त प्रतिक्रिया इंगित करता है। यह प्रतीक <math>X</math> के रूप में निरूपित किया जाता है, एक आदर्श प्रतिरोधक में शून्य प्रतिघात होता है, जबकि आदर्श प्रेरकों और [[ संधारित्र ]] का प्रतिरोध शून्य होता है। जैसे-जैसे [[ आवृत्ति ]] बढ़ती है, आगमनात्मक प्रतिक्रिया बढ़ती है और धारिता युक्त प्रतिक्रिया घट जाती है।


== प्रतिरोध की तुलना ==
== प्रतिरोध की तुलना ==
प्रतिक्रिया प्रतिरोध के समान है कि बड़े प्रतिक्रिया में एक ही लागू वोल्टेज के लिए छोटी धाराओं की ओर जाता है। इसके अतिरिक्त, पूरी तरह से तत्वों से बना एक परिपथ जिसमें केवल प्रतिक्रिया होती है (और कोई प्रतिरोध नहीं) उसी तरह से माना जा सकता है जैसे परिपथ पूरी तरह से प्रतिरोधों से बना होता है। इन समान तकनीकों का उपयोग प्रतिरोध वाले तत्वों के साथ प्रतिरोध वाले तत्वों को संयोजित करने के लिए भी किया जा सकता है किन्तु [[ जटिल संख्या ]]ओं की सामान्यतः आवश्यकता होती है। इसका उपचार [[ विद्युत प्रतिबाधा ]] पर अनुभाग में नीचे किया गया है।
प्रतिक्रिया प्रतिरोध के समान है क्यूंकि बड़े प्रतिक्रिया में लागू होने वाले वोल्टेज के लिए छोटी धाराओं की ओर जाता है। इसके अतिरिक्त पूरी तरह से तत्वों से बने किसी परिपथ में केवल प्रतिक्रिया होती है (और कोई प्रतिरोध नहीं) उसी प्रकार से माना जाता है जैसे परिपथ पूर्ण रूप से प्रतिरोधों से बना होता है। इन समान विधियों का उपयोग प्रतिरोध वाले तत्वों के साथ प्रतिरोध वाले तत्वों को संयोजित करने के लिए भी किया जाता है किन्तु [[ जटिल संख्या |जटिल संख्याओं]] की सामान्यतः आवश्यकता होती है। इसका उपचार [[ विद्युत प्रतिबाधा ]] पर अनुभाग में नीचे किया गया है।


यद्यपि, प्रतिक्रिया और प्रतिरोध के बीच कई महत्वपूर्ण अंतर हैं। सबसे पहले, प्रतिक्रिया चरण को बदल देती है जिससे कि तत्व के माध्यम से वर्तमान तत्व के माध्यम से लागू वोल्टेज के चरण के सापेक्ष एक चक्र के एक चौथाई से स्थानांतरित हो जाए। दूसरा, शक्ति विशुद्ध रूप से प्रतिक्रियाशील तत्व में नष्ट नहीं होती है, बल्कि संग्रहीत होती है। तीसरा, प्रतिक्रिया ऋणात्मक हो सकती है जिससे कि वे एक दूसरे को 'निरस्त' कर सकें। अंत में, मुख्य परिपथ तत्व जिनमें प्रतिक्रिया (कैपेसिटर और इंडक्टर्स) होते हैं, उनमें आवृत्ति पर निर्भर प्रतिक्रिया होती है, प्रतिरोधकों के विपरीत, जिनमें सभी आवृत्तियों के लिए समान प्रतिरोध होता है, कम से कम आदर्श स्थितियों में।
यद्यपि प्रतिक्रिया और प्रतिरोध के बीच कई महत्वपूर्ण अंतर हैं। सबसे पहले प्रतिक्रिया चरण को परिवर्तित कर देती है जिससे कि तत्व के माध्यम से धारा तत्व के माध्यम से लागू वोल्टेज के चरण के सापेक्ष चक्र के एक चौथाई से स्थानांतरित हो जाता हैं। इसका दूसरा भाग शक्ति विशुद्ध रूप से प्रतिक्रियाशील तत्व में नष्ट नहीं होता है, इसके अतिरिक्त यह संग्रहीत हो जाता है। इसका तीसरा भाग इस प्रतिक्रिया के ऋणात्मक मान के सामान हो सकता है जिससे कि वे एक दूसरे को 'निरस्त' कर सकें। अंत में, मुख्य परिपथ तत्व जिनमें प्रतिक्रिया (संधारित्र और चालक) होते हैं, उनमें आवृत्ति पर निर्भर प्रतिक्रिया होती है, इस प्रकार प्रतिरोधकों के विपरीत इनमें सभी आवृत्तियों के लिए समान प्रतिरोध होता है, यह कम से कम आदर्श स्थितियों में उपयोग किया जाता हैं।


प्रतिक्रिया शब्द का सुझाव सबसे पहले 10 मई 1893 को ल’इंडस्ट्री इलेक्ट्रिक में फ्रांसीसी इंजीनियर एम. हॉस्पिटैलियर द्वारा सुझाया गया था। इसे आधिकारिक तौर पर मई 1894 में [[ अमेरिकन इंस्टीट्यूट ऑफ इलेक्ट्रिकल इंजीनियर्स ]] द्वारा अपनाया गया था।<ref>[[Charles Proteus Steinmetz]], Frederick Bedell, [https://ieeexplore.ieee.org/document/4763812 "Reactance"], ''Transactions of the American Institute of Electrical Engineers'', vol. 11, pp. 640–648, January–December 1894.</ref>
यह प्रतिक्रिया इस शब्द के सुझाव के लिए सबसे पहले 10 मई 1893 विद्युत कोल इंडस्ट्री में फ्रांसीसी इंजीनियर एम. हॉस्पिटैलियर द्वारा सुझाया गया था। इसे आधिकारिक तौर पर मई 1894 में [[ अमेरिकन इंस्टीट्यूट ऑफ इलेक्ट्रिकल इंजीनियर्स ]] द्वारा अपनाया गया था।<ref>[[Charles Proteus Steinmetz]], Frederick Bedell, [https://ieeexplore.ieee.org/document/4763812 "Reactance"], ''Transactions of the American Institute of Electrical Engineers'', vol. 11, pp. 640–648, January–December 1894.</ref>




Line 18: Line 18:
एक संधारित्र में विद्युत रोधकता द्वारा अलग किए गए दो [[ विद्युत चालन ]] होते हैं, जिन्हें [[ ढांकता हुआ ]] भी कहा जाता है।
एक संधारित्र में विद्युत रोधकता द्वारा अलग किए गए दो [[ विद्युत चालन ]] होते हैं, जिन्हें [[ ढांकता हुआ ]] भी कहा जाता है।


धारिता युक्त प्रतिक्रिया एक तत्व में वोल्टेज के परिवर्तन का विरोध है। धारिता युक्त प्रतिक्रिया <math>X_C</math> सिग्नल आवृत्ति के विपरीत आनुपातिक है <math>f</math> (या [[ कोणीय आवृत्ति ]] <math>\omega</math>) और धारिता <math>C</math>.<ref name="Irwin">Irwin, D. (2002). ''Basic Engineering Circuit Analysis'', page 274. New York: John Wiley & Sons, Inc.</ref>
धारिता युक्त प्रतिक्रिया के इस तत्व में वोल्टेज के परिवर्तन का विरोध है। इस प्रकार की धारिता युक्त प्रतिक्रिया <math>X_C</math> संकेत के लिए आवृत्ति <math>f</math> (या [[ कोणीय आवृत्ति ]] <math>\omega</math>) और धारिता <math>C</math> के विपरीत आनुपातिक होते है,<ref name="Irwin">Irwin, D. (2002). ''Basic Engineering Circuit Analysis'', page 274. New York: John Wiley & Sons, Inc.</ref>
एक संधारित्र के लिए प्रतिक्रिया को परिभाषित करने के लिए साहित्य में दो विकल्प हैं। एक प्रतिबाधा की एक समान धारणा का उपयोग प्रतिबाधा के काल्पनिक भाग के रूप में करना है, जिस स्थिति में संधारित्र की प्रतिक्रिया ऋणात्मक संख्या है,<ref name="Irwin"/><ref>Hayt, W.H., Kimmerly J.E. (2007). ''Engineering Circuit Analysis'', 7th ed., McGraw-Hill, p. 388</ref><ref name="Glisson">Glisson, T.H. (2011). ''Introduction to Circuit Analysis and Design'', Springer, p. 408</ref>
 
इस प्रकार किसी संधारित्र के लिए इस प्रतिक्रिया को परिभाषित करने के लिए साहित्य में दो विकल्प हैं। किसी प्रतिबाधा की एक समान धारणा का उपयोग प्रतिबाधा के काल्पनिक भाग के रूप में करना पड़ता है, जिस स्थिति में संधारित्र की प्रतिक्रिया ऋणात्मक संख्या है,<ref name="Irwin" /><ref>Hayt, W.H., Kimmerly J.E. (2007). ''Engineering Circuit Analysis'', 7th ed., McGraw-Hill, p. 388</ref><ref name="Glisson">Glisson, T.H. (2011). ''Introduction to Circuit Analysis and Design'', Springer, p. 408</ref>
:<math>X_C = -\frac {1} {\omega C} = -\frac {1} {2\pi f C}</math>.
:<math>X_C = -\frac {1} {\omega C} = -\frac {1} {2\pi f C}</math>.


Line 25: Line 26:
:<math>X_C = \frac {1} {\omega C} = \frac {1} {2\pi f C}</math>.
:<math>X_C = \frac {1} {\omega C} = \frac {1} {2\pi f C}</math>.


इस स्थितियों में चूंकि किसी को संधारित्र के प्रतिबाधा के लिए एक ऋणात्मक संकेत जोड़ने की आवश्यकता है, अर्थात। <math>Z_c=-jX_c</math>.
इस स्थितियों में चूंकि किसी को संधारित्र के प्रतिबाधा अर्थात <math>Z_c=-jX_c</math> के लिए एक ऋणात्मक संकेत जोड़ने की आवश्यकता है।


पर <math>f=0</math>, संधारित्र की प्रतिक्रिया का परिमाण अनंत है, एक विक्ट: ओपन परिपथ के समान व्यवहार करता है (किसी भी [[ विद्युत प्रवाह ]] को ढांकता हुआ से बहने से रोकता है)। जैसे-जैसे आवृत्ति बढ़ती है, प्रतिक्रिया का परिमाण घटता जाता है, जिससे अधिक धारा प्रवाहित होती है। जैसा <math>f</math> दृष्टिकोण <math>\infty</math>, संधारित्र की प्रतिक्रिया निकट आती है <math>0</math>[[ शार्ट सर्किट | शार्ट परिपथ]] के समान व्यवहार करना।
इस पर <math>f=0</math> संधारित्र की प्रतिक्रिया का परिमाण अनंत रहता है, किसी विक्ट खुले परिपथ के समान व्यवहार करता है (किसी भी [[ विद्युत प्रवाह ]] को ढांकता हुआ से बहने से रोकता है)। जैसे-जैसे आवृत्ति बढ़ती है, प्रतिक्रिया का परिमाण घटता जाता है, जिससे अधिक धारा प्रवाहित होती है। जैसा <math>f</math> दृष्टिकोण <math>\infty</math>, <math>0</math>[[ शार्ट सर्किट | शार्ट सर्किट]] के समान व्यवहार करना संधारित्र की प्रतिक्रिया के निकट रहता है।


एक संधारित्र में एक प्रत्यक्ष वर्तमान वोल्टेज के आवेदन के कारण एक तरफ धनात्मक [[ विद्युत आवेश ]] जमा होता है और दूसरी तरफ ऋणात्मक विद्युत आवेश जमा होता है; संचित आवेश के कारण [[ विद्युत क्षेत्र ]] धारा के विरोध का स्रोत है। जब चार्ज से जुड़ी क्षमता लागू वोल्टेज को बिल्कुल संतुलित करती है, तो धारा शून्य हो जाता है।
किसी संधारित्र में एक प्रत्यक्ष धारा वोल्टेज के आवेदन के कारण इसे धनात्मक [[ विद्युत आवेश |विद्युत आवेश]] एकत्रित होता है और दूसरी तरफ ऋणात्मक विद्युत आवेश एकत्रित होता है, इस प्रकार संचित आवेश के कारण [[ विद्युत क्षेत्र |विद्युत क्षेत्र]] धारा के विरोध का स्रोत है। जब आवेश से जुड़ी क्षमता के लागू होने वाले वोल्टेज को बिल्कुल संतुलित करती है, तो धारा शून्य हो जाती है।


एक एसी आपूर्ति (आदर्श एसी वर्तमान स्रोत) द्वारा संचालित, एक संधारित्र केवल सीमित मात्रा में चार्ज जमा करेगा, इससे पहले कि संभावित अंतर ध्रुवीयता को बदल दे और चार्ज को स्रोत पर वापस कर दिया जाए। आवृत्ति जितनी अधिक होगी, उतना ही कम चार्ज जमा होगा और धारा का विरोध उतना ही कम होगा।
किसी एसी आपूर्ति (आदर्श एसी धारा स्रोत) द्वारा संचालित एक संधारित्र केवल सीमित मात्रा में आवेश एकत्रित करेगा, इससे पहले कि संभावित अंतर ध्रुवीयता को परिवर्तित कर दे और आवेश को स्रोत पर वापस कर देता हैं। इस आवृत्ति जितनी अधिक होगी, उतना ही कम आवेश एकत्रित होगा और धारा का विरोध उतना ही कम रहता हैं।


== आगमनात्मक प्रतिक्रिया ==
== आगमनात्मक प्रतिक्रिया ==
{{main|अधिष्ठापन}}
{{main|अधिष्ठापन}}


आगमनात्मक प्रतिक्रिया एक प्रारंभ करनेवाला द्वारा प्रदर्शित एक संपत्ति है, और आगमनात्मक प्रतिक्रिया इस तथ्य के आधार पर उपस्तिथ है कि एक विद्युत प्रवाह इसके चारों ओर एक चुंबकीय क्षेत्र उत्पन्न करता है। एक एसी परिपथ के संदर्भ में (चूंकि यह अवधारणा किसी भी समय चालू होने पर लागू होती है), यह चुंबकीय क्षेत्र लगातार वर्तमान के परिणामस्वरूप बदल रहा है जो आगे और आगे बढ़ता है। यह चुंबकीय क्षेत्र में यह परिवर्तन है जो एक और विद्युत प्रवाह को उसी तार (काउंटर-ईएमएफ) में प्रवाहित करने के लिए प्रेरित करता है, जैसे कि चुंबकीय क्षेत्र (लेनज़ के नियम के रूप में जाना जाता है) के उत्पादन के लिए मूल रूप से जिम्मेदार वर्तमान के प्रवाह का विरोध करने के लिए। इसलिए, आगमनात्मक प्रतिक्रिया एक तत्व के माध्यम से धारा के परिवर्तन का विरोध है।
आगमनात्मक प्रतिक्रिया धारा को प्रदर्शित करने के लिए उपयोग किया जाता है, और आगमनात्मक प्रतिक्रिया इस तथ्य के आधार पर उपस्तिथ रहती है इसका कारण यह हैं कि यह विद्युत प्रवाह के चारों ओर एक चुंबकीय क्षेत्र उत्पन्न करता है। इस प्रकार किसी एसी परिपथ के संदर्भ में (चूंकि यह अवधारणा किसी भी समय चालू होने पर लागू होती है), यह चुंबकीय क्षेत्र क्रमशः धारा के परिणामस्वरूप परिवर्तित करता है इसके कारण यह आगे की ओर बढ़ता है। यह चुंबकीय क्षेत्र में परिवर्तन के सामान होता हैं जो विद्युत प्रवाह को उसी तार (काउंटर-ईएमएफ) में प्रवाहित करने के लिए प्रेरित करता है, जैसे कि चुंबकीय क्षेत्र (लेनज़ के नियम के रूप में जाना जाता है) के उत्पादन के लिए मूल रूप से इस प्रभावी धारा के प्रवाह का विरोध करने के लिए उपयोग किया जाता हैं। इसलिए आगमनात्मक प्रतिक्रिया इस तत्व के माध्यम से धारा के परिवर्तन का विरोध है।


एक एसी परिपथ में एक आदर्श प्रारंभ करनेवाला के लिए, वर्तमान प्रवाह में परिवर्तन पर निरोधात्मक प्रभाव के परिणामस्वरूप प्रत्यावर्ती वोल्टेज के संबंध में प्रत्यावर्ती धारा की देरी, या एक चरण बदलाव होता है। विशेष रूप से, एक आदर्श प्रारंभ करनेवाला (बिना प्रतिरोध के) धारा को एक चौथाई चक्र, या 90 ° से वोल्टेज को कम करने का कारण बनेगा।
एक एसी परिपथ में एक आदर्श प्रारंभ करनेवाला के लिए, धारा प्रवाह में परिवर्तन पर निरोधात्मक प्रभाव के परिणामस्वरूप प्रत्यावर्ती वोल्टेज के संबंध में प्रत्यावर्ती धारा की देरी, या एक चरण बदलाव होता है। विशेष रूप से आदर्श अवस्था में प्रारंभ करने वाले (बिना प्रतिरोध के) धारा को एक चौथाई चक्र, या 90 ° से वोल्टेज को कम करने का कारण बनेगा।


विद्युत शक्ति प्रणालियों में, आगमनात्मक प्रतिक्रिया (और धारिता युक्त प्रतिक्रिया, चूंकि आगमनात्मक प्रतिक्रिया अधिक सामान्य है) एक एसी ट्रांसमिशन लाइन की बिजली क्षमता को सीमित कर सकती है, क्योंकि वोल्टेज और धारा के आउट-ऑफ-फेज होने पर बिजली पूरी तरह से स्थानांतरित नहीं होती है (ऊपर विस्तृत) . यही है, एक आउट-ऑफ-फेज सिस्टम के लिए धारा प्रवाहित होगा, चूंकि निश्चित समय पर वास्तविक शक्ति को स्थानांतरित नहीं किया जाएगा, क्योंकि ऐसे बिंदु होंगे जिनके समय तात्कालिक वोल्टेज धनात्मक होता है, जबकि तात्कालिक वोल्टेज ऋणात्मक होता है, या इसके विपरीत, ऋणात्मक शक्ति को दर्शाता है। स्थानांतरण करना। इसलिए, वास्तविक कार्य तब नहीं किया जाता जब शक्ति हस्तांतरण ऋणात्मक होता है। यद्यपि, एक सिस्टम के आउट-ऑफ-फेज होने पर भी धारा प्रवाहित होता है, जिससे धारा प्रवाह के कारण ट्रांसमिशन लाइनें गर्म हो जाती हैं। परिणाम स्वरुप, ट्रांसमिशन लाइनें केवल इतना ही गर्म हो सकती हैं (या फिर वे शारीरिक रूप से बहुत अधिक शिथिल हो जाती हैं, क्योंकि गर्मी धातु संचरण लाइनों का विस्तार करती है), इसलिए ट्रांसमिशन लाइन ऑपरेटरों के पास वर्तमान की मात्रा पर एक सीमा होती है जो किसी दिए गए लाइन के माध्यम से प्रवाह कर सकती है। , और अत्यधिक आगमनात्मक प्रतिक्रिया एक लाइन की शक्ति क्षमता को सीमित कर सकती है। बिजली प्रदाता उपयोग पैटर्न के आधार पर चरण को स्थानांतरित करने और नुकसान को कम करने के लिए कैपेसिटर का उपयोग करते हैं।
विद्युत शक्ति प्रणालियों में आगमनात्मक प्रतिक्रिया (और धारिता युक्त प्रतिक्रिया, चूंकि आगमनात्मक प्रतिक्रिया अधिक सामान्य है) एक एसी ट्रांसमिशन लाइन की विद्युत क्षमता को सीमित कर सकती है, क्योंकि वोल्टेज और धारा के आउट-ऑफ-फेज होने पर विद्युत पूरी तरह से स्थानांतरित नहीं होती है (ऊपर विस्तृत) . यही है, यह आउट-ऑफ-फेज सिस्टम के लिए धारा प्रवाहित होगा, चूंकि निश्चित समय पर वास्तविक शक्ति को स्थानांतरित नहीं किया जाएगा, क्योंकि ऐसे बिंदु होंगे जिनके समय तात्कालिक वोल्टेज धनात्मक होता है, जबकि तात्कालिक वोल्टेज ऋणात्मक होता है, या इसके विपरीत, ऋणात्मक शक्ति को दर्शाता है। स्थानांतरण करना। इसलिए, वास्तविक कार्य तब नहीं किया जाता जब शक्ति हस्तांतरण ऋणात्मक होता है। यद्यपि, एक सिस्टम के आउट-ऑफ-फेज होने पर भी धारा प्रवाहित होता है, जिससे धारा प्रवाह के कारण ट्रांसमिशन लाइनें गर्म हो जाती हैं। इसके परिणामस्वरुप ट्रांसमिशन लाइनें केवल इतना ही गर्म हो सकती हैं (या फिर वे शारीरिक रूप से बहुत अधिक शिथिल हो जाती हैं, क्योंकि गर्मी धातु संचरण लाइनों का विस्तार करती है), इसलिए ट्रांसमिशन लाइन ऑपरेटरों के पास धारा की मात्रा पर एक सीमा होती है जो किसी दिए गए लाइन के माध्यम से प्रवाह कर सकती है। इससे अत्यधिक आगमनात्मक प्रतिक्रिया एक लाइन की शक्ति क्षमता को सीमित कर सकती है। विद्युत प्रदाता उपयोग पैटर्न के आधार पर चरण को स्थानांतरित करने और हानि को कम करने के लिए संधारित्र का उपयोग करते हैं।


आगमनात्मक प्रतिक्रिया <math>X_L</math> साइनसॉइडल सिग्नल आवृत्ति के लिए [[ आनुपातिकता (गणित) ]] है <math>f</math> और अधिष्ठापन <math>L</math>, जो प्रारंभ करनेवाला के भौतिक आकार पर निर्भर करता है:
आगमनात्मक प्रतिक्रिया <math>X_L</math> साइनसॉइडल सिग्नल आवृत्ति के लिए [[ आनुपातिकता (गणित) ]] है <math>f</math> और अधिष्ठापन <math>L</math>, जो प्रारंभ करनेवाला के भौतिक आकार पर निर्भर करता है:
Line 48: Line 49:
एक अधिष्ठापन के माध्यम से बहने वाली औसत धारा <math>L</math> आरएमएस आयाम के एक [[ sinusoidal | साइनसॉइडल]] एसी वोल्टेज स्रोत के साथ श्रृंखला में <math>A</math> और आवृत्ति <math>f</math> के बराबर है:
एक अधिष्ठापन के माध्यम से बहने वाली औसत धारा <math>L</math> आरएमएस आयाम के एक [[ sinusoidal | साइनसॉइडल]] एसी वोल्टेज स्रोत के साथ श्रृंखला में <math>A</math> और आवृत्ति <math>f</math> के बराबर है:
:<math>I_L = {A \over \omega L} = {A \over 2\pi f L}.</math>
:<math>I_L = {A \over \omega L} = {A \over 2\pi f L}.</math>
चूँकि एक वर्ग तरंग में साइनसॉइडल [[ लयबद्ध ]]्स में कई आयाम होते हैं, एक अधिष्ठापन के माध्यम से बहने वाली औसत धारा <math>L</math> आरएमएस आयाम के एक वर्ग तरंग एसी वोल्टेज स्रोत के साथ श्रृंखला में <math>A</math> और आवृत्ति <math>f</math> के बराबर है:
चूँकि एक वर्ग तरंग में साइनसॉइडल [[ लयबद्ध ]] में कई आयाम होते हैं, एक अधिष्ठापन के माध्यम से बहने वाली औसत धारा <math>L</math> आरएमएस आयाम के एक वर्ग तरंग एसी वोल्टेज स्रोत के साथ श्रृंखला में <math>A</math> और आवृत्ति <math>f</math> के बराबर है:
:<math>I_L = {A \pi^2 \over 8 \omega L} = {A\pi \over 16 f L}</math>
:<math>I_L = {A \pi^2 \over 8 \omega L} = {A\pi \over 16 f L}</math>
ऐसा प्रतीत होता है कि एक वर्ग तरंग के लिए आगमनात्मक प्रतिक्रिया लगभग 19% छोटी थी <math>X_L = {16 \over \pi} f L</math> एसी साइन वेव की प्रतिक्रिया की तुलना में।
ऐसा प्रतीत होता है कि एक वर्ग तरंग के लिए आगमनात्मक प्रतिक्रिया लगभग 19% छोटी थी <math>X_L = {16 \over \pi} f L</math> एसी साइन वेव की प्रतिक्रिया की तुलना करने में किया जाता हैं।


परिमित आयामों के किसी भी चालक में अधिष्ठापन होता है; [[ विद्युत चुम्बकीय कुंडल ]] में कई मोड़ों द्वारा अधिष्ठापन बड़ा किया जाता है। फैराडे का प्रेरण का नियम | फैराडे का विद्युत चुम्बकीय प्रेरण का नियम प्रति-इलेक्ट्रोमोटिव बल देता है <math>\mathcal{E}</math> (वोल्टेज विरोध धारा) चुंबकीय प्रवाह घनत्व के दर-परिवर्तन के कारण <math>\scriptstyle{B}</math> एक वर्तमान लूप के माध्यम से।
परिमित आयामों के किसी भी चालक में अधिष्ठापन होता है; [[ विद्युत चुम्बकीय कुंडल ]] में कई मोड़ों द्वारा अधिष्ठापन बड़ा किया जाता है। फैराडे का प्रेरण का नियम फैराडे का विद्युत चुम्बकीय प्रेरण का नियम प्रति-इलेक्ट्रोमोटिव बल <math>\mathcal{E}</math> (वोल्टेज विरोध धारा) देता है, इस प्रकार चुंबकीय प्रवाह घनत्व के दर-परिवर्तन के कारण <math>\scriptstyle{B}</math> एक धारा लूप के माध्यम से होता हैं।


:<math>\mathcal{E} = -{{d\Phi_B} \over dt}</math>
:<math>\mathcal{E} = -{{d\Phi_B} \over dt}</math>
Line 59: Line 60:
:<math>\mathcal{E} = -N{d\Phi_B \over dt}</math>.
:<math>\mathcal{E} = -N{d\Phi_B \over dt}</math>.


काउंटर-ईएमएफ वर्तमान प्रवाह के विरोध का स्रोत है। एक निरंतर प्रत्यक्ष धारा में शून्य दर-परिवर्तन होता है, और एक प्रारंभ करनेवाला को [[ शार्ट सर्किट | शार्ट परिपथ]] के रूप में देखता है (यह सामान्यतः कम [[ प्रतिरोधकता ]] वाली सामग्री से बना होता है)। एक प्रत्यावर्ती धारा में समय-औसत दर-परिवर्तन होता है जो आवृत्ति के समानुपाती होता है, इससे आवृत्ति के साथ आगमनात्मक प्रतिक्रिया में वृद्धि होती है।
काउंटर-ईएमएफ धारा प्रवाह के विरोध का स्रोत है। एक निरंतर प्रत्यक्ष धारा में शून्य दर-परिवर्तन होता है, और एक प्रत्यावर्ती धारा को [[ शार्ट सर्किट | शार्ट परिपथ]] के रूप में देखता है (यह सामान्यतः कम [[ प्रतिरोधकता ]] वाली सामग्री से बना होता है)। एक प्रत्यावर्ती धारा में समय-औसत दर-परिवर्तन होता है जो आवृत्ति के समानुपाती होता है, इससे आवृत्ति के साथ आगमनात्मक प्रतिक्रिया में वृद्धि होती है।


== प्रतिबाधा ==
== प्रतिबाधा ==
Line 67: Line 68:
कहाँ पे:
कहाँ पे:
*<math>\mathbf{Z}</math> जटिल विद्युत प्रतिबाधा है, जिसे ओम में मापा जाता है;
*<math>\mathbf{Z}</math> जटिल विद्युत प्रतिबाधा है, जिसे ओम में मापा जाता है;
*<math>R</math> विद्युत प्रतिरोध है, जिसे ओम में मापा जाता है। यह प्रतिबाधा का वास्तविक हिस्सा है: <math>{R=\text{Re}{(\mathbf{Z})}}</math>
*<math>R</math> विद्युत प्रतिरोध है, जिसे ओम में मापा जाता है। यह प्रतिबाधा का वास्तविक भाग है: <math>{R=\text{Re}{(\mathbf{Z})}}</math>
*<math>X</math> प्रतिक्रिया है, ओम में मापा जाता है। यह प्रतिबाधा का काल्पनिक हिस्सा है: <math>{X=\text{Im}{(\mathbf{Z})}}</math>
*<math>X</math> प्रतिक्रिया है, ओम में मापा जाता है। यह प्रतिबाधा का काल्पनिक भाग है: <math>{X=\text{Im}{(\mathbf{Z})}}</math>
*<math>\mathbf{j}</math> माइनस वन का वर्गमूल है, जिसे सामान्यतः द्वारा दर्शाया जाता है <math>\mathbf{i}</math> गैर-विद्युत सूत्रों में। <math>\mathbf{j}</math> का उपयोग किया जाता है जिससे कि काल्पनिक इकाई को धारा के साथ भ्रमित न किया जाए, जिसे सामान्यतः द्वारा दर्शाया जाता है <math>\mathbf{i}</math>.
*<math>\mathbf{j}</math> माइनस वन का वर्गमूल है, जिसे सामान्यतः द्वारा दर्शाया जाता है <math>\mathbf{i}</math> गैर-विद्युत सूत्रों में। <math>\mathbf{j}</math> का उपयोग किया जाता है जिससे कि काल्पनिक इकाई को धारा के साथ भ्रमित न किया जाए, जिसे सामान्यतः द्वारा दर्शाया जाता है <math>\mathbf{i}</math>.


जब एक संधारित्र और एक प्रारंभ करनेवाला दोनों को एक परिपथ में श्रृंखला में रखा जाता है, तो कुल परिपथ प्रतिबाधा में उनका योगदान विपरीत होता है। धारिता युक्त प्रतिक्रिया <math>X_C</math> और आगमनात्मक प्रतिक्रिया <math>X_L</math> कुल प्रतिक्रिया में योगदान <math>X</math> निम्नलिखित नुसार:
जब एक संधारित्र और एक प्रारंभ करनेवाला दोनों को एक परिपथ में श्रृंखला में रखा जाता है, तो कुल परिपथ प्रतिबाधा में उनका योगदान विपरीत होता है। धारिता युक्त प्रतिक्रिया <math>X_C</math> और आगमनात्मक प्रतिक्रिया <math>X_L</math> कुल प्रतिक्रिया में योगदान <math>X</math> निम्नलिखित अनुसार:
:<math>{X = X_L + X_C = \omega L -\frac {1} {\omega C}}</math>
:<math>{X = X_L + X_C = \omega L -\frac {1} {\omega C}}</math>
कहाँ पे:
जहाँ पे:
*<math>X_L</math> इंडक्शन प्रतिक्रिया है, जिसे ओम में मापा जाता है;
*<math>X_L</math> इंडक्शन प्रतिक्रिया है, जिसे ओम में मापा जाता है;
*<math>X_C</math> धारिता प्रतिक्रिया है, जिसे ओम में मापा जाता है;
*<math>X_C</math> धारिता प्रतिक्रिया है, जिसे ओम में मापा जाता है;
Line 89: Line 90:
=== चरण संबंध ===
=== चरण संबंध ===


एक विशुद्ध रूप से प्रतिक्रियाशील डिवाइस (अर्थात शून्य [[ परजीवी तत्व (विद्युत नेटवर्क) ]] के साथ) में वोल्टेज का चरण वर्तमान से पिछड़ जाता है <math>\tfrac{\pi}{2}</math> धारिता युक्त प्रतिक्रिया के लिए रेडियन और धारा की ओर जाता है <math>\tfrac{\pi}{2}</math> आगमनात्मक प्रतिक्रिया के लिए रेडियन। प्रतिरोध और प्रतिक्रिया दोनों के ज्ञान के बिना वोल्टेज और धारा के बीच संबंध निर्धारित नहीं किया जा सकता है।
एक विशुद्ध रूप से प्रतिक्रियाशील उपकरण (अर्थात शून्य [[ परजीवी तत्व (विद्युत नेटवर्क) ]] के साथ) में वोल्टेज का चरण धारा से पिछड़ जाता है, इस कारण <math>\tfrac{\pi}{2}</math> धारिता युक्त प्रतिक्रिया के लिए रेडियन और धारा की ओर जाता है <math>\tfrac{\pi}{2}</math> आगमनात्मक प्रतिक्रिया के लिए रेडियन। प्रतिरोध और प्रतिक्रिया दोनों के ज्ञान के बिना वोल्टेज और धारा के बीच संबंध निर्धारित नहीं किया जा सकता है।


धारिता युक्त और इंडक्टिव प्रतिक्रिया के लिए विभिन्न संकेतों की उत्पत्ति चरण कारक है <math>e^{\pm \mathbf{j}{\frac{\pi}{2}}}</math> प्रतिबाधा में।
धारिता युक्त और इंडक्टिव प्रतिक्रिया के लिए <math>e^{\pm \mathbf{j}{\frac{\pi}{2}}}</math> प्रतिबाधा में विभिन्न संकेतों की उत्पत्ति चरण कारक है ।


:<math>\begin{align}
:<math>\begin{align}
Line 97: Line 98:
   \mathbf{Z}_L &= \omega Le^{\mathbf{j}{\pi \over 2}} = \mathbf{j}\omega L = \mathbf{j}X_L\quad
   \mathbf{Z}_L &= \omega Le^{\mathbf{j}{\pi \over 2}} = \mathbf{j}\omega L = \mathbf{j}X_L\quad
\end{align}</math>
\end{align}</math>
एक प्रतिक्रियाशील घटक के लिए पूरे घटक में साइनसॉइडल वोल्टेज चतुर्भुज में है (ए <math>\tfrac{\pi}{2}</math> चरण अंतर) घटक के माध्यम से साइनसोइडल धारा के साथ। घटक बारी-बारी से परिपथ से ऊर्जा को अवशोषित करता है और फिर परिपथ में ऊर्जा लौटाता है, इस प्रकार एक शुद्ध प्रतिक्रिया शक्ति को नष्ट नहीं करती है।
एक प्रतिक्रियाशील घटक के लिए पूरे घटक में साइनसॉइडल वोल्टेज चतुर्भुज में है, इस प्रकार (ए <math>\tfrac{\pi}{2}</math> चरण अंतर) घटक के माध्यम से साइनसोइडल धारा के साथ इसका उपयोग किया जाता हैं। घटक बारी-बारी से परिपथ से ऊर्जा को अवशोषित करता है और फिर परिपथ में ऊर्जा लौटाता है, इस प्रकार एक शुद्ध प्रतिक्रिया शक्ति को नष्ट नहीं करती है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 15:40, 30 April 2023

विद्युत परिपथ में प्रतिघात वह विरोध है जो प्रत्यावर्ती धारा को अधिष्ठापन या धारिता द्वारा प्रस्तुत करने के लिए उपयोग किया जाता हैं।[1] ग्रेटर प्रतिक्रिया समान रूप से लागू होने वाले वोल्टेज के लिए अल्प मात्रा में धारा प्रदान करता हैं। इस प्रकार यह प्रतिक्रिया इस सम्बन्ध में विद्युत प्रतिरोध और चालन के समान है, किन्तु उस प्रतिक्रिया में भिन्नता जूल ऊष्मा की ओर नहीं ले जाती है। इसके अतिरिक्त, ऊर्जा को प्रतिक्रिया में क्षणिक रूप से संग्रहीत किया जाता है, और एक चौथाई-टर्न (कोण) बाद में परिपथ में वापस आ जाता है, जबकि एक प्रतिरोध निरंतर ऊर्जा खो देता है।

प्रतिक्रिया का उपयोग परिपथ तत्व से गुजरने वाली साइन तरंग प्रत्यावर्ती धारा के आयाम और फेज (तरंगों) परिवर्तनों की गणना के लिए किया जाता है। प्रतिरोध के समान प्रतिक्रिया को ओम में मापा जाता है, इस प्रकार धनात्मक मान के साथ आगमनात्मक प्रतिक्रिया और ऋणात्मक संकेत धारिता युक्त प्रतिक्रिया इंगित करता है। यह प्रतीक के रूप में निरूपित किया जाता है, एक आदर्श प्रतिरोधक में शून्य प्रतिघात होता है, जबकि आदर्श प्रेरकों और संधारित्र का प्रतिरोध शून्य होता है। जैसे-जैसे आवृत्ति बढ़ती है, आगमनात्मक प्रतिक्रिया बढ़ती है और धारिता युक्त प्रतिक्रिया घट जाती है।

प्रतिरोध की तुलना

प्रतिक्रिया प्रतिरोध के समान है क्यूंकि बड़े प्रतिक्रिया में लागू होने वाले वोल्टेज के लिए छोटी धाराओं की ओर जाता है। इसके अतिरिक्त पूरी तरह से तत्वों से बने किसी परिपथ में केवल प्रतिक्रिया होती है (और कोई प्रतिरोध नहीं) उसी प्रकार से माना जाता है जैसे परिपथ पूर्ण रूप से प्रतिरोधों से बना होता है। इन समान विधियों का उपयोग प्रतिरोध वाले तत्वों के साथ प्रतिरोध वाले तत्वों को संयोजित करने के लिए भी किया जाता है किन्तु जटिल संख्याओं की सामान्यतः आवश्यकता होती है। इसका उपचार विद्युत प्रतिबाधा पर अनुभाग में नीचे किया गया है।

यद्यपि प्रतिक्रिया और प्रतिरोध के बीच कई महत्वपूर्ण अंतर हैं। सबसे पहले प्रतिक्रिया चरण को परिवर्तित कर देती है जिससे कि तत्व के माध्यम से धारा तत्व के माध्यम से लागू वोल्टेज के चरण के सापेक्ष चक्र के एक चौथाई से स्थानांतरित हो जाता हैं। इसका दूसरा भाग शक्ति विशुद्ध रूप से प्रतिक्रियाशील तत्व में नष्ट नहीं होता है, इसके अतिरिक्त यह संग्रहीत हो जाता है। इसका तीसरा भाग इस प्रतिक्रिया के ऋणात्मक मान के सामान हो सकता है जिससे कि वे एक दूसरे को 'निरस्त' कर सकें। अंत में, मुख्य परिपथ तत्व जिनमें प्रतिक्रिया (संधारित्र और चालक) होते हैं, उनमें आवृत्ति पर निर्भर प्रतिक्रिया होती है, इस प्रकार प्रतिरोधकों के विपरीत इनमें सभी आवृत्तियों के लिए समान प्रतिरोध होता है, यह कम से कम आदर्श स्थितियों में उपयोग किया जाता हैं।

यह प्रतिक्रिया इस शब्द के सुझाव के लिए सबसे पहले 10 मई 1893 विद्युत कोल इंडस्ट्री में फ्रांसीसी इंजीनियर एम. हॉस्पिटैलियर द्वारा सुझाया गया था। इसे आधिकारिक तौर पर मई 1894 में अमेरिकन इंस्टीट्यूट ऑफ इलेक्ट्रिकल इंजीनियर्स द्वारा अपनाया गया था।[2]


संधारित्र प्रतिक्रिया

एक संधारित्र में विद्युत रोधकता द्वारा अलग किए गए दो विद्युत चालन होते हैं, जिन्हें ढांकता हुआ भी कहा जाता है।

धारिता युक्त प्रतिक्रिया के इस तत्व में वोल्टेज के परिवर्तन का विरोध है। इस प्रकार की धारिता युक्त प्रतिक्रिया संकेत के लिए आवृत्ति (या कोणीय आवृत्ति ) और धारिता के विपरीत आनुपातिक होते है,[3]

इस प्रकार किसी संधारित्र के लिए इस प्रतिक्रिया को परिभाषित करने के लिए साहित्य में दो विकल्प हैं। किसी प्रतिबाधा की एक समान धारणा का उपयोग प्रतिबाधा के काल्पनिक भाग के रूप में करना पड़ता है, जिस स्थिति में संधारित्र की प्रतिक्रिया ऋणात्मक संख्या है,[3][4][5]

.

एक अन्य विकल्प धारिता युक्त प्रतिक्रिया को धनात्मक संख्या के रूप में परिभाषित करना है,[6][7][8]

.

इस स्थितियों में चूंकि किसी को संधारित्र के प्रतिबाधा अर्थात के लिए एक ऋणात्मक संकेत जोड़ने की आवश्यकता है।

इस पर संधारित्र की प्रतिक्रिया का परिमाण अनंत रहता है, किसी विक्ट खुले परिपथ के समान व्यवहार करता है (किसी भी विद्युत प्रवाह को ढांकता हुआ से बहने से रोकता है)। जैसे-जैसे आवृत्ति बढ़ती है, प्रतिक्रिया का परिमाण घटता जाता है, जिससे अधिक धारा प्रवाहित होती है। जैसा दृष्टिकोण , शार्ट सर्किट के समान व्यवहार करना संधारित्र की प्रतिक्रिया के निकट रहता है।

किसी संधारित्र में एक प्रत्यक्ष धारा वोल्टेज के आवेदन के कारण इसे धनात्मक विद्युत आवेश एकत्रित होता है और दूसरी तरफ ऋणात्मक विद्युत आवेश एकत्रित होता है, इस प्रकार संचित आवेश के कारण विद्युत क्षेत्र धारा के विरोध का स्रोत है। जब आवेश से जुड़ी क्षमता के लागू होने वाले वोल्टेज को बिल्कुल संतुलित करती है, तो धारा शून्य हो जाती है।

किसी एसी आपूर्ति (आदर्श एसी धारा स्रोत) द्वारा संचालित एक संधारित्र केवल सीमित मात्रा में आवेश एकत्रित करेगा, इससे पहले कि संभावित अंतर ध्रुवीयता को परिवर्तित कर दे और आवेश को स्रोत पर वापस कर देता हैं। इस आवृत्ति जितनी अधिक होगी, उतना ही कम आवेश एकत्रित होगा और धारा का विरोध उतना ही कम रहता हैं।

आगमनात्मक प्रतिक्रिया

आगमनात्मक प्रतिक्रिया धारा को प्रदर्शित करने के लिए उपयोग किया जाता है, और आगमनात्मक प्रतिक्रिया इस तथ्य के आधार पर उपस्तिथ रहती है इसका कारण यह हैं कि यह विद्युत प्रवाह के चारों ओर एक चुंबकीय क्षेत्र उत्पन्न करता है। इस प्रकार किसी एसी परिपथ के संदर्भ में (चूंकि यह अवधारणा किसी भी समय चालू होने पर लागू होती है), यह चुंबकीय क्षेत्र क्रमशः धारा के परिणामस्वरूप परिवर्तित करता है इसके कारण यह आगे की ओर बढ़ता है। यह चुंबकीय क्षेत्र में परिवर्तन के सामान होता हैं जो विद्युत प्रवाह को उसी तार (काउंटर-ईएमएफ) में प्रवाहित करने के लिए प्रेरित करता है, जैसे कि चुंबकीय क्षेत्र (लेनज़ के नियम के रूप में जाना जाता है) के उत्पादन के लिए मूल रूप से इस प्रभावी धारा के प्रवाह का विरोध करने के लिए उपयोग किया जाता हैं। इसलिए आगमनात्मक प्रतिक्रिया इस तत्व के माध्यम से धारा के परिवर्तन का विरोध है।

एक एसी परिपथ में एक आदर्श प्रारंभ करनेवाला के लिए, धारा प्रवाह में परिवर्तन पर निरोधात्मक प्रभाव के परिणामस्वरूप प्रत्यावर्ती वोल्टेज के संबंध में प्रत्यावर्ती धारा की देरी, या एक चरण बदलाव होता है। विशेष रूप से आदर्श अवस्था में प्रारंभ करने वाले (बिना प्रतिरोध के) धारा को एक चौथाई चक्र, या 90 ° से वोल्टेज को कम करने का कारण बनेगा।

विद्युत शक्ति प्रणालियों में आगमनात्मक प्रतिक्रिया (और धारिता युक्त प्रतिक्रिया, चूंकि आगमनात्मक प्रतिक्रिया अधिक सामान्य है) एक एसी ट्रांसमिशन लाइन की विद्युत क्षमता को सीमित कर सकती है, क्योंकि वोल्टेज और धारा के आउट-ऑफ-फेज होने पर विद्युत पूरी तरह से स्थानांतरित नहीं होती है (ऊपर विस्तृत) . यही है, यह आउट-ऑफ-फेज सिस्टम के लिए धारा प्रवाहित होगा, चूंकि निश्चित समय पर वास्तविक शक्ति को स्थानांतरित नहीं किया जाएगा, क्योंकि ऐसे बिंदु होंगे जिनके समय तात्कालिक वोल्टेज धनात्मक होता है, जबकि तात्कालिक वोल्टेज ऋणात्मक होता है, या इसके विपरीत, ऋणात्मक शक्ति को दर्शाता है। स्थानांतरण करना। इसलिए, वास्तविक कार्य तब नहीं किया जाता जब शक्ति हस्तांतरण ऋणात्मक होता है। यद्यपि, एक सिस्टम के आउट-ऑफ-फेज होने पर भी धारा प्रवाहित होता है, जिससे धारा प्रवाह के कारण ट्रांसमिशन लाइनें गर्म हो जाती हैं। इसके परिणामस्वरुप ट्रांसमिशन लाइनें केवल इतना ही गर्म हो सकती हैं (या फिर वे शारीरिक रूप से बहुत अधिक शिथिल हो जाती हैं, क्योंकि गर्मी धातु संचरण लाइनों का विस्तार करती है), इसलिए ट्रांसमिशन लाइन ऑपरेटरों के पास धारा की मात्रा पर एक सीमा होती है जो किसी दिए गए लाइन के माध्यम से प्रवाह कर सकती है। इससे अत्यधिक आगमनात्मक प्रतिक्रिया एक लाइन की शक्ति क्षमता को सीमित कर सकती है। विद्युत प्रदाता उपयोग पैटर्न के आधार पर चरण को स्थानांतरित करने और हानि को कम करने के लिए संधारित्र का उपयोग करते हैं।

आगमनात्मक प्रतिक्रिया साइनसॉइडल सिग्नल आवृत्ति के लिए आनुपातिकता (गणित) है और अधिष्ठापन , जो प्रारंभ करनेवाला के भौतिक आकार पर निर्भर करता है:

.

एक अधिष्ठापन के माध्यम से बहने वाली औसत धारा आरएमएस आयाम के एक साइनसॉइडल एसी वोल्टेज स्रोत के साथ श्रृंखला में और आवृत्ति के बराबर है:

चूँकि एक वर्ग तरंग में साइनसॉइडल लयबद्ध में कई आयाम होते हैं, एक अधिष्ठापन के माध्यम से बहने वाली औसत धारा आरएमएस आयाम के एक वर्ग तरंग एसी वोल्टेज स्रोत के साथ श्रृंखला में और आवृत्ति के बराबर है:

ऐसा प्रतीत होता है कि एक वर्ग तरंग के लिए आगमनात्मक प्रतिक्रिया लगभग 19% छोटी थी एसी साइन वेव की प्रतिक्रिया की तुलना करने में किया जाता हैं।

परिमित आयामों के किसी भी चालक में अधिष्ठापन होता है; विद्युत चुम्बकीय कुंडल में कई मोड़ों द्वारा अधिष्ठापन बड़ा किया जाता है। फैराडे का प्रेरण का नियम फैराडे का विद्युत चुम्बकीय प्रेरण का नियम प्रति-इलेक्ट्रोमोटिव बल (वोल्टेज विरोध धारा) देता है, इस प्रकार चुंबकीय प्रवाह घनत्व के दर-परिवर्तन के कारण एक धारा लूप के माध्यम से होता हैं।

एक कॉइल से युक्त एक प्रारंभ करनेवाला के लिए लूप यह देता है:

.

काउंटर-ईएमएफ धारा प्रवाह के विरोध का स्रोत है। एक निरंतर प्रत्यक्ष धारा में शून्य दर-परिवर्तन होता है, और एक प्रत्यावर्ती धारा को शार्ट परिपथ के रूप में देखता है (यह सामान्यतः कम प्रतिरोधकता वाली सामग्री से बना होता है)। एक प्रत्यावर्ती धारा में समय-औसत दर-परिवर्तन होता है जो आवृत्ति के समानुपाती होता है, इससे आवृत्ति के साथ आगमनात्मक प्रतिक्रिया में वृद्धि होती है।

प्रतिबाधा

दोनों प्रतिक्रिया और विद्युत प्रतिरोध विद्युत प्रतिबाधा के घटक हैं .

कहाँ पे:

  • जटिल विद्युत प्रतिबाधा है, जिसे ओम में मापा जाता है;
  • विद्युत प्रतिरोध है, जिसे ओम में मापा जाता है। यह प्रतिबाधा का वास्तविक भाग है:
  • प्रतिक्रिया है, ओम में मापा जाता है। यह प्रतिबाधा का काल्पनिक भाग है:
  • माइनस वन का वर्गमूल है, जिसे सामान्यतः द्वारा दर्शाया जाता है गैर-विद्युत सूत्रों में। का उपयोग किया जाता है जिससे कि काल्पनिक इकाई को धारा के साथ भ्रमित न किया जाए, जिसे सामान्यतः द्वारा दर्शाया जाता है .

जब एक संधारित्र और एक प्रारंभ करनेवाला दोनों को एक परिपथ में श्रृंखला में रखा जाता है, तो कुल परिपथ प्रतिबाधा में उनका योगदान विपरीत होता है। धारिता युक्त प्रतिक्रिया और आगमनात्मक प्रतिक्रिया कुल प्रतिक्रिया में योगदान निम्नलिखित अनुसार:

जहाँ पे:

  • इंडक्शन प्रतिक्रिया है, जिसे ओम में मापा जाता है;
  • धारिता प्रतिक्रिया है, जिसे ओम में मापा जाता है;
  • कोणीय आवृत्ति है, हेटर्स में आवृत्ति गुना।

अत:[5]*यदि , कुल प्रतिक्रिया को आगमनात्मक कहा जाता है;

  • यदि , तो प्रतिबाधा विशुद्ध रूप से प्रतिरोधक है;
  • यदि , कुल प्रतिक्रिया को धारिता युक्त कहा जाता है।

चूंकि ध्यान दें कि यदि तथा परिभाषा के अनुसार दोनों को धनात्मक माना जाता है, फिर मध्यस्थ सूत्र एक अंतर में बदल जाता है:[7]

किन्तु अंतिम मान वही है।

चरण संबंध

एक विशुद्ध रूप से प्रतिक्रियाशील उपकरण (अर्थात शून्य परजीवी तत्व (विद्युत नेटवर्क) के साथ) में वोल्टेज का चरण धारा से पिछड़ जाता है, इस कारण धारिता युक्त प्रतिक्रिया के लिए रेडियन और धारा की ओर जाता है आगमनात्मक प्रतिक्रिया के लिए रेडियन। प्रतिरोध और प्रतिक्रिया दोनों के ज्ञान के बिना वोल्टेज और धारा के बीच संबंध निर्धारित नहीं किया जा सकता है।

धारिता युक्त और इंडक्टिव प्रतिक्रिया के लिए प्रतिबाधा में विभिन्न संकेतों की उत्पत्ति चरण कारक है ।

एक प्रतिक्रियाशील घटक के लिए पूरे घटक में साइनसॉइडल वोल्टेज चतुर्भुज में है, इस प्रकार (ए चरण अंतर) घटक के माध्यम से साइनसोइडल धारा के साथ इसका उपयोग किया जाता हैं। घटक बारी-बारी से परिपथ से ऊर्जा को अवशोषित करता है और फिर परिपथ में ऊर्जा लौटाता है, इस प्रकार एक शुद्ध प्रतिक्रिया शक्ति को नष्ट नहीं करती है।

यह भी देखें

संदर्भ

  • Shamieh C. and McComb G., Electronics for Dummies, John Wiley & Sons, 2011.
  • Meade R., Foundations of Electronics, Cengage Learning, 2002.
  • Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949]. Sears and Zemansky's University Physics (11 ed.). San Francisco: Addison Wesley. ISBN 0-8053-9179-7.
  1. Veley, Victor F. C. (1987). The Benchtop Electronics Reference Manual (1st ed.). New York: Tab Books. pp. 229, 232.
  2. Charles Proteus Steinmetz, Frederick Bedell, "Reactance", Transactions of the American Institute of Electrical Engineers, vol. 11, pp. 640–648, January–December 1894.
  3. 3.0 3.1 Irwin, D. (2002). Basic Engineering Circuit Analysis, page 274. New York: John Wiley & Sons, Inc.
  4. Hayt, W.H., Kimmerly J.E. (2007). Engineering Circuit Analysis, 7th ed., McGraw-Hill, p. 388
  5. 5.0 5.1 Glisson, T.H. (2011). Introduction to Circuit Analysis and Design, Springer, p. 408
  6. Horowitz P., Hill W. (2015). The Art of Electronics, 3rd ed., p. 42
  7. 7.0 7.1 Hughes E., Hiley J., Brown K., Smith I.McK., (2012). Hughes Electrical and Electronic Technology, 11th edition, Pearson, pp. 237-241
  8. Robbins, A.H., Miller W. (2012). Circuit Analysis: Theory and Practice, 5th ed., Cengage Learning, pp. 554-558


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • चरण (लहरें)
  • प्रारंभ करनेवाला
  • अवरोध
  • विद्युतीय रोधकता
  • व्युत्क्रमानुपाती
  • एकदिश धारा
  • संभावना
  • स्क्वेर वेव
  • विद्युत प्रभावन बल
  • चुंबकीय प्रवाह का घनत्व
  • विद्युतीय प्रतिरोध
  • माइनस वन . का वर्गमूल
  • ग्रहणशीलता

बाहरी संबंध