प्राथमिक शुल्क: Difference between revisions
No edit summary |
|||
Line 12: | Line 12: | ||
आवागमन आवेश, जिसे सामान्यतः e से दर्शाया जाता है, एकल [[प्रोटॉन]] द्वारा वहाँ ले जाया गया विद्युत आवेश है या समकक्ष रूप से एक [[इलेक्ट्रॉन]] द्वारा ले जाया गया नकारात्मक विद्युत आवेश का मान है, जो -1 e होता है।<ref>The symbol ''e'' has many other meanings. Somewhat confusingly, in [[atomic physics]], ''e'' sometimes denotes the electron charge, i.e. the ''negative'' of the elementary charge. In the US, the [[E (mathematical constant)|base]] of the natural logarithm is often denoted ''e'' (italicized), while it is usually denoted e (roman type) in the UK and Continental Europe.</ref> यह प्राथमिक आवेश एक मूलभूत [[भौतिक स्थिरांक]] है। | आवागमन आवेश, जिसे सामान्यतः e से दर्शाया जाता है, एकल [[प्रोटॉन]] द्वारा वहाँ ले जाया गया विद्युत आवेश है या समकक्ष रूप से एक [[इलेक्ट्रॉन]] द्वारा ले जाया गया नकारात्मक विद्युत आवेश का मान है, जो -1 e होता है।<ref>The symbol ''e'' has many other meanings. Somewhat confusingly, in [[atomic physics]], ''e'' sometimes denotes the electron charge, i.e. the ''negative'' of the elementary charge. In the US, the [[E (mathematical constant)|base]] of the natural logarithm is often denoted ''e'' (italicized), while it is usually denoted e (roman type) in the UK and Continental Europe.</ref> यह प्राथमिक आवेश एक मूलभूत [[भौतिक स्थिरांक]] है। | ||
SI प्रणाली के [[इकाइयों की अंतर्राष्ट्रीय प्रणाली|इकाइयो]] में, आवागमन आवेश का मान निश्चित रूप से | SI प्रणाली के [[इकाइयों की अंतर्राष्ट्रीय प्रणाली|इकाइयो]] में, आवागमन आवेश का मान निश्चित रूप से e = 1.602176634×10−19 कुलांब या 160.2176634 [[ ज़िप्तो | ज़िप्तो]]कुलोम्ब (zC)निर्धारित है।<ref name="SI2019">{{cite book | ||
| last1 = Newell | | last1 = Newell | ||
| first1 = David B. | | first1 = David B. | ||
Line 25: | Line 25: | ||
| doi = 10.6028/nist.sp.330-2019 | | doi = 10.6028/nist.sp.330-2019 | ||
| s2cid = 242934226 | | s2cid = 242934226 | ||
}}</ref> 2019 के SI मूल इकाइयों के पुनर्निर्धारण के उपरांत, सात मौलिक भौतिक स्थिरांकों में से एक, आवागमन आवेश है, जिसके आधार पर सात SI मौलिक इकाइयां परिभाषित की जाती हैं।अक्षरशः ग्राम-सेमी-सेकंड प्रणाली (सीजीएस) में, संबंधित मात्रा 4.8032047...×10−10 स्टैट-कुलाम्ब होती है। <ref>This is derived from the [[CODATA]] 2018 value, since one coulomb corresponds to exactly {{val|2997924580}} statcoulombs. The conversion factor is ten times the numerical value of [[speed of light]] in [[metres per second]].</ref>1909 में रॉबर्ट ए. मिलिकन और [[हार्वे फ्लेचर]]द्वारा तेल की बूंदों के प्रयोग से प्राथमिक आवेश के मान की अमान्यता तथा स्पष्टीकरण किया गया | }}</ref> 2019 के SI मूल इकाइयों के पुनर्निर्धारण के उपरांत, सात मौलिक भौतिक स्थिरांकों में से एक, आवागमन आवेश है, जिसके आधार पर सात SI मौलिक इकाइयां परिभाषित की जाती हैं।अक्षरशः ग्राम-सेमी-सेकंड प्रणाली (सीजीएस) में, संबंधित मात्रा 4.8032047...×10−10 स्टैट-कुलाम्ब होती है। <ref>This is derived from the [[CODATA]] 2018 value, since one coulomb corresponds to exactly {{val|2997924580}} statcoulombs. The conversion factor is ten times the numerical value of [[speed of light]] in [[metres per second]].</ref>1909 में रॉबर्ट ए. मिलिकन और [[हार्वे फ्लेचर]] द्वारा तेल की बूंदों के प्रयोग से प्राथमिक आवेश के मान की अमान्यता तथा स्पष्टीकरण किया गया था। मैक्स प्लांक ने 1901 में काले बॉडी स्पेक्ट्रम से प्राथमिक [[अवोगाद्रो संख्या|अवोगाद्रो]]क आवेश के मान का अस्पष्ट अनुमान (~ 3%) लगाया था और 1865 में जोहान लोश्मिट ने [[अवोगाद्रो संख्या|अवोगाद्रो]] संख्या का मापने के माध्यम से (फाराडे संख्या के माध्यम से) उस समय के विवादास्पद परमाणु सिद्धांत के अनुसार प्राथमिक आवेश का मान आदेश-अनुमानित मापदंड तक अंतर (~1%) लगाया था। | ||
== एक इकाई के रूप में == | == एक इकाई के रूप में == | ||
Line 49: | Line 49: | ||
}} | }} | ||
कुछ [[प्राकृतिक इकाई]] प्रणालियों, जैसे कि परमाणु इकाइयों की प्रणाली में,, ई विद्युत आवेश के मापन की इकाइयों के रूप में कार्य करती है। एक इकाई के रूप में प्राथमिक प्रभार के उपयोग को 1874 में [[जॉर्ज जॉनस्टोन स्टोनी]] द्वारा स्टोनी | कुछ [[प्राकृतिक इकाई]] प्रणालियों, जैसे कि परमाणु इकाइयों की प्रणाली में,, ई विद्युत आवेश के मापन की इकाइयों के रूप में कार्य करती है। एक इकाई के रूप में प्राथमिक प्रभार के उपयोग को 1874 में [[जॉर्ज जॉनस्टोन स्टोनी]] द्वारा स्टोनी इकाई नामक प्राकृतिक इकाइयों की पहली प्रणाली के लिए बढ़ावा दिया गया था।<ref> | ||
{{cite journal | {{cite journal | ||
|author=G. J. Stoney | |author=G. J. Stoney | ||
Line 58: | Line 58: | ||
|series=5 |volume=38 |pages=418–420 | |series=5 |volume=38 |pages=418–420 | ||
|doi=10.1080/14786449408620653 | |doi=10.1080/14786449408620653 | ||
}}</ref> बाद | }}</ref> इसके बाद उन्होंने इस इकाई के लिए इलेक्ट्रॉन नाम प्रस्तावित किया। उस समय, जिस कण को अब हम इलेक्ट्रॉन कहते हैं, उसकी खोज अभी तक नहीं हुई थी और कण इलेक्ट्रॉन और आवेश इलेक्ट्रॉन की इकाई के मध्य का अंतर अभी भी धुंधला था। बाद में, कण को इलेक्ट्रॉन नाम दिया गया और आवेश ई की इकाई ने अपना नाम खो दिया। यद्यपि, ऊर्जा की इकाई [[ इलेक्ट्रॉन वोल्ट ]]इस तथ्य का अवशेष है कि प्राथमिक आवेश को कभी इलेक्ट्रॉन कहा जाता था। | ||
कुछ अन्य प्राकृतिक इकाई प्रणालियों में आवेश की इकाई को इस रूप में परिभाषित किया जाता है <math>\sqrt{\varepsilon_0\hbar c},</math> | कुछ अन्य प्राकृतिक इकाई प्रणालियों में आवेश की इकाई को इस रूप में परिभाषित किया जाता है <math>\sqrt{\varepsilon_0\hbar c},</math> | ||
Line 66: | Line 66: | ||
== परिमाणीकरण == | == परिमाणीकरण == | ||
{{See also|आंशिक प्रभार}} | {{See also|आंशिक प्रभार}} | ||
आवेश परिमाणीकरण यह सिद्धांत है कि किसी भी वस्तु का आवेश प्राथमिक आवेश का [[पूर्णांक]] गुणक होता है। इस प्रकार, किसी वस्तु का आवेश ठीक 0 e, या ठीक 1 e, -1 e, 2 e, आदि हो सकता है, परंतु | आवेश परिमाणीकरण यह सिद्धांत है कि किसी भी वस्तु का आवेश प्राथमिक आवेश का [[पूर्णांक]] गुणक होता है। इस प्रकार, किसी वस्तु का आवेश ठीक 0 e, या ठीक 1 e, -1 e, 2 e, आदि हो सकता है, परंतु {{sfrac|1|2}} e, नहीं या −3.8 e, आदि नही हो सकता है। तथा इस कथन के अपवाद हो सकते हैं, यह इस बात पर निर्भर करता है कि वस्तु को कैसे परिभाषित किया गया है, प्राथमिक आवेश शब्दावली का तात्पर्य यह है कि यह आवेश की एक अविभाज्य इकाई है। | ||
=== आंशिक प्राथमिक शुल्क === | === आंशिक प्राथमिक शुल्क === | ||
प्राथमिक आवेश की अविभाज्यता के दो प्रकार के अपवाद हैं: [[ quisiparticle |क्वार्क और क्वासिपार्टिकल्स]] । | प्राथमिक आवेश की अविभाज्यता के दो प्रकार के अपवाद हैं: [[ quisiparticle |क्वार्क और क्वासिपार्टिकल्स]] । | ||
*1960 के दशक में सर्वप्रथम प्रतिपादित क्वार्कों में परिमाणित आवेश होता है, परंतु {{nowrap|{{sfrac|1|3}} ''e''}}.आवेश को गुणकों में परिमाणित किया जाता है.यद्यपि, क्वार्क को अलग नहीं किया जा सकता है; वे मात्र समूहों में उपस्थित होते हैं, और क्वार्कों के स्थिर समूह (जैसे कि एक प्रोटॉन, जिसमें तीन क्वार्क होते हैं) सभी में ऐसे आवेश होते हैं जो ई के पूर्णांक गुणक होते हैं। इस कारण से या तो 1 e या {{nowrap|{{sfrac|1|3}} ''e''}} को संदर्भ के आधार पर क्वासिपार्टिकल्स उचित रूप से आवेश की [[मात्रा]] माना जा सकता है। यह आवेश अनुरूपता, आवेश क्वांटिज़ेशन,भागीदारी विकिरण थियोरियों के | *1960 के दशक में सर्वप्रथम प्रतिपादित क्वार्कों में परिमाणित आवेश होता है, परंतु {{nowrap|{{sfrac|1|3}} ''e''}}.आवेश को गुणकों में परिमाणित किया जाता है.यद्यपि, क्वार्क को अलग नहीं किया जा सकता है; वे मात्र समूहों में उपस्थित होते हैं, और क्वार्कों के स्थिर समूह (जैसे कि एक प्रोटॉन, जिसमें तीन क्वार्क होते हैं) सभी में ऐसे आवेश होते हैं जो ई के पूर्णांक गुणक होते हैं। इस कारण से या तो 1 e या {{nowrap|{{sfrac|1|3}} ''e''}} को संदर्भ के आधार पर क्वासिपार्टिकल्स उचित रूप से आवेश की [[मात्रा]] माना जा सकता है। यह आवेश अनुरूपता, आवेश क्वांटिज़ेशन,भागीदारी विकिरण थियोरियों को बनाने के लिए प्रोत्साहित करता है। क्वासिपार्टिकल्स ऐसे कण नहीं हैं, बल्कि एक जटिल सामग्री प्रणाली में एक उभरती हुई इकाई है जो एक कण की तरह व्यवहार करती है। यह सिद्धांत व्यापक रूप से स्वीकार किया जाता है, परंतु इसे आवेश परिमाणीकरण के सिद्धांत का उल्लंघन नहीं माना जाता है, क्योंकि क्वासिपार्टिकल्स [[प्राथमिक कण]] नहीं होते हैं। | ||
=== प्रभार की मात्रा === | === प्रभार की मात्रा === | ||
क्वार्क सहित सभी ज्ञात [[प्राथमिक कण|प्राथमिक कणों]] में ऐसे आवेश होते हैं जो 1/3 ''e'' पूर्णांक के गुणक होते हैं इसलिए, आवेश की मात्रा {{sfrac|1|3}} | क्वार्क सहित सभी ज्ञात [[प्राथमिक कण|प्राथमिक कणों]] में ऐसे आवेश होते हैं जो 1/3 ''e'' पूर्णांक के गुणक होते हैं इसलिए, आवेश की मात्रा {{sfrac|1|3}}''e'' है इस विषय में, कोई कहता है कि प्राथमिक आवेश आवेश की मात्रा से तीन गुना बड़ा है। | ||
दूसरी ओर, सभी पृथक करने योग्य कणों में ऐसे आवेश होते हैं जो | दूसरी ओर, सभी पृथक करने योग्य कणों में ऐसे आवेश होते हैं जो ''e'' के पूर्णांक गुणक होते हैं। क्वार्क को पृथक नहीं किया जा सकता है: वे केवल सामूहिक अवस्थाओं में उपस्थित होते हैं जैसे प्रोटॉन, जिनमें कुल आवेश ''e'' के पूर्णांक गुणक होते हैं। इसलिए, आवेश की मात्रा ''e'' है, ''इस नियमानुसार क्वार्कों को सम्मिलित नहीं किया जाना चाहिए। इस विषय में, "प्राथमिक आवेश " "आवेश क्वांटम" के समानार्थी होगा।'' | ||
वास्तव में, दोनों शब्दावली का उपयोग किया जाता है।<ref>''Q is for Quantum'', by John R. Gribbin, Mary Gribbin, Jonathan Gribbin, page 296, [https://books.google.com/books?id=zBsDkgI1uQsC&pg=RA1-PA296 Web link]</ref> इस कारण से, आवेश की मात्रा या आवेश की अविभाज्य इकाई जैसे वाक्यांश अस्पष्ट हो सकते हैं जब तक कि आगे विनिर्देश न दिया जाए। दूसरी ओर, प्राथमिक आवेश शब्द असंदिग्ध है: यह एक प्रोटॉन के बराबर आवेश की मात्रा को संदर्भित करता है। | वास्तव में, दोनों शब्दावली का उपयोग किया जाता है।<ref>''Q is for Quantum'', by John R. Gribbin, Mary Gribbin, Jonathan Gribbin, page 296, [https://books.google.com/books?id=zBsDkgI1uQsC&pg=RA1-PA296 Web link]</ref> इस कारण से, आवेश की मात्रा या आवेश की अविभाज्य इकाई जैसे वाक्यांश अस्पष्ट हो सकते हैं जब तक कि आगे विनिर्देश न दिया जाए। दूसरी ओर, प्राथमिक आवेश शब्द असंदिग्ध है: यह एक प्रोटॉन के बराबर आवेश की मात्रा को संदर्भित करता है। |
Revision as of 11:04, 30 April 2023
Elementary charge | |
---|---|
Definition: | charge of a proton |
Symbol: | e |
SI value: | 1.602176634×10−19 C[1] |
आवागमन आवेश, जिसे सामान्यतः e से दर्शाया जाता है, एकल प्रोटॉन द्वारा वहाँ ले जाया गया विद्युत आवेश है या समकक्ष रूप से एक इलेक्ट्रॉन द्वारा ले जाया गया नकारात्मक विद्युत आवेश का मान है, जो -1 e होता है।[2] यह प्राथमिक आवेश एक मूलभूत भौतिक स्थिरांक है।
SI प्रणाली के इकाइयो में, आवागमन आवेश का मान निश्चित रूप से e = 1.602176634×10−19 कुलांब या 160.2176634 ज़िप्तोकुलोम्ब (zC)निर्धारित है।[1] 2019 के SI मूल इकाइयों के पुनर्निर्धारण के उपरांत, सात मौलिक भौतिक स्थिरांकों में से एक, आवागमन आवेश है, जिसके आधार पर सात SI मौलिक इकाइयां परिभाषित की जाती हैं।अक्षरशः ग्राम-सेमी-सेकंड प्रणाली (सीजीएस) में, संबंधित मात्रा 4.8032047...×10−10 स्टैट-कुलाम्ब होती है। [3]1909 में रॉबर्ट ए. मिलिकन और हार्वे फ्लेचर द्वारा तेल की बूंदों के प्रयोग से प्राथमिक आवेश के मान की अमान्यता तथा स्पष्टीकरण किया गया था। मैक्स प्लांक ने 1901 में काले बॉडी स्पेक्ट्रम से प्राथमिक अवोगाद्रोक आवेश के मान का अस्पष्ट अनुमान (~ 3%) लगाया था और 1865 में जोहान लोश्मिट ने अवोगाद्रो संख्या का मापने के माध्यम से (फाराडे संख्या के माध्यम से) उस समय के विवादास्पद परमाणु सिद्धांत के अनुसार प्राथमिक आवेश का मान आदेश-अनुमानित मापदंड तक अंतर (~1%) लगाया था।
एक इकाई के रूप में
Elementary charge | |
---|---|
इकाई प्रणाली | Atomic units |
की इकाई | electric charge |
चिन्ह, प्रतीक | e |
Conversions | |
1 e in ... | ... is equal to ... |
coulombs | 1.602176634×10−19[4] |
(natural units) | 0.30282212088 |
(megaelectronvolt-femtometers) | |
statC | ≘ 4.80320425(10)×10−10 |
कुछ प्राकृतिक इकाई प्रणालियों, जैसे कि परमाणु इकाइयों की प्रणाली में,, ई विद्युत आवेश के मापन की इकाइयों के रूप में कार्य करती है। एक इकाई के रूप में प्राथमिक प्रभार के उपयोग को 1874 में जॉर्ज जॉनस्टोन स्टोनी द्वारा स्टोनी इकाई नामक प्राकृतिक इकाइयों की पहली प्रणाली के लिए बढ़ावा दिया गया था।[5] इसके बाद उन्होंने इस इकाई के लिए इलेक्ट्रॉन नाम प्रस्तावित किया। उस समय, जिस कण को अब हम इलेक्ट्रॉन कहते हैं, उसकी खोज अभी तक नहीं हुई थी और कण इलेक्ट्रॉन और आवेश इलेक्ट्रॉन की इकाई के मध्य का अंतर अभी भी धुंधला था। बाद में, कण को इलेक्ट्रॉन नाम दिया गया और आवेश ई की इकाई ने अपना नाम खो दिया। यद्यपि, ऊर्जा की इकाई इलेक्ट्रॉन वोल्ट इस तथ्य का अवशेष है कि प्राथमिक आवेश को कभी इलेक्ट्रॉन कहा जाता था।
कुछ अन्य प्राकृतिक इकाई प्रणालियों में आवेश की इकाई को इस रूप में परिभाषित किया जाता है
परिमाणीकरण
आवेश परिमाणीकरण यह सिद्धांत है कि किसी भी वस्तु का आवेश प्राथमिक आवेश का पूर्णांक गुणक होता है। इस प्रकार, किसी वस्तु का आवेश ठीक 0 e, या ठीक 1 e, -1 e, 2 e, आदि हो सकता है, परंतु 1/2 e, नहीं या −3.8 e, आदि नही हो सकता है। तथा इस कथन के अपवाद हो सकते हैं, यह इस बात पर निर्भर करता है कि वस्तु को कैसे परिभाषित किया गया है, प्राथमिक आवेश शब्दावली का तात्पर्य यह है कि यह आवेश की एक अविभाज्य इकाई है।
आंशिक प्राथमिक शुल्क
प्राथमिक आवेश की अविभाज्यता के दो प्रकार के अपवाद हैं: क्वार्क और क्वासिपार्टिकल्स ।
- 1960 के दशक में सर्वप्रथम प्रतिपादित क्वार्कों में परिमाणित आवेश होता है, परंतु 1/3 e.आवेश को गुणकों में परिमाणित किया जाता है.यद्यपि, क्वार्क को अलग नहीं किया जा सकता है; वे मात्र समूहों में उपस्थित होते हैं, और क्वार्कों के स्थिर समूह (जैसे कि एक प्रोटॉन, जिसमें तीन क्वार्क होते हैं) सभी में ऐसे आवेश होते हैं जो ई के पूर्णांक गुणक होते हैं। इस कारण से या तो 1 e या 1/3 e को संदर्भ के आधार पर क्वासिपार्टिकल्स उचित रूप से आवेश की मात्रा माना जा सकता है। यह आवेश अनुरूपता, आवेश क्वांटिज़ेशन,भागीदारी विकिरण थियोरियों को बनाने के लिए प्रोत्साहित करता है। क्वासिपार्टिकल्स ऐसे कण नहीं हैं, बल्कि एक जटिल सामग्री प्रणाली में एक उभरती हुई इकाई है जो एक कण की तरह व्यवहार करती है। यह सिद्धांत व्यापक रूप से स्वीकार किया जाता है, परंतु इसे आवेश परिमाणीकरण के सिद्धांत का उल्लंघन नहीं माना जाता है, क्योंकि क्वासिपार्टिकल्स प्राथमिक कण नहीं होते हैं।
प्रभार की मात्रा
क्वार्क सहित सभी ज्ञात प्राथमिक कणों में ऐसे आवेश होते हैं जो 1/3 e पूर्णांक के गुणक होते हैं इसलिए, आवेश की मात्रा 1/3e है इस विषय में, कोई कहता है कि प्राथमिक आवेश आवेश की मात्रा से तीन गुना बड़ा है।
दूसरी ओर, सभी पृथक करने योग्य कणों में ऐसे आवेश होते हैं जो e के पूर्णांक गुणक होते हैं। क्वार्क को पृथक नहीं किया जा सकता है: वे केवल सामूहिक अवस्थाओं में उपस्थित होते हैं जैसे प्रोटॉन, जिनमें कुल आवेश e के पूर्णांक गुणक होते हैं। इसलिए, आवेश की मात्रा e है, इस नियमानुसार क्वार्कों को सम्मिलित नहीं किया जाना चाहिए। इस विषय में, "प्राथमिक आवेश " "आवेश क्वांटम" के समानार्थी होगा।
वास्तव में, दोनों शब्दावली का उपयोग किया जाता है।[6] इस कारण से, आवेश की मात्रा या आवेश की अविभाज्य इकाई जैसे वाक्यांश अस्पष्ट हो सकते हैं जब तक कि आगे विनिर्देश न दिया जाए। दूसरी ओर, प्राथमिक आवेश शब्द असंदिग्ध है: यह एक प्रोटॉन के बराबर आवेश की मात्रा को संदर्भित करता है।
भिन्नात्मक आवेशों की कमी
पॉल डिराक ने 1931 में यह दावा किया था कि यदि चुंबकीय एकल ध्रुव उपस्थित होते हैं, तो विद्युत आवेश को आणुवंशित होना चाहिए; यद्यपि, यह अभी तक अज्ञात है कि क्या चुंबकीयएकल ध्रुव वास्तव में उपस्थित हैं।[7][8] यह वर्तमान में अज्ञात है कि पृथक करने योग्य कण पूर्णांक आवेशों तक ही सीमित क्यों हैं; स्ट्रिंग सिद्धांत परिदृश्य अधिकांश परिदृश्य भिन्नात्मक आवेशों को स्वीकार करता प्रतीत होता है।[9][10]
प्राथमिक आवेश का प्रायोगिक माप
पढ़ने से पहले, याद रखना चाहिए कि मौलिक आवेश के आवेश धनात्मकता को अंतरराष्ट्रीय मात्रक प्रणाली ने 20 मई 2019 से निश्चित रूप से परिभाषित किया गया है।
अवोगाद्रो स्थिरांक और फैराडे स्थिरांक के संदर्भ में -
यदि अवोगाद्रो स्थिरांक NA और फैराडे संख्या F स्वतंत्र रूप से ज्ञात हों, तो प्राथमिक आवेश की मान निम्नलिखित सूत्र का उपयोग करके निर्धारित किया जा सकता है।
यहाँ, e मौलिक आवेश का मान है, F फैराडे संख्या है और NA अवोगाद्रो संख्या है।
दूसरे शब्दों में, एक मोल इलेक्ट्रॉन के आवेश को इलेक्ट्रॉनों की संख्या से विभाजित करने से एक एकल इलेक्ट्रॉन के आवेश के बराबर होता है।
इसे इस प्रकार लिखा जा सकता है: एक मोल इलेक्ट्रॉनों के आवेश को मोल में इलेक्ट्रॉनों की संख्या से विभाजित करने से एक एकल इलेक्ट्रॉन के आवेश के बराबर होता है।
आज सबसे सटीक मानों का निर्धारण इस नियमों से नहीं किया जाता है। फिर भी, यह एक वैध और अभी भी अत्यधिक सटीक तरीका है,और प्रयोगशाला प्रणालियों को नीचे वर्णित किया गया है।
अवोगाद्रो स्थिरांक NA का मान पहली बार जोहान जोसेफ लॉस्च्मिड्ट द्वारा ने मुख्यतः हवा में मोलेक्यूलों के औसत व्यास का अनुमान लगाकर प्राप्त किया था। उन्होंने 1865 में एक ऐसी विधि द्वारा मोल एक दिए गए वायु के निश्चित आयतन में कणों की संख्या की गणना के समकक्ष किया था।[11] आज के समय में NA का मान बहुत उच्च सटीकता से मापा जा सकता है, एक अत्यंत शुद्ध क्रिस्टल (अक्सर सिलिकॉन) लेकर, एक्स-रे विकर्ण या किसी अन्य विधि का उपयोग करके अणुओं की दूरी का मापना और क्रिस्टल का घनत्व सटीकता से मापा जा सकता है।इस जानकारी से, एक एणु का भार (m) निर्धारित किया जा सकता है; और जैसे ही मोलर भार (M) ज्ञात होता है, मोल में अणुओं की संख्या की गणना की जा सकती है: NA = M/m
फाराडे का संचार के नियमों का उपयोग करके, F का मान सीधे मापा जा सकता है। फाराडे के संचार के नियम फाराडे द्वारा 1834 में प्रकाशित वैद्युत रसायन शोधों पर आधारित मात्रात्मक संबंध हैं।[12] एक इलेक्ट्रोलिसिस प्रयोग में, धनाग्र से ऋणाग्र तार के माध्यम से गुजरते इलेक्ट्रॉन और धनाग्र या ऋणाग्र पर चढ़ते या उतरते आयनों के मध्य एक-सेअधिक संबंध होता है। धनाग्र या ऋणाग्र के भार का मापना, तार से गुजरे कुल आवेश को मापना, और आयनों के मोलार भार को भी ध्यान में रखते हुए, F का मान निर्धारित किया जा सकता है।।[13] विधि की परिशुद्धता की सीमा F का मापन है: सर्वोत्तम प्रायोगिक मूल्य में 1.6 ppm की सापेक्ष अनिश्चितता होती है, जो प्रारंभिक आवेश को मापने या गणना करने के अन्य आधुनिक नियमों के सापेक्ष में लगभग तीस गुना अधिक है।[13][14]
तेल-बूंद प्रयोग
ई को मापने की एक प्रसिद्ध विधि मिलिकन का तेल-बूंद प्रयोग है। एक विद्युत क्षेत्र में तेल की एक छोटी बूंद एक ऐसी गति से चलती है जो गुरुत्वाकर्षण बल, द्रवता (हवा के माध्यम से यात्रा करने की) और विद्युत बल को संतुलित करती है। गुरुत्वाकर्षण और द्रवता के कारण बलों की गणना तेल की बूंद के आकार और वेग के आधार पर की जा सकती है, इसलिए विद्युत बल को घटाया जा सकता है। चूंकि विद्युत बल, बदले में, विद्युत आवेश और ज्ञात विद्युत क्षेत्र का गुणनफल होता है, इसलिए तेल की बूंद के विद्युत आवेश की सटीक गणना की जा सकती है। कई अलग-अलग तेल की बूंदों के आवेशों को मापकर, यह देखा जा सकता है कि इन सभी आवेश के मध्य एक समान छोटा आवेश अर्थात e का गुणक होता हैं,
एक समान आकार के छोटे प्लास्टिक के गोले का उपयोग करके तेल की बूंदों के आकार को मापने की आवश्यकता को समाप्त किया जा सकता है। द्रवता के कारण बल को विद्युत क्षेत्र की ताकत को समायोजित करके समाप्त किया जा सकता है ताकि गोला गतिहीन हो जाए।
शॉट कोलाहल
किसी भी विद्युत धारा के साथ ध्वनि कई स्रोतों से जुड़ी होती है, जिसमें से एक है शॉट ध्वनि। शॉट ध्वनि उपस्थित है क्योंकि एक धारा एक सहज निरंतर प्रवाह नहीं है; इसके अतिरिक्त , एक धारा असतत इलेक्ट्रॉनों से बना होता है जो एक समय में एक के बाद एक गुजरते हैं।धारा के ध्वनि का सावधानीपूर्वक विश्लेषण करके, इलेक्ट्रॉन के आवेश की गणना की जा सकती है। वाल्टर एच. शोट्की द्वारा पहली बार प्रस्तावित यह विधि, ई का मान निर्धारित कर सकती है जिसकी सटीकता कुछ प्रतिशत तक सीमित है।[15] यद्यपि, इसका उपयोग आंशिक क्वांटम हॉल प्रभाव में फंसे लाफलिन क्वासिपार्टिकल्स के पहले प्रत्यक्ष अवलोकन में किया गया था।
जोसेफसन और वॉन क्लिट्ज़िंग स्थिरांक से
प्रारंभिक आवेश को मापने के लिए एक अन्य सटीक विधि क्वांटम यांत्रिकी में दो प्रभावों के मापन से इसका अनुमान लगाना है: जोसेफसन प्रभाव, वोल्टेज दोलन जो कुछ अतिचालक संरचनाओं में उत्पन्न होते हैं; और क्वांटम हॉल प्रभाव, कम तापमान पर इलेक्ट्रॉनों का क्वांटम प्रभाव, मजबूत चुंबकीय क्षेत्र और दो आयामों में बंधन। जोसेफसन स्थिरांक है
जहाँ h प्लैंक स्थिरांक है। इसे सीधे जोसेफसन प्रभाव का उपयोग करके मापा जा सकता है।
वॉन क्लिट्ज़िंग स्थिरांक है
क्वांटम हॉल प्रभाव का उपयोग करके इसे सीधे मापा जा सकता है।
इन दो स्थिरांकों से, प्राथमिक आवेश का अनुमान लगाया जा सकता है:
कोडाटा विधि
प्राथमिक शुल्क निर्धारित करने के लिए कोडाटा द्वारा प्रयुक्त संबंध था:
जहाँ h प्लैंक स्थिरांक है, α ठीक-संरचना स्थिरांक है, μ0 चुंबकीय स्थिरांक है, ε0 विद्युत स्थिरांक है, और c प्रकाश की गति है।वर्तमान में यह समीकरण ε0 और α के बीच संबंध को दर्शाता है, जबकि अन्य सभी स्थिर मान हैं। इस प्रकार दोनों की सापेक्ष मानक अनिश्चितताएँ समान होंगी।
प्रारंभिक प्रभार की सार्वभौमिकता के परीक्षण
कण | अपेक्षित शुल्क | प्रायोगिक बाधा | टिप्पणियाँ |
---|---|---|---|
इलेक्ट्रॉन | यथावत | परिभाषा से | |
प्रोटॉन | एक गोलाकार रेसोनेटर में SF6 गैस पर एक एल्टरनेटिंग इलेक्ट्रिकक्षेत्र लागू करने पर कोई मापनीय ध्वनि नहीं मिलने से, सिद्ध किया जा सकता है कि इलेक्ट्रॉन के आवेश एक निश्चित मान होता है। | ||
पोजीट्रान | एंटीप्रोटोन चार्ज की सबसे अच्छी मापी गई मूल्य को अल्फा सहयोग द्वारासर्न में एंटीहाइड्रोजन के नेट आवेश पर रखी गई कम सीमा के साथ मिलाकर इस परिमाण को मापा जाता है | ||
एंटीप्रोटोन | जब एंटीप्रोटोन के आवेश को मापने के लिए प्रोटोन केआवेश का प्रयोग किया जाता है, तो यह सिद्ध किया गया है कि इन दोनों आवेश में कोई अंतर नहीं होता है। इसे सिद्ध होने के लिए होरी एट एल. का नाम पार्टिकल डेटा ग्रुप द्वारा दी गई जानकारी में दर्शाया गया है। पार्टिकल डेटा ग्रुप के विकिपीडिया लेख में इसके ऑनलाइन संस्करण के लिए लिंक भी दिया गया है। |
यह भी देखें
- अंतर्राष्ट्रीय विज्ञान परिषद की डेटा संबंधी समिति
संदर्भ
- ↑ 1.0 1.1 Newell, David B.; Tiesinga, Eite (2019). The International System of Units (SI). NIST Special Publication 330. Gaithersburg, Maryland: National Institute of Standards and Technology. doi:10.6028/nist.sp.330-2019. S2CID 242934226.
- ↑ The symbol e has many other meanings. Somewhat confusingly, in atomic physics, e sometimes denotes the electron charge, i.e. the negative of the elementary charge. In the US, the base of the natural logarithm is often denoted e (italicized), while it is usually denoted e (roman type) in the UK and Continental Europe.
- ↑ This is derived from the CODATA 2018 value, since one coulomb corresponds to exactly 2997924580 statcoulombs. The conversion factor is ten times the numerical value of speed of light in metres per second.
- ↑ "2018 CODATA Value: elementary charge". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ G. J. Stoney (1894). "Of the "Electron," or Atom of Electricity". Philosophical Magazine. 5. 38: 418–420. doi:10.1080/14786449408620653.
- ↑ Q is for Quantum, by John R. Gribbin, Mary Gribbin, Jonathan Gribbin, page 296, Web link
- ↑ Preskill, J. (1984). "चुंबकीय एकाधिकार". Annual Review of Nuclear and Particle Science. 34 (1): 461–530. Bibcode:1984ARNPS..34..461P. doi:10.1146/annurev.ns.34.120184.002333.
- ↑ "मैग्नेट के भौतिकी के बारे में तीन आश्चर्यजनक तथ्य". Space.com (in English). 2018. Retrieved 17 July 2019.
- ↑ Schellekens, A. N. (2 October 2013). "पार्टिकल फिजिक्स और स्ट्रिंग थ्योरी के इंटरफेस पर जीवन". Reviews of Modern Physics. 85 (4): 1491–1540. arXiv:1306.5083. Bibcode:2013RvMP...85.1491S. doi:10.1103/RevModPhys.85.1491. S2CID 118418446.
- ↑ Perl, Martin L.; Lee, Eric R.; Loomba, Dinesh (November 2009). "आंशिक रूप से आवेशित कणों की खोज करता है". Annual Review of Nuclear and Particle Science. 59 (1): 47–65. Bibcode:2009ARNPS..59...47P. doi:10.1146/annurev-nucl-121908-122035.
- ↑ Loschmidt, J. (1865). "Zur Grösse der Luftmoleküle". Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien. 52 (2): 395–413. English translation Archived February 7, 2006, at the Wayback Machine.
- ↑ Ehl, Rosemary Gene; Ihde, Aaron (1954). "फैराडे के विद्युत रासायनिक नियम और समतुल्य भार का निर्धारण". Journal of Chemical Education. 31 (May): 226–232. Bibcode:1954JChEd..31..226E. doi:10.1021/ed031p226.
- ↑ 13.0 13.1 Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2008). "CODATA Recommended Values of the Fundamental Physical Constants: 2006" (PDF). Reviews of Modern Physics. 80 (2): 633–730. arXiv:0801.0028. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633. Archived from the original (PDF) on 2017-10-01. Direct link to value.
- ↑ Mohr, Peter J.; Taylor, Barry N. (1999). "CODATA recommended values of the fundamental physical constants: 1998" (PDF). Journal of Physical and Chemical Reference Data. 28 (6): 1713–1852. Bibcode:1999JPCRD..28.1713M. doi:10.1063/1.556049. Archived from the original (PDF) on 2017-10-01.
- ↑ Beenakker, Carlo; Schönenberger, Christian (2006). "क्वांटम शॉट शोर". Physics Today. 56 (5): 37–42. arXiv:cond-mat/0605025. doi:10.1063/1.1583532. S2CID 119339791.
अग्रिम पठन
- Fundamentals of Physics, 7th Ed., Halliday, Robert Resnick, and Jearl Walker. Wiley, 2005