एक तरफा सीमा: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 6: | Line 6: | ||
<math display=block>\lim_{x \to a^-}f(x) \quad \text{ or } \quad \lim_{x\,\uparrow\,a}\, f(x) \quad \text{ or } \quad \lim_{x \nearrow a}\,f(x) \quad \text{ or } \quad f(x-)</math> | <math display=block>\lim_{x \to a^-}f(x) \quad \text{ or } \quad \lim_{x\,\uparrow\,a}\, f(x) \quad \text{ or } \quad \lim_{x \nearrow a}\,f(x) \quad \text{ or } \quad f(x-)</math> | ||
अगर की सीमा <math>f(x)</math> | अगर की सीमा <math>f(x)</math> के रूप में जैसा <math>x</math> दृष्टिकोण <math>a</math> अस्तित्व में है तो बाएँ और दाएँ दोनों की सीमाएँ उपस्थित हैं और समान हैं। कुछ स्थितियों में जिनमें सीमा | ||
<math display=block>\lim_{x \to a} f(x)</math> | <math display=block>\lim_{x \to a} f(x)</math> | ||
उपस्थित नहीं है, फिर भी दो एकतरफा सीमाएँ उपस्थित हैं। परिणामस्वरूप, के रूप में सीमा <math>x</math> दृष्टिकोण <math>a</math> कभी-कभी दो तरफा सीमा कहा जाता है। | उपस्थित नहीं है, फिर भी दो एकतरफा सीमाएँ उपस्थित हैं। परिणामस्वरूप, के रूप में सीमा <math>x</math> दृष्टिकोण <math>a</math> कभी-कभी दो तरफा सीमा कहा जाता है। | ||
Line 21: | Line 21: | ||
हम एक ही चीज़ को अधिक प्रतीकात्मक रूप से इस प्रकार प्रस्तुत कर सकते हैं। | हम एक ही चीज़ को अधिक प्रतीकात्मक रूप से इस प्रकार प्रस्तुत कर सकते हैं। | ||
होने देना <math>I</math> | होने देना <math>I</math> अंतराल का प्रतिनिधित्व करते हैं, जहां <math>I \subseteq \mathrm{domain}(f)</math>, और <math>a \in I </math>. | ||
:<math display=block> | :<math display=block> | ||
Line 67: | Line 67: | ||
एकतरफा सीमा को परिभाषित करने के लिए, हमें इस असमानता को संशोधित करना होगा। ध्यान दें कि के बीच पूर्ण दूरी <math>x</math> और <math>a</math> है। <math display=block>|x - a| = |(-1)(-x + a)| = |(-1)(a - x)| = |(-1)||a - x| = |a - x|</math>. | एकतरफा सीमा को परिभाषित करने के लिए, हमें इस असमानता को संशोधित करना होगा। ध्यान दें कि के बीच पूर्ण दूरी <math>x</math> और <math>a</math> है। <math display=block>|x - a| = |(-1)(-x + a)| = |(-1)(a - x)| = |(-1)||a - x| = |a - x|</math>. | ||
दाईं ओर से सीमा के लिए, हम चाहते हैं <math>x</math> के दाईं ओर होना <math>a</math>, जिसका अर्थ है कि <math>a < x</math>, इसलिए | दाईं ओर से सीमा के लिए, हम चाहते हैं <math>x</math> के दाईं ओर होना <math>a</math>, जिसका अर्थ है कि <math>a < x</math>, इसलिए <math>x - a</math> सकारात्मक है। उपर से, <math>x - a</math> के बीच की दूरी है <math>x</math> और <math>a</math>. हम इस दूरी को अपने मूल्य से बांधना चाहते हैं <math>\delta</math>, असमानता दे रहा है <math>x - a < \delta</math>. असमानताओं को एक साथ रखना <math>0 < x - a</math> और <math>x - a < \delta</math> और असमानताओं के [[सकर्मक संबंध]] गुण का उपयोग करके, हमारे पास यौगिक असमानता<math>0 < x - a < \delta </math> है । | ||
इसी प्रकार, बाएँ से सीमा के लिए, हम चाहते हैं <math>x</math> के बाईं ओर होना <math>a</math>, जिसका अर्थ है कि <math>x < a</math>. इस स्थितियों में, यह है <math>a - x</math> यह सकारात्मक है और बीच की दूरी का प्रतिनिधित्व करता है | इसी प्रकार, बाएँ से सीमा के लिए, हम चाहते हैं <math>x</math> के बाईं ओर होना <math>a</math>, जिसका अर्थ है कि <math>x < a</math>. इस स्थितियों में, यह है <math>a - x</math> यह सकारात्मक है और बीच की दूरी का प्रतिनिधित्व करता है <math>x</math> और <math>a</math>. दोबारा, हम इस दूरी को हमारे मूल्य से बांधना चाहते हैं <math>\delta</math>, यौगिक असमानता के लिए अग्रणी <math>0 < a - x < \delta </math> है। | ||
अब, जब हमारे मूल्य <math>x</math> अपने वांछित अंतराल में है, हम उम्मीद करते हैं कि का मूल्य <math>f(x)</math> अपने वांछित अंतराल के अन्दर भी है। बीच की दूरी <math>f(x)</math> और <math>L</math>, बाईं ओर की सीमा का सीमित मान है <math>|f(x) - L|</math>. इसी प्रकार, के बीच की दूरी <math>f(x)</math> और <math>R</math>, दाईं ओर की सीमा का सीमित मान है <math>|f(x) - R|</math>. दोनों ही स्थितियों में, हम इस दूरी को सीमित करना चाहते हैं <math>\varepsilon</math>, तो हमें निम्नलिखित मिलता है <math>|f(x) - L| < \varepsilon</math> बाईं ओर की सीमा के लिए, और <math>|f(x) - R| < \varepsilon</math> दाईं ओर की सीमा के लिए होता है। | अब, जब हमारे मूल्य <math>x</math> अपने वांछित अंतराल में है, हम उम्मीद करते हैं कि का मूल्य <math>f(x)</math> अपने वांछित अंतराल के अन्दर भी है। बीच की दूरी <math>f(x)</math> और <math>L</math>, बाईं ओर की सीमा का सीमित मान है <math>|f(x) - L|</math>. इसी प्रकार, के बीच की दूरी <math>f(x)</math> और <math>R</math>, दाईं ओर की सीमा का सीमित मान है <math>|f(x) - R|</math>. दोनों ही स्थितियों में, हम इस दूरी को सीमित करना चाहते हैं <math>\varepsilon</math>, तो हमें निम्नलिखित मिलता है <math>|f(x) - L| < \varepsilon</math> बाईं ओर की सीमा के लिए, और <math>|f(x) - R| < \varepsilon</math> दाईं ओर की सीमा के लिए होता है। | ||
Line 129: | Line 129: | ||
श्रेणी:कार्य और मानचित्रण | श्रेणी:कार्य और मानचित्रण | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 maint]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 26/04/2023]] | [[Category:Created On 26/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] |
Latest revision as of 08:49, 8 May 2023
कलन में, एक तरफा सीमा किसी फलन (गणित) के फलन की दो सीमाओं में से किसी एक को संदर्भित करती है। एक वास्तविक संख्या चर का जैसा किसी निर्दिष्ट बिंदु तक या तो बाएँ से या दाएँ से पहुँचता है।[1][2]
सीमा के रूप में मूल्य में कमी आ रही है ( दृष्टिकोण दाईं ओर से[3] या ऊपर से ) निरूपित किया जा सकता है:[1][2]
दो एकतरफा सीमाओं में से एक का अस्तित्व में होना संभव है (जबकि दूसरी का अस्तित्व नहीं है)। यह भी संभव है कि दो एकतरफा सीमाओं में से किसी का भी अस्तित्व न हो।
औपचारिक परिभाषा
परिभाषा
अगर कुछ अंतराल (गणित) का प्रतिनिधित्व करता है जो किसी फलन के डोमेन में निहित है और अगर में बिंदु है फिर दाईं ओर की सीमा के रूप में दृष्टिकोण मूल्य के रूप में कड़ाई से परिभाषित किया जा सकता है जो संतुष्ट करता है।[6]
होने देना अंतराल का प्रतिनिधित्व करते हैं, जहां , और .
अंतर्ज्ञान
बिंदु पर फलन की सीमा के लिए औपचारिक परिभाषा की तुलना में, एक तरफा सीमा (जैसा कि नाम से पता चलता है) केवल इनपुट मूल्यों से संपर्क किए गए इनपुट मूल्य के एक तरफ से संबंधित है।
संदर्भ के लिए, किसी बिंदु पर फलन की सीमा के लिए औपचारिक परिभाषा इस प्रकार है:
एकतरफा सीमा को परिभाषित करने के लिए, हमें इस असमानता को संशोधित करना होगा। ध्यान दें कि के बीच पूर्ण दूरी और है।
दाईं ओर से सीमा के लिए, हम चाहते हैं के दाईं ओर होना , जिसका अर्थ है कि , इसलिए सकारात्मक है। उपर से, के बीच की दूरी है और . हम इस दूरी को अपने मूल्य से बांधना चाहते हैं , असमानता दे रहा है . असमानताओं को एक साथ रखना और और असमानताओं के सकर्मक संबंध गुण का उपयोग करके, हमारे पास यौगिक असमानता है ।
इसी प्रकार, बाएँ से सीमा के लिए, हम चाहते हैं के बाईं ओर होना , जिसका अर्थ है कि . इस स्थितियों में, यह है यह सकारात्मक है और बीच की दूरी का प्रतिनिधित्व करता है और . दोबारा, हम इस दूरी को हमारे मूल्य से बांधना चाहते हैं , यौगिक असमानता के लिए अग्रणी है।
अब, जब हमारे मूल्य अपने वांछित अंतराल में है, हम उम्मीद करते हैं कि का मूल्य अपने वांछित अंतराल के अन्दर भी है। बीच की दूरी और , बाईं ओर की सीमा का सीमित मान है . इसी प्रकार, के बीच की दूरी और , दाईं ओर की सीमा का सीमित मान है . दोनों ही स्थितियों में, हम इस दूरी को सीमित करना चाहते हैं , तो हमें निम्नलिखित मिलता है बाईं ओर की सीमा के लिए, और दाईं ओर की सीमा के लिए होता है।
उदाहरण
उदाहरण 1:
बाएँ से और दाएँ से सीमाएँ जैसा दृष्टिकोण हैं।
इसी प्रकार, के सभी मूल्यों के बाद से संतुष्ट करना (अलग विधि से कहा, हमेशा सकारात्मक होता है) जैसा दृष्टिकोण दाईं ओर से, जिसका तात्पर्य है हमेशा नकारात्मक होता है जिससे की ओर मुड़ता है।
उदाहरण 2:
भिन्न एक तरफा सीमा वाले फलन का उदाहरण है (cf. चित्र) जहां बाएँ से सीमा है और दाएँ से सीमा है। इन सीमाओं की गणना करने के लिए, पहले उसे दिखाएँ
जिससे फलस्वरूप,
क्योंकि भाजक अनंत की ओर जाता है; वह है क्योंकि तब से सीमा उपस्थित नहीं होना।
सीमा की स्थलाकृतिक परिभाषा से संबंध
बिंदु की एकतरफा सीमा फलन की सीमा से मेल खाता है टोपोलॉजिकल स्पेस पर फलन, फलन के डोमेन को एक तरफ प्रतिबंधित किया गया है, या तो यह अनुमति देकर कि फलन डोमेन संस्थानिक स्पेस का उप-समुच्चय है, या एक तरफा सबस्पेस पर विचार करके, सहित [1] वैकल्पिक रूप से, कोई डोमेन को आधे-खुले अंतराल टोपोलॉजी के साथ मान सकता है।
एबेल का प्रमेय
अभिसरण के त्रिज्या की सीमाओं पर कुछ शक्ति श्रृंखला की एक तरफा सीमाओं का व्यवहार करने वाला उल्लेखनीय प्रमेय हाबिल का प्रमेय है।
टिप्पणियाँ
- ↑ A limit that is equal to is said to diverge to rather than converge to The same is true when a limit is equal to
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 "एकतरफा सीमा - गणित का विश्वकोश". encyclopediaofmath.org. Retrieved 7 August 2021.
{{cite web}}
: CS1 maint: url-status (link) - ↑ 2.0 2.1 2.2 Fridy, J. A. (24 January 2020). Introductory Analysis: The Theory of Calculus (in English). Gulf Professional Publishing. p. 48. ISBN 978-0-12-267655-0. Retrieved 7 August 2021.
- ↑ Hasan, Osman; Khayam, Syed (2014-01-02). "Towards Formal Linear Cryptanalysis using HOL4" (PDF). Journal of Universal Computer Science (in English). 20 (2): 209. doi:10.3217/jucs-020-02-0193. ISSN 0948-6968.
- ↑ Gasic, Andrei G. (2020-12-12). जीवित पदार्थ में प्रोटीन की चरण घटना (Thesis thesis) (in English).
- ↑ Brokate, Martin; Manchanda, Pammy; Siddiqi, Abul Hasan (2019), "Limit and Continuity", Calculus for Scientists and Engineers (in English), Singapore: Springer Singapore, pp. 39–53, doi:10.1007/978-981-13-8464-6_2, ISBN 978-981-13-8463-9, S2CID 201484118, retrieved 2022-01-11
- ↑ Giv, Hossein Hosseini (28 September 2016). गणितीय विश्लेषण और इसकी अंतर्निहित प्रकृति (in English). American Mathematical Soc. p. 130. ISBN 978-1-4704-2807-5. Retrieved 7 August 2021.
यह भी देखें
- अनुमानित रूप से विस्तारित वास्तविक रेखा
- अर्ध-भिन्नता
- श्रेष्ठ को सीमित करो और हीन को सीमित करो
श्रेणी:वास्तविक विश्लेषण
श्रेणी:सीमाएं (गणित)
श्रेणी:कार्य और मानचित्रण