रेसट्रैक मेमोरी: Difference between revisions

From Vigyanwiki
(Created page with "{{Update|date=December 2021}}{{Memory types}} {{short description|Novel computer memory type}} रेसट्रैक मेमोरी या डोमेन-वॉल म...")
 
Line 11: Line 11:
<!--{{cleanup|section|date=September 2016|reason=Descriptions of Flash and memory cost make the section verbose}}-->
<!--{{cleanup|section|date=September 2016|reason=Descriptions of Flash and memory cost make the section verbose}}-->
2008 में अनुमानों ने सुझाव दिया कि रेसट्रैक मेमोरी यादृच्छिक बिट को पढ़ने या लिखने के लिए 20-32 ns के क्रम में प्रदर्शन की पेशकश करेगी। यह [[हार्ड डिस्क ड्राइव]] के लिए लगभग 10,000,000 एनएस या पारंपरिक डीआरएएम के लिए 20-30 एनएस की तुलना में है। प्राथमिक लेखकों ने लगभग 9.5 एनएस के जलाशय के उपयोग के साथ पहुंच समय को बेहतर बनाने के तरीकों पर चर्चा की। जलाशय के साथ या उसके बिना सकल प्रवाह क्षमता, रेसट्रैक मेमोरी के लिए 250-670 Mbit/s के क्रम में होगी, जबकि एकल DDR3 [[DRAM]] के लिए 12800 Mbit/s, उच्च-प्रदर्शन हार्ड ड्राइव के लिए 1000 Mbit/s, और 1000 Mbit/s की तुलना में फ्लैश मेमोरी उपकरणों के लिए 4000 Mbit/s। रेसट्रैक मेमोरी पर एक स्पष्ट विलंबता लाभ की पेशकश करने वाली एकमात्र मौजूदा तकनीक 0.2 एनएस के क्रम में, लेकिन उच्च लागत पर [[स्टेटिक रैंडम एक्सेस मेमोरी]] थी। लगभग 140 F के सेल क्षेत्र के साथ लगभग 45 एनएम (2011 तक) का बड़ा फीचर आकार F<sup>2</उप>।<ref>{{cite news |title=ITRS 2011 |url=http://www.itrs.net/Links/2011ITRS/2011Tables/ERD_2011Tables.xlsx |access-date=8 November 2012 }}</ref><ref name=parsci>{{cite journal |author=Parkin |title=मैग्नेटिक डोमेन-वॉल रेसट्रैक मेमोरी|journal=Science |volume=320|issue=5873 |pages=190–4 |date=11 April 2008 |doi=10.1126/science.1145799 |pmid=18403702 |display-authors=etal|bibcode=2008Sci...320..190P |s2cid=19285283 }}</ref>
2008 में अनुमानों ने सुझाव दिया कि रेसट्रैक मेमोरी यादृच्छिक बिट को पढ़ने या लिखने के लिए 20-32 ns के क्रम में प्रदर्शन की पेशकश करेगी। यह [[हार्ड डिस्क ड्राइव]] के लिए लगभग 10,000,000 एनएस या पारंपरिक डीआरएएम के लिए 20-30 एनएस की तुलना में है। प्राथमिक लेखकों ने लगभग 9.5 एनएस के जलाशय के उपयोग के साथ पहुंच समय को बेहतर बनाने के तरीकों पर चर्चा की। जलाशय के साथ या उसके बिना सकल प्रवाह क्षमता, रेसट्रैक मेमोरी के लिए 250-670 Mbit/s के क्रम में होगी, जबकि एकल DDR3 [[DRAM]] के लिए 12800 Mbit/s, उच्च-प्रदर्शन हार्ड ड्राइव के लिए 1000 Mbit/s, और 1000 Mbit/s की तुलना में फ्लैश मेमोरी उपकरणों के लिए 4000 Mbit/s। रेसट्रैक मेमोरी पर एक स्पष्ट विलंबता लाभ की पेशकश करने वाली एकमात्र मौजूदा तकनीक 0.2 एनएस के क्रम में, लेकिन उच्च लागत पर [[स्टेटिक रैंडम एक्सेस मेमोरी]] थी। लगभग 140 F के सेल क्षेत्र के साथ लगभग 45 एनएम (2011 तक) का बड़ा फीचर आकार F<sup>2</उप>।<ref>{{cite news |title=ITRS 2011 |url=http://www.itrs.net/Links/2011ITRS/2011Tables/ERD_2011Tables.xlsx |access-date=8 November 2012 }}</ref><ref name=parsci>{{cite journal |author=Parkin |title=मैग्नेटिक डोमेन-वॉल रेसट्रैक मेमोरी|journal=Science |volume=320|issue=5873 |pages=190–4 |date=11 April 2008 |doi=10.1126/science.1145799 |pmid=18403702 |display-authors=etal|bibcode=2008Sci...320..190P |s2cid=19285283 }}</ref>
<!--Flash memory is asymmetrical. Read performance is faster than writing. Flash memory works by "trapping" [[electron]]s in the chip surface. It requires a burst of high voltage to remove this charge and reset the cell. In order to do this, charge is accumulated in a [[charge pump]], which takes time. In the case of [[NOR flash]] memory, which allows bit-wise random access like racetrack memory, read times were on the order of 70&nbsp;ns, while write times were much slower, about 2,500&nbsp;ns. To address this concern, [[NAND flash]] memory allows reading and writing only in blocks, but this means that the time to access any random ''bit'' is increased to about 1,000&nbsp;ns. In addition, the use of the burst of high voltage physically degrades the cell, so most flash devices allow on the order of 100,000 writes to any particular bit before their operation becomes unpredictable. [[Wear leveling]] and other techniques can spread this out if the underlying data can be re-arranged.-->
<!--फ्लैश मेमोरी विषम है। पढ़ने का प्रदर्शन लिखने से तेज है। फ्लैश मेमोरी चिप की सतह में [[इलेक्ट्रॉन]] को "फंसाने" द्वारा काम करती है। इस चार्ज को हटाने और सेल को रीसेट करने के लिए उच्च वोल्टेज के फटने की आवश्यकता होती है। ऐसा करने के लिए एक [[चार्ज पंप]] में चार्ज जमा होता है, जिसमें समय लगता है। [[NOR फ्लैश]] मेमोरी के मामले में, जो रेसट्रैक मेमोरी की तरह बिट-वार रैंडम एक्सेस की अनुमति देता है, पढ़ने का समय 70&nbsp;ns के क्रम में था, जबकि लिखने का समय बहुत धीमा था, लगभग 2,500&nbsp;ns। इस चिंता को दूर करने के लिए, [[नंद फ्लैश]] स्मृति केवल ब्लॉकों में पढ़ने और लिखने की अनुमति देती है, लेकिन इसका मतलब यह है कि किसी भी यादृच्छिक ''बिट'' तक पहुंचने का समय लगभग 1,000&nbsp;एनएस तक बढ़ा दिया गया है। इसके अलावा, उच्च वोल्टेज के फटने का उपयोग शारीरिक रूप से सेल को नीचा दिखाता है, इसलिए अधिकांश फ्लैश डिवाइस 100,000 के क्रम में किसी विशेष बिट को लिखने की अनुमति देते हैं, इससे पहले कि उनका ऑपरेशन अप्रत्याशित हो जाए। [[वियर लेवलिंग]] और अन्य तकनीकें इसे फैला सकती हैं यदि अंतर्निहित डेटा को फिर से व्यवस्थित किया जा सकता है।-->
<!--The key determinant of the cost of any memory device is the physical size of the storage medium. This is due to the way memory devices are fabricated. In the case of solid-state devices like flash memory or DRAM, a large "wafer" of silicon is processed into many individual devices, which are then cut apart and packaged. The cost of packaging is about $1 per device, so, as the density increases and the number of bits per devices increases with it, the ''cost per bit'' falls by an equal amount. In hard drives, data is stored on rotating platters, and the cost of the drive is strongly related to the number of platters. Increasing the density allows the number of platters to be reduced for any given amount of storage. -->
<!--किसी भी मेमोरी डिवाइस की लागत का प्रमुख निर्धारक भंडारण माध्यम का भौतिक आकार है। यह स्मृति उपकरणों के निर्माण के तरीके के कारण है। फ्लैश मेमोरी या डीआरएएम जैसे ठोस-राज्य उपकरणों के मामले में, सिलिकॉन का एक बड़ा "वेफर" कई अलग-अलग उपकरणों में संसाधित होता है, जो तब अलग हो जाते हैं और पैक किए जाते हैं। पैकेजिंग की लागत लगभग $1 प्रति उपकरण है, इसलिए जैसे-जैसे घनत्व बढ़ता है और इसके साथ प्रति उपकरण बिट्स की संख्या बढ़ती है, ''लागत प्रति बिट'' समान मात्रा में गिरती है। हार्ड ड्राइव में, डेटा को रोटेटिंग प्लैटर्स पर स्टोर किया जाता है, और ड्राइव की लागत प्लैटर्स की संख्या से दृढ़ता से संबंधित होती है। घनत्व बढ़ाने से किसी भी मात्रा में भंडारण के लिए प्लैटर की संख्या कम हो जाती है। -->
रेसट्रैक मेमोरी कई उभरती प्रौद्योगिकियों में से एक है, जिसका उद्देश्य डीआरएएम और फ्लैश जैसी पारंपरिक यादों को बदलना है, और संभावित रूप से विभिन्न प्रकार की भूमिकाओं के लिए एक सार्वभौमिक मेमोरी डिवाइस की पेशकश करता है। अन्य दावेदारों में [[मैग्नेटोरेसिस्टिव रैंडम-एक्सेस मेमोरी]] ([[MRAM]]), [[चरण-परिवर्तन स्मृति]] (PRAM) और [[फेरोइलेक्ट्रिक रैम]] (FeRAM) शामिल हैं। इनमें से अधिकांश प्रौद्योगिकियां फ्लैश मेमोरी के समान घनत्व प्रदान करती हैं, ज्यादातर मामलों में बदतर होती हैं, और उनका प्राथमिक लाभ फ्लैश मेमोरी में लिखने-धीरज की सीमा की कमी है। फ़ील्ड-एमआरएएम 3 एनएस एक्सेस समय के रूप में उत्कृष्ट प्रदर्शन प्रदान करता है, लेकिन इसके लिए बड़े 25-40 F² सेल आकार की आवश्यकता होती है। यह एसआरएएम प्रतिस्थापन के रूप में उपयोग देख सकता है, लेकिन मास स्टोरेज डिवाइस के रूप में नहीं। इनमें से किसी भी डिवाइस से उच्चतम घनत्व PCRAM द्वारा पेश किया जाता है, जिसमें लगभग 5.8 F² का सेल आकार होता है, जो फ्लैश मेमोरी के समान होता है, साथ ही लगभग 50 ns के आसपास काफी अच्छा प्रदर्शन होता है। फिर भी, इनमें से कोई भी समग्र रूप से, विशेष रूप से घनत्व में रेसट्रैक मेमोरी के साथ प्रतिस्पर्धा करने के करीब नहीं आ सकता है। उदाहरण के लिए, 50 एनएस रेसट्रैक मेमोरी डिवाइस में लगभग पांच बिट्स को संचालित करने की अनुमति देता है, जिसके परिणामस्वरूप पीसीएम के प्रदर्शन-घनत्व उत्पाद से आसानी से 20/5=4 एफ² का एक प्रभावी सेल आकार होता है। दूसरी ओर, बिट घनत्व का त्याग किए बिना, वही 20 F² क्षेत्र 2.5 2-बिट 8 F² वैकल्पिक मेमोरी सेल (जैसे प्रतिरोधी रैम (आरआरएएम) या एमआरएएम|स्पिन-टॉर्क ट्रांसफर एमआरएएम) में फिट हो सकता है, जिनमें से प्रत्येक व्यक्तिगत रूप से ज्यादा काम करता है तेज (~10एनएस)।
रेसट्रैक मेमोरी कई उभरती प्रौद्योगिकियों में से एक है, जिसका उद्देश्य डीआरएएम और फ्लैश जैसी पारंपरिक यादों को बदलना है, और संभावित रूप से विभिन्न प्रकार की भूमिकाओं के लिए एक सार्वभौमिक मेमोरी डिवाइस की पेशकश करता है। अन्य दावेदारों में [[मैग्नेटोरेसिस्टिव रैंडम-एक्सेस मेमोरी]] ([[MRAM]]), [[चरण-परिवर्तन स्मृति]] (PRAM) और [[फेरोइलेक्ट्रिक रैम]] (FeRAM) शामिल हैं। इनमें से अधिकांश प्रौद्योगिकियां फ्लैश मेमोरी के समान घनत्व प्रदान करती हैं, ज्यादातर मामलों में बदतर होती हैं, और उनका प्राथमिक लाभ फ्लैश मेमोरी में लिखने-धीरज की सीमा की कमी है। फ़ील्ड-एमआरएएम 3 एनएस एक्सेस समय के रूप में उत्कृष्ट प्रदर्शन प्रदान करता है, लेकिन इसके लिए बड़े 25-40 F² सेल आकार की आवश्यकता होती है। यह एसआरएएम प्रतिस्थापन के रूप में उपयोग देख सकता है, लेकिन मास स्टोरेज डिवाइस के रूप में नहीं। इनमें से किसी भी डिवाइस से उच्चतम घनत्व PCRAM द्वारा पेश किया जाता है, जिसमें लगभग 5.8 F² का सेल आकार होता है, जो फ्लैश मेमोरी के समान होता है, साथ ही लगभग 50 ns के आसपास काफी अच्छा प्रदर्शन होता है। फिर भी, इनमें से कोई भी समग्र रूप से, विशेष रूप से घनत्व में रेसट्रैक मेमोरी के साथ प्रतिस्पर्धा करने के करीब नहीं आ सकता है। उदाहरण के लिए, 50 एनएस रेसट्रैक मेमोरी डिवाइस में लगभग पांच बिट्स को संचालित करने की अनुमति देता है, जिसके परिणामस्वरूप पीसीएम के प्रदर्शन-घनत्व उत्पाद से आसानी से 20/5=4 एफ² का एक प्रभावी सेल आकार होता है। दूसरी ओर, बिट घनत्व का त्याग किए बिना, वही 20 F² क्षेत्र 2.5 2-बिट 8 F² वैकल्पिक मेमोरी सेल (जैसे प्रतिरोधी रैम (आरआरएएम) या एमआरएएम|स्पिन-टॉर्क ट्रांसफर एमआरएएम) में फिट हो सकता है, जिनमें से प्रत्येक व्यक्तिगत रूप से ज्यादा काम करता है तेज (~10एनएस)।



Revision as of 15:18, 1 May 2023

रेसट्रैक मेमोरी या डोमेन-वॉल मेमोरी (DWM) भौतिक विज्ञानी स्टुअर्ट पार्किन के नेतृत्व में एक टीम द्वारा आईबीएम के अल्माडेन रिसर्च सेंटर में विकास के तहत एक प्रयोगात्मक गैर-वाष्पशील मेमोरी डिवाइस है।[1] 2008 की शुरुआत में, एक 3-बिट संस्करण सफलतापूर्वक प्रदर्शित किया गया था।[2] यदि इसे सफलतापूर्वक विकसित किया जाना था, तो रेसट्रैक मेमोरी, फ्लैश मेमोरी जैसे तुलनीय ठोस-अवस्था मेमोरी उपकरणों की तुलना में कंप्यूटर स्टोरेज घनत्व अधिक प्रदान करेगी।[citation needed]

विवरण

रेसट्रैक मेमोरी लगभग 200 एनएम के आर-पार और 100 एनएम मोटे नैनोस्कोपिक permalloy तार के साथ चुंबकीय डोमेन को स्थानांतरित करने के लिए एक स्पिन (भौतिकी)-संगत विद्युत प्रवाह का उपयोग करती है। जैसे ही तार के माध्यम से करंट पास किया जाता है, डोमेन तार के पास स्थित चुंबकीय रीड/राइट हेड्स से गुजरते हैं, जो डोमेन को बिट्स के पैटर्न को रिकॉर्ड करने के लिए बदल देते हैं। एक रेसट्रैक मेमोरी डिवाइस ऐसे कई तारों और पढ़ने/लिखने वाले तत्वों से बना होता है। सामान्य परिचालन अवधारणा में, रेसट्रैक मेमोरी 1960 और 1970 के दशक की पिछली बुलबुला स्मृति के समान है। विलंब-रेखा स्मृति, जैसे कि 1940 और 1950 के दशक की पारा विलंब रेखाएँ, समान तकनीक का अभी भी पहले का रूप है, जैसा कि UNIVAC और EDSAC कंप्यूटरों में उपयोग किया जाता है। बबल मेमोरी की तरह, रेसट्रैक मेमोरी एक सब्सट्रेट और पिछले पढ़ने/लिखने वाले तत्वों के माध्यम से चुंबकीय डोमेन के अनुक्रम को आगे बढ़ाने के लिए विद्युत धाराओं का उपयोग करती है। spintronic चुंबकत्व सेंसर के विकास के आधार पर चुंबकीय पहचान क्षमताओं में सुधार, बहुत अधिक बिट घनत्व प्रदान करने के लिए बहुत छोटे चुंबकीय डोमेन के उपयोग की अनुमति देता है।

उत्पादन में, यह अपेक्षित था[citation needed] कि तारों को लगभग 50 एनएम तक छोटा किया जा सकता है। रेसट्रैक मेमोरी के लिए दो व्यवस्थाओं पर विचार किया गया। सबसे सरल एक ग्रिड में व्यवस्थित फ्लैट तारों की एक श्रृंखला थी जिसमें पढ़ने और लिखने वाले शीर्ष पास में व्यवस्थित थे। एक अधिक व्यापक रूप से अध्ययन की गई व्यवस्था में यू-आकार के तारों को एक अंतर्निहित सब्सट्रेट पर रीड/राइट हेड्स के ग्रिड पर लंबवत रूप से व्यवस्थित किया गया है। यह तारों को इसके 2डी क्षेत्र को बढ़ाए बिना अधिक लंबा होने की अनुमति देता है, हालांकि अलग-अलग डोमेन को तारों के साथ आगे ले जाने की आवश्यकता होती है इससे पहले कि वे रीड/राइट हेड्स तक पहुंचते हैं, परिणाम धीमे यादृच्छिक अभिगम समय में होते हैं। दोनों व्यवस्थाओं ने समान थ्रूपुट प्रदर्शन की पेशकश की। निर्माण के मामले में प्राथमिक चिंता व्यावहारिक थी; बड़े पैमाने पर उत्पादन के लिए तीन आयामी ऊर्ध्वाधर व्यवस्था संभव होगी या नहीं।

अन्य मेमोरी उपकरणों की तुलना

2008 में अनुमानों ने सुझाव दिया कि रेसट्रैक मेमोरी यादृच्छिक बिट को पढ़ने या लिखने के लिए 20-32 ns के क्रम में प्रदर्शन की पेशकश करेगी। यह हार्ड डिस्क ड्राइव के लिए लगभग 10,000,000 एनएस या पारंपरिक डीआरएएम के लिए 20-30 एनएस की तुलना में है। प्राथमिक लेखकों ने लगभग 9.5 एनएस के जलाशय के उपयोग के साथ पहुंच समय को बेहतर बनाने के तरीकों पर चर्चा की। जलाशय के साथ या उसके बिना सकल प्रवाह क्षमता, रेसट्रैक मेमोरी के लिए 250-670 Mbit/s के क्रम में होगी, जबकि एकल DDR3 DRAM के लिए 12800 Mbit/s, उच्च-प्रदर्शन हार्ड ड्राइव के लिए 1000 Mbit/s, और 1000 Mbit/s की तुलना में फ्लैश मेमोरी उपकरणों के लिए 4000 Mbit/s। रेसट्रैक मेमोरी पर एक स्पष्ट विलंबता लाभ की पेशकश करने वाली एकमात्र मौजूदा तकनीक 0.2 एनएस के क्रम में, लेकिन उच्च लागत पर स्टेटिक रैंडम एक्सेस मेमोरी थी। लगभग 140 F के सेल क्षेत्र के साथ लगभग 45 एनएम (2011 तक) का बड़ा फीचर आकार F2</उप>।[3][4] रेसट्रैक मेमोरी कई उभरती प्रौद्योगिकियों में से एक है, जिसका उद्देश्य डीआरएएम और फ्लैश जैसी पारंपरिक यादों को बदलना है, और संभावित रूप से विभिन्न प्रकार की भूमिकाओं के लिए एक सार्वभौमिक मेमोरी डिवाइस की पेशकश करता है। अन्य दावेदारों में मैग्नेटोरेसिस्टिव रैंडम-एक्सेस मेमोरी (MRAM), चरण-परिवर्तन स्मृति (PRAM) और फेरोइलेक्ट्रिक रैम (FeRAM) शामिल हैं। इनमें से अधिकांश प्रौद्योगिकियां फ्लैश मेमोरी के समान घनत्व प्रदान करती हैं, ज्यादातर मामलों में बदतर होती हैं, और उनका प्राथमिक लाभ फ्लैश मेमोरी में लिखने-धीरज की सीमा की कमी है। फ़ील्ड-एमआरएएम 3 एनएस एक्सेस समय के रूप में उत्कृष्ट प्रदर्शन प्रदान करता है, लेकिन इसके लिए बड़े 25-40 F² सेल आकार की आवश्यकता होती है। यह एसआरएएम प्रतिस्थापन के रूप में उपयोग देख सकता है, लेकिन मास स्टोरेज डिवाइस के रूप में नहीं। इनमें से किसी भी डिवाइस से उच्चतम घनत्व PCRAM द्वारा पेश किया जाता है, जिसमें लगभग 5.8 F² का सेल आकार होता है, जो फ्लैश मेमोरी के समान होता है, साथ ही लगभग 50 ns के आसपास काफी अच्छा प्रदर्शन होता है। फिर भी, इनमें से कोई भी समग्र रूप से, विशेष रूप से घनत्व में रेसट्रैक मेमोरी के साथ प्रतिस्पर्धा करने के करीब नहीं आ सकता है। उदाहरण के लिए, 50 एनएस रेसट्रैक मेमोरी डिवाइस में लगभग पांच बिट्स को संचालित करने की अनुमति देता है, जिसके परिणामस्वरूप पीसीएम के प्रदर्शन-घनत्व उत्पाद से आसानी से 20/5=4 एफ² का एक प्रभावी सेल आकार होता है। दूसरी ओर, बिट घनत्व का त्याग किए बिना, वही 20 F² क्षेत्र 2.5 2-बिट 8 F² वैकल्पिक मेमोरी सेल (जैसे प्रतिरोधी रैम (आरआरएएम) या एमआरएएम|स्पिन-टॉर्क ट्रांसफर एमआरएएम) में फिट हो सकता है, जिनमें से प्रत्येक व्यक्तिगत रूप से ज्यादा काम करता है तेज (~10एनएस)।

ज्यादातर मामलों में, मेमोरी डिवाइस किसी भी स्थान पर एक बिट स्टोर करते हैं, इसलिए उनकी तुलना आमतौर पर सेल आकार, एक बिट को स्टोर करने वाले सेल के संदर्भ में की जाती है। सेल आकार स्वयं एफ² की इकाइयों में दिया जाता है, जहां एफ सुविधा आकार डिजाइन नियम जांच है, जो आम तौर पर धातु रेखा की चौड़ाई का प्रतिनिधित्व करता है। फ्लैश और रेसट्रैक दोनों प्रति सेल कई बिट्स स्टोर करते हैं, लेकिन तुलना अभी भी की जा सकती है। उदाहरण के लिए, हार्ड ड्राइव लगभग 650 nm²/bit की सैद्धांतिक सीमा तक पहुँचते हुए दिखाई देते हैं,[5] मुख्य रूप से चुंबकीय सतह के विशिष्ट क्षेत्रों को पढ़ने और लिखने की क्षमता से परिभाषित किया गया है। DRAM का सेल आकार लगभग 6 F² है, SRAM 120 F² पर बहुत कम घना है। NAND फ्लैश मेमोरी वर्तमान में व्यापक उपयोग में गैर-वाष्पशील मेमोरी का सबसे सघन रूप है, जिसमें लगभग 4.5 F² का सेल आकार है, लेकिन 1.5 F² के प्रभावी आकार के लिए प्रति सेल तीन बिट संग्रहीत करता है। प्रभावी 4.75 F² पर NOR फ़्लैश मेमोरी थोड़ी कम घनी होती है, जो 9.5 F² सेल आकार पर 2-बिट संचालन के लिए लेखांकन करती है।[4]वर्टिकल ओरिएंटेशन (यू-आकार) रेसट्रैक में, प्रति सेल लगभग 10-20 बिट संग्रहीत होते हैं, जिसका स्वयं का भौतिक आकार कम से कम लगभग 20 F² होगा। इसके अलावा, ट्रैक पर अलग-अलग स्थानों पर बिट्स को पढ़ने/लिखने वाले सेंसर द्वारा एक्सेस करने में अलग-अलग समय लगेगा (~10 से ~1000 ns, या 10 ns/bit), क्योंकि ट्रैक एक निश्चित दर पर डोमेन को स्थानांतरित करेगा पठन/लेखन सेंसर से ~100मी/से.

विकास की चुनौतियाँ

शुरुआती प्रायोगिक उपकरणों की एक सीमा यह थी कि चुंबकीय डोमेन को केवल तारों के माध्यम से धीरे-धीरे धकेला जा सकता था, जिससे उन्हें सफलतापूर्वक स्थानांतरित करने के लिए माइक्रोसेकंड के आदेश पर वर्तमान दालों की आवश्यकता होती थी। यह अप्रत्याशित था, और मोटे तौर पर हार्ड ड्राइव के बराबर प्रदर्शन का कारण बना, भविष्यवाणी की तुलना में 1000 गुना धीमा। हाल के शोध ने तारों की क्रिस्टल संरचना में सूक्ष्म खामियों के लिए इस समस्या का पता लगाया है जिसके कारण डोमेन इन खामियों पर अटक गए। डोमेन के बीच की सीमाओं को सीधे चित्रित करने के लिए एक्स-रे माइक्रोस्कोप का उपयोग करते हुए, उनके शोध में पाया गया कि इन खामियों के अनुपस्थित होने पर डोमेन दीवारों को दालों द्वारा कुछ नैनोसेकंड के रूप में छोटा किया जाएगा। यह लगभग 110 मी/से के मैक्रोस्कोपिक प्रदर्शन के अनुरूप है।[6] डोमेन को रेसट्रैक के साथ चलाने के लिए आवश्यक वोल्टेज तार की लंबाई के समानुपाती होगा। डोमेन दीवारों को धक्का देने के लिए वर्तमान घनत्व पर्याप्त रूप से उच्च होना चाहिए (जैसा कि इलेक्ट्रोमाइग्रेशन में)। उच्च धारा घनत्व (>10.) की आवश्यकता से रेसट्रैक प्रौद्योगिकी के लिए एक कठिनाई उत्पन्न होती है8 ए/सेमी²); 30 एनएम x 100 एनएम क्रॉस-सेक्शन के लिए >3 एमए की आवश्यकता होगी। परिणामी पावर ड्रा अन्य मेमोरी के लिए आवश्यक से अधिक हो जाता है, उदाहरण के लिए, स्पिन-ट्रांसफर टॉर्क मेमोरी (एसटीटी-रैम) या फ्लैश मेमोरी।

रेसट्रैक मेमोरी से जुड़ी एक अन्य चुनौती स्टोचैस्टिक प्रकृति है जिसमें डोमेन दीवारें चलती हैं, यानी वे चलती हैं और यादृच्छिक स्थिति में रुक जाती हैं।[7] नैनोवायर के किनारों पर खांचे बनाकर इस चुनौती को दूर करने का प्रयास किया गया है।[8] शोधकर्ताओं ने डोमेन दीवारों को सटीक रूप से पिन करने के लिए कंपित नैनोवायरों का भी प्रस्ताव दिया है।[9] प्रायोगिक जांच से पता चला है[10] कंपित डोमेन वॉल मेमोरी की प्रभावशीलता।[11] हाल ही में शोधकर्ताओं ने संरचना संशोधन के माध्यम से चुंबकीय गुणों के स्थानीय मॉडुलन जैसे गैर-ज्यामितीय दृष्टिकोण प्रस्तावित किए हैं। एनीलिंग प्रेरित प्रसार जैसी तकनीकें[12] और आयन-आरोपण[13] उपयोग किया जाता है।

यह भी देखें

संदर्भ

  1. Spintronics Devices Research, Magnetic Racetrack Memory Project
  2. Masamitsu Hayashi et al. (April 2008). "वर्तमान-नियंत्रित चुंबकीय डोमेन-दीवार नैनोवायर शिफ्ट रजिस्टर". Science. 320 (5873): 209–211. Bibcode:2008Sci...320..209H. doi:10.1126/science.1154587. PMID 18403706. S2CID 7872869.{{cite journal}}: CS1 maint: uses authors parameter (link)
  3. "ITRS 2011". Retrieved 8 November 2012.
  4. 4.0 4.1 Parkin; et al. (11 April 2008). "मैग्नेटिक डोमेन-वॉल रेसट्रैक मेमोरी". Science. 320 (5873): 190–4. Bibcode:2008Sci...320..190P. doi:10.1126/science.1145799. PMID 18403702. S2CID 19285283.
  5. 1 Tbit/in² is approx. 650nm²/bit.
  6. Swarup, Amarendra (11 May 2007). "'रेसट्रैक' मेमोरी हार्ड डिस्क के आगे सरपट दौड़ सकती है". New Scientist.
  7. Kumar, D.; Jin, T.; Risi, S. Al; Sbiaa, R.; Lew, W. S.; Piramanayagam, S. N. (March 2019). "रेसट्रैक मेमोरी एप्लिकेशन के लिए डोमेन वॉल मोशन कंट्रोल". IEEE Transactions on Magnetics. 55 (3): 2876622. Bibcode:2019ITM....5576622K. doi:10.1109/TMAG.2018.2876622. hdl:10356/139037. ISSN 0018-9464. S2CID 67872687.
  8. Hayashi, M.; Thomas, L.; Moriya, R.; Rettner, C.; Parkin, S. S. P. (2008). "वर्तमान-नियंत्रित चुंबकीय डोमेन-दीवार नैनोवायर शिफ्ट रजिस्टर". Science. 320 (5873): 209–211. Bibcode:2008Sci...320..209H. doi:10.1126/science.1154587. ISSN 0036-8075. PMID 18403706. S2CID 7872869.
  9. Mohammed, H. (2020). "कंपित चुंबकीय तारों का उपयोग करके नियंत्रित स्पिन-टोक़ संचालित डोमेन दीवार गति". Applied Physics Letters. 116 (3): 032402. arXiv:1908.09304. Bibcode:2020ApPhL.116c2402M. doi:10.1063/1.5135613. S2CID 201695574.
  10. Prem Piramanayagam (24 February 2019), Staggered Domain Wall Memory, archived from the original on 21 December 2021, retrieved 13 March 2019
  11. Al Bahri, M.; Borie, B.; Jin, T.L.; Sbiaa, R.; Kläui, M.; Piramanayagam, S.N. (8 February 2019). "रेसट्रैक मेमोरी में प्रभावी डोमेन-वॉल पिनिंग के लिए स्टैगर्ड मैग्नेटिक नैनोवायर डिवाइस". Physical Review Applied. 11 (2): 024023. Bibcode:2019PhRvP..11b4023A. doi:10.1103/PhysRevApplied.11.024023. hdl:10220/48230. S2CID 139224277.
  12. Jin, T. L.; Ranjbar, M.; He, S. K.; Law, W. C.; Zhou, T. J.; Lew, W. S.; Liu, X. X.; Piramanayagam, S. N. (2017). "स्थानीय धातु प्रसार के माध्यम से डोमेन वॉल पिनिंग के लिए ट्यूनिंग चुंबकीय गुण". Scientific Reports. 7 (1): 16208. Bibcode:2017NatSR...716208J. doi:10.1038/s41598-017-16335-z. PMC 5701220. PMID 29176632.
  13. Jin, Tianli; Kumar, Durgesh; Gan, Weiliang; Ranjbar, Mojtaba; Luo, Feilong; Sbiaa, Rachid; Liu, Xiaoxi; Lew, Wen Siang; Piramanayagam, S. N. (2018). "Nanoscale Compositional Modification in Co/Pd Multilayers for Controllable Domain Wall Pinning in Racetrack Memory". Physica Status Solidi RRL. 12 (10): 1800197. Bibcode:2018PSSRR..1200197J. doi:10.1002/pssr.201800197. hdl:10356/137507. S2CID 52557582.


बाहरी संबंध