मिश्रित टेंसर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Tensor having both covariant and contravariant indices}} | {{Short description|Tensor having both covariant and contravariant indices}} | ||
{{redirect| | {{redirect|टेन्सर प्रकार|सरणी डेटा प्रकार|टेन्सर प्रकार (कंप्यूटिंग)}} | ||
[[टेन्सर]] विश्लेषण में, एक मिश्रित टेन्सर एक टेन्सर होता है जो न तो सख्ती से सहप्रसरण और सदिशों का प्रतिप्रसरण होता है और न ही सख्ती से सहप्रसरण और सदिशों का प्रतिप्रसरण; एक मिश्रित टेन्सर का कम से कम एक सूचकांक एक सबस्क्रिप्ट (सहसंयोजक) होगा और कम से कम एक सूचकांक एक सुपरस्क्रिप्ट (प्रतिपरिवर्ती) होगा। | [[टेन्सर]] विश्लेषण में, एक मिश्रित टेन्सर एक टेन्सर होता है जो न तो सख्ती से सहप्रसरण और सदिशों का प्रतिप्रसरण होता है और न ही सख्ती से सहप्रसरण और सदिशों का प्रतिप्रसरण; एक मिश्रित टेन्सर का कम से कम एक सूचकांक एक सबस्क्रिप्ट (सहसंयोजक) होगा और कम से कम एक सूचकांक एक सुपरस्क्रिप्ट (प्रतिपरिवर्ती) होगा। | ||
Line 6: | Line 6: | ||
== टेंसर प्रकार बदलना == | == टेंसर प्रकार बदलना == | ||
{{main| | {{main|सूचकांकों को ऊपर उठाना और घटाना}} | ||
संबंधित टेंसरों के निम्नलिखित ऑक्टेट पर विचार करें: | संबंधित टेंसरों के निम्नलिखित ऑक्टेट पर विचार करें: | ||
<math display="block"> T_{\alpha \beta \gamma}, \ T_{\alpha \beta} {}^\gamma, \ T_\alpha {}^\beta {}_\gamma, \ | <math display="block"> T_{\alpha \beta \gamma}, \ T_{\alpha \beta} {}^\gamma, \ T_\alpha {}^\beta {}_\gamma, \ |
Revision as of 12:08, 29 April 2023
टेन्सर विश्लेषण में, एक मिश्रित टेन्सर एक टेन्सर होता है जो न तो सख्ती से सहप्रसरण और सदिशों का प्रतिप्रसरण होता है और न ही सख्ती से सहप्रसरण और सदिशों का प्रतिप्रसरण; एक मिश्रित टेन्सर का कम से कम एक सूचकांक एक सबस्क्रिप्ट (सहसंयोजक) होगा और कम से कम एक सूचकांक एक सुपरस्क्रिप्ट (प्रतिपरिवर्ती) होगा।
प्रकार या वैलेंस का एक मिश्रित टेंसर , लिखित प्रकार (M, N), M > 0 और N > 0 दोनों के साथ, एक टेन्सर है जिसमें M प्रतिपरिवर्ती सूचकांक और N सहपरिवर्ती सूचकांक हैं। इस तरह के एक टेंसर को एक रैखिक ऑपरेटर के रूप में परिभाषित किया जा सकता है जो एम एक प्रपत्र और एन वेक्टर (ज्यामिति) के एक (एम + एन) -ट्यूपल को स्केलर (गणित) में मैप करता है।
टेंसर प्रकार बदलना
संबंधित टेंसरों के निम्नलिखित ऑक्टेट पर विचार करें:
आम तौर पर, सहपरिवर्ती मीट्रिक टेन्सर, प्रकार (एम, एन) के एक टेंसर के साथ अनुबंधित होता है, प्रकार (एम -1, एन + 1) का एक टेंसर उत्पन्न करता है, जबकि इसका प्रतिपरिवर्ती व्युत्क्रम, प्रकार (एम, एन) के टेंसर के साथ अनुबंधित होता है। , प्रकार (M + 1, N − 1) का टेंसर देता है।
उदाहरण
एक उदाहरण के रूप में, प्रकार (1, 2) का एक मिश्रित टेन्सर प्रकार (0, 3) के सहसंयोजक टेन्सर के सूचकांक को बढ़ाकर प्राप्त किया जा सकता है,
वैसे ही,
यह भी देखें
- सहप्रसरण और सदिशों का प्रतिप्रसरण
- आइंस्टीन संकेतन
- घुंघराले पथरी
- टेन्सर (आंतरिक परिभाषा)
- दो-बिंदु टेंसर
संदर्भ
- D.C. Kay (1988). Tensor Calculus. Schaum’s Outlines, McGraw Hill (USA). ISBN 0-07-033484-6.
- Wheeler, J.A.; Misner, C.; Thorne, K.S. (1973). "§3.5 Working with Tensors". Gravitation. W.H. Freeman & Co. pp. 85–86. ISBN 0-7167-0344-0.
- R. Penrose (2007). The Road to Reality. Vintage books. ISBN 978-0-679-77631-4.
बाहरी संबंध
- Index Gymnastics, Wolfram Alpha