अर्ध-प्रत्यक्ष गुणनफल: Difference between revisions
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
यदि इन कथनों में से कोई भी मान्य है (और इसलिए सभी अपनी समानता के अनुसार धारण करते हैं) तब हम कहते हैं {{math|''G''}} का अर्धप्रत्यक्ष उत्पाद {{math|''N''}} और {{math|''H''}}, लिखा हुआ | यदि इन कथनों में से कोई भी मान्य है (और इसलिए सभी अपनी समानता के अनुसार धारण करते हैं) तब हम कहते हैं {{math|''G''}} का अर्धप्रत्यक्ष उत्पाद {{math|''N''}} और {{math|''H''}}, लिखा हुआ | ||
है <math>G = N \rtimes H</math> या <math>G = H \ltimes N,</math> या तो {{math|''G''}}, {{math|''N''}} पर विभाजित हो जाता है तथा यह भी प्रदर्शित करता है कि {{math|''G''}}, {{math|''N''}} पर अभिनय करने वाले {{math|''H''}} का एक अर्ध-प्रत्यक्ष उत्पाद है या यहाँ तक कि {{math|''H''}} और {{math|''N''}} का एक अर्ध-प्रत्यक्ष उत्पाद भी है। अस्पष्टता से बचने के लिए यह निर्दिष्ट करना उचित है कि सामान्य उपसमूह कौन सा है। | |||
है <math>G = N \rtimes H</math> या <math>G = H \ltimes N,</math> या तो {{math|''G''}}, {{math|''N''}} पर विभाजित हो जाता है तथा यह भी | |||
यदि <math>G = H \ltimes N</math> | यदि <math>G = H \ltimes N</math> | ||
Line 79: | Line 78: | ||
=== [[डायहेड्रल समूह]] === | === [[डायहेड्रल समूह]] === | ||
डायहेड्रल समूह {{math|D{{sub|2''n''}}}} साथ {{math|2''n''}} तत्व [[चक्रीय समूह]] | डायहेड्रल समूह {{math|D{{sub|2''n''}}}} साथ {{math|2''n''}} तत्व [[चक्रीय समूह|चक्रीय समूहों]] के अर्ध-प्रत्यक्ष उत्पाद {{math|C{{sub|''n''}}}} और {{math|C{{sub|2}}}} के लिए समरूप हैं। <ref name="mac-lane">{{cite book |last1=Mac Lane |first1=Saunders |author-link1=Saunders Mac Lane |last2=Birkhoff |first2=Garrett |author-link2=Garrett Birkhoff |title=बीजगणित|edition=3rd |year=1999 |publisher=American Mathematical Society |isbn=0-8218-1646-2 |pages=414–415}}</ref> यहाँ की गैर-सूचक तत्व {{math|C{{sub|2}}}}, {{math|C{{sub|''n''}}}} तत्वों को उल्टा करके कार्य करता है यह तब से ऑटोमोर्फिज्म है जब से {{math|C{{sub|''n''}}}} [[एबेलियन समूह]] है। इस समूह के लिए [[समूह प्रस्तुति|प्रस्तुतीकरण]] है: | ||
:<math>\langle a,\;b \mid a^2 = e,\; b^n = e,\; aba^{-1} = b^{-1}\rangle.</math> | :<math>\langle a,\;b \mid a^2 = e,\; b^n = e,\; aba^{-1} = b^{-1}\rangle.</math> | ||
=== चक्रीय समूह === | |||
समान्तयाः किसी भी दो चक्रीय समूहों {{math|C{{sub|''m''}}}} जनरेटर के साथ {{math|''a''}} और {{math|C{{sub|''n''}}}} जनरेटर के साथ {{math|''b''}} का अर्ध-प्रत्यक्ष उत्पाद अतिरिक्त संबंध द्वारा {{math|''aba''{{sup|−1}} {{=}} ''b{{sup|k}}''}} साथ {{math|''k''}} और {{math|''n''}} [[सह अभाज्य]] दिया जाता है और <math>k^m\equiv 1 \pmod{n}</math>;<ref name="mac-lane" />वह है, प्रस्तुति:<ref name="mac-lane" />:<math>\langle a,\;b \mid a^m = e,\;b^n = e,\;aba^{-1} = b^k\rangle</math> | |||
यदि {{math|''r''}} और {{math|''m''}} कोप्राइम हैं, {{math|''a{{sup|r}}''}} का जनरेटर {{math|C{{sub|''m''}}}} और {{math|''a{{sup|r}}ba{{sup|−r}}'' {{=}} ''b{{sup|k{{sup|r}}}}''}}है, इसलिए प्रस्तुति: | |||
यदि {{math|''r''}} और {{math|''m''}} कोप्राइम हैं, {{math|''a{{sup|r}}''}} का जनरेटर | |||
:<math>\langle a,\;b \mid a^m = e,\;b^n = e,\;aba^{-1} = b^{k^{r}}\rangle</math> | :<math>\langle a,\;b \mid a^m = e,\;b^n = e,\;aba^{-1} = b^{k^{r}}\rangle</math> | ||
जो पिछले वाले को समूह आइसोमोर्फिक देता है। | |||
=== | === समूह का होलोमॉर्फ === | ||
अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त समूह का | अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त समूह का प्रामाणिक उदाहरण समूह का होलोमोर्फ (गणित) है। इसे <math>\operatorname{Hol}(G)=G\rtimes \operatorname{Aut}(G)</math> के रूप में परिभाषित किया गया है जहाँ <math>\text{Aut}(G)</math> एक समूह का ऑटोमोर्फिज्म समूह <math>G</math> है और संरचना <math>\phi</math> का नक्शा की सही क्रिया <math>\text{Aut}(G)</math> पर <math>G</math> से आता है। गुणा करने वाले तत्वों के संदर्भ में यह समूह संरचना <math>(g,\alpha)(h,\beta)=(g(\phi(\alpha)\cdot h),\alpha\beta)</math> देता है। | ||
=== क्लेन बोतल का [[मौलिक समूह]] === | === क्लेन बोतल का [[मौलिक समूह]] === | ||
क्लेन बोतल के मूलभूत समूह को रूप में प्रस्तुत किया जा सकता | क्लेन बोतल के मूलभूत समूह को निम्नलिखित रूप में प्रस्तुत किया जा सकता है। | ||
:<math>\langle a,\;b \mid aba^{-1} = b^{-1}\rangle | :<math>\langle a,\;b \mid aba^{-1} = b^{-1}\rangle</math> | ||
और इसलिए <math>\mathbb{Z}</math> पूर्णांकों के समूह का अर्धप्रत्यक्ष गुणनफल <math>\mathbb{Z}</math> के साथ है एवं संगत समरूपता {{math|''φ'': <math>\mathbb{Z}</math> → Aut(<math>\mathbb{Z}</math>)}} द्वारा | और इसलिए <math>\mathbb{Z}</math> पूर्णांकों के समूह का अर्धप्रत्यक्ष गुणनफल <math>\mathbb{Z}</math> के साथ है एवं संगत समरूपता {{math|''φ'': <math>\mathbb{Z}</math> → Aut(<math>\mathbb{Z}</math>)}} द्वारा {{math|''φ''(''h'')(''n'') {{=}} (−1){{sup|''h''}}''n''}} दिया गया है। | ||
=== ऊपरी त्रिकोणीय मैट्रिक्स === | === ऊपरी त्रिकोणीय मैट्रिक्स === | ||
समूह <math>\mathbb{T}_n</math> ऊपरी [[त्रिकोणीय मैट्रिक्स]] का{{Clarify|date=October 2020|reason=What are the entries of the matrices: real, complex, in any field? Define the group T_n precisely.}} गैर-शून्य निर्धारक के साथ जो कि [[मुख्य विकर्ण]] पर गैर-शून्य प्रविष्टियों के साथ है, अर्ध-प्रत्यक्ष उत्पाद में अपघटन है | समूह <math>\mathbb{T}_n</math> ऊपरी [[त्रिकोणीय मैट्रिक्स]] का{{Clarify|date=October 2020|reason=What are the entries of the matrices: real, complex, in any field? Define the group T_n precisely.}} गैर-शून्य निर्धारक के साथ जो कि [[मुख्य विकर्ण]] पर गैर-शून्य प्रविष्टियों के साथ है, अर्ध-प्रत्यक्ष उत्पाद में अपघटन है | ||
<math>\mathbb{T}_n \cong \mathbb{U}_n \rtimes \mathbb{D}_n</math><ref>{{Cite book|last=Milne|url=https://www.jmilne.org/math/CourseNotes/iAG200.pdf |archive-url=https://web.archive.org/web/20160307074150/http://www.jmilne.org/math/CourseNotes/iAG200.pdf |archive-date=2016-03-07 |url-status=live|title=बीजगणितीय समूह|pages=45, semi-direct products}}</ref> जहाँ <math>\mathbb{U}_n</math> केवल के साथ [[मैट्रिक्स (गणित)]] का उपसमूह है यह विकर्ण <math>1</math> पर है जिसे ऊपरी त्रिकोणीय मैट्रिक्स समूह कहा जाता है तथा <math>\mathbb{D}_n</math> [[विकर्ण मैट्रिक्स]] का उपसमूह है।<br /><math>\mathbb{D}_n</math> की सामूहिक क्रिया पर <math>\mathbb{U}_n</math> मैट्रिक्स गुणन से प्रेरित है। यदि हम सेट करते हैं | <math>\mathbb{T}_n \cong \mathbb{U}_n \rtimes \mathbb{D}_n</math><ref>{{Cite book|last=Milne|url=https://www.jmilne.org/math/CourseNotes/iAG200.pdf |archive-url=https://web.archive.org/web/20160307074150/http://www.jmilne.org/math/CourseNotes/iAG200.pdf |archive-date=2016-03-07 |url-status=live|title=बीजगणितीय समूह|pages=45, semi-direct products}}</ref> जहाँ <math>\mathbb{U}_n</math> केवल के साथ [[मैट्रिक्स (गणित)]] का उपसमूह है यह विकर्ण <math>1</math> पर है जिसे ऊपरी त्रिकोणीय मैट्रिक्स समूह कहा जाता है तथा <math>\mathbb{D}_n</math> [[विकर्ण मैट्रिक्स]] का उपसमूह है।<br /><math>\mathbb{D}_n</math> की सामूहिक क्रिया पर <math>\mathbb{U}_n</math> मैट्रिक्स गुणन से प्रेरित है। यदि हम सेट करते हैं, | ||
<math>A = \begin{bmatrix} | <math>A = \begin{bmatrix} | ||
Line 136: | Line 135: | ||
=== ओर्थोगोनल समूह O(n) === | === ओर्थोगोनल समूह O(n) === | ||
[[ऑर्थोगोनल समूह]] {{math|O(''n'')}} सभी ओर्थोगोनल [[वास्तविक संख्या]] की {{math|''n'' × ''n''}} मैट्रिसेस (सहजता से सभी घुमावों और प्रतिबिंबों का सेट {{math|''n''}}-आयामी स्थान जो मूल को स्थिर रखता है) समूह के एक अर्ध-प्रत्यक्ष उत्पाद के लिए समरूप है {{math|SO(''n'')}} (निर्धारक के साथ सभी ऑर्थोगोनल मेट्रिसेस से मिलकर {{math|1}}, सहज रूप से के घुमाव {{math|''n''}}-आयामी स्थान) और {{math|C{{sub|2}}}}. यदि हम प्रतिनिधित्व करते हैं {{math|C{{sub|2}}}} मेट्रिसेस के गुणात्मक समूह के रूप में {{math|{''I'', ''R''}{{null}}}}, कहाँ {{math|''R''}} का प्रतिबिंब है {{math|''n''}}-आयामी स्थान जो मूल को स्थिर रखता है (यानी, निर्धारक के साथ एक ऑर्थोगोनल मैट्रिक्स {{math|–1}} एक समावेशन (गणित) का प्रतिनिधित्व करता है), फिर {{math|''φ'': C{{sub|2}} → Aut(SO(''n''))}} द्वारा दिया गया है {{math|''φ''(''H'')(''N'') {{=}} ''HNH''{{sup|−1}}}} सभी एच के लिए {{math|C{{sub|2}}}} और {{math|''N''}} में {{math|SO(''n'')}}. गैर | [[ऑर्थोगोनल समूह]] {{math|O(''n'')}} सभी ओर्थोगोनल [[वास्तविक संख्या]] की {{math|''n'' × ''n''}} मैट्रिसेस (सहजता से सभी घुमावों और प्रतिबिंबों का सेट {{math|''n''}}-आयामी स्थान जो मूल को स्थिर रखता है) समूह के एक अर्ध-प्रत्यक्ष उत्पाद के लिए समरूप है {{math|SO(''n'')}} (निर्धारक के साथ सभी ऑर्थोगोनल मेट्रिसेस से मिलकर {{math|1}}, सहज रूप से के घुमाव {{math|''n''}}-आयामी स्थान) और {{math|C{{sub|2}}}}. यदि हम प्रतिनिधित्व करते हैं {{math|C{{sub|2}}}} मेट्रिसेस के गुणात्मक समूह के रूप में {{math|{''I'', ''R''}{{null}}}}, कहाँ {{math|''R''}} का प्रतिबिंब है {{math|''n''}}-आयामी स्थान जो मूल को स्थिर रखता है (यानी, निर्धारक के साथ एक ऑर्थोगोनल मैट्रिक्स {{math|–1}} एक समावेशन (गणित) का प्रतिनिधित्व करता है), फिर {{math|''φ'': C{{sub|2}} → Aut(SO(''n''))}} द्वारा दिया गया है {{math|''φ''(''H'')(''N'') {{=}} ''HNH''{{sup|−1}}}} सभी एच के लिए {{math|C{{sub|2}}}} और {{math|''N''}} में {{math|SO(''n'')}}. गैर निम्न स्थिति में ({{math|''H''}} सूचक नहीं है) इसका अर्थ यह है कि {{math|''φ''(''H'')}} प्रतिबिंब द्वारा संचालन का संयुग्मन है (3-आयामी अंतरिक्ष में एक रोटेशन अक्ष और रोटेशन की दिशा उनकी दर्पण छवि द्वारा प्रतिस्थापित की जाती है)। | ||
=== अर्ध-रैखिक परिवर्तन === | === अर्ध-रैखिक परिवर्तन === | ||
सदिश स्थान पर सेमीलीनियर परिवर्तनों का समूह {{math|''V''}} एक क्षेत्र | सदिश स्थान पर सेमीलीनियर परिवर्तनों का समूह {{math|''V''}} एक क्षेत्र <math>\mathbb{K}</math> के ऊपर अधिकतर निरूपित {{math|ΓL(''V'')}} [[रैखिक समूह]] {{math|GL(''V'')}} ({{math|ΓL(''V'')}} का सामान्य उपसमूह) और ऑटोमोर्फिज़्म समूह <math>\mathbb{K}</math> के अर्ध-प्रत्यक्ष उत्पाद के लिए समरूप है। | ||
=== क्रिस्टलोग्राफिक समूह === | === क्रिस्टलोग्राफिक समूह === | ||
क्रिस्टलोग्राफी में | क्रिस्टलोग्राफी में क्रिस्टल का स्थानीय समूह बिंदु समूह और अनुवाद समूह के अर्ध-प्रत्यक्ष उत्पाद के रूप में विभाजित होता है यदि और केवल यदि स्थानीय समूह सममित है। गैर-सिम्मॉर्फिक स्थानीय समूहों में बिंदु समूह होते हैं जो स्थानीय समूह के उपवर्ग के रूप में भी सम्मिलित नहीं होते हैं जो उनके विश्लेषण में बहुत अधिक जटिलता के लिए जिम्मेदार है।<ref>{{cite web|last1=Thompson|first1=Nick|title=इरेड्यूसिबल ब्रिलौइन जोन और बैंड संरचनाएं|url=https://bandgap.io/blog/brillouin_zones/|website=bandgap.io|access-date=13 December 2017}}</ref> | ||
== गैर-उदाहरण == | == गैर-उदाहरण == | ||
निस्सन्देह किसी भी [[साधारण समूह]] को अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त नहीं किया जा सकता है (क्योंकि उनके पास गैर-सामान्य सामान्य उपसमूह नहीं हैं) परन्तु गैर-तुच्छ सामान्य उपसमूह वाले समूहों के कुछ सामान्य प्रतिरूप हैं जो पुनः एक अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त नहीं किए जा सकते हैं। ध्यान दें कि जबकि प्रत्येक समूह <math>G</math> के विभाजन विस्तार <math>H</math> द्वारा <math>A</math> के रूप में व्यक्त नहीं किया जा सकता है जिससे यह पता चला है कि इस प्रकार के समूह को माल्यार्पण उत्पाद में <math>A\wr H</math> [[सार्वभौमिक एम्बेडिंग प्रमेय]] द्वारा एम्बेड किया जा सकता है। | |||
=== Z<sub>4</sub> === | === Z<sub>4</sub> === | ||
चक्रीय समूह <math>\mathbb{Z}_4</math> साधारण समूह नहीं है क्योंकि इसमें क्रम | चक्रीय समूह <math>\mathbb{Z}_4</math> साधारण समूह नहीं है क्योंकि इसमें 2 क्रम का उपसमूह है अर्थात् <math>\{0,2\} \cong \mathbb{Z}_2</math> एक उपसमूह है और उनका भागफल <math>\mathbb{Z}_2</math> है इसलिए विस्तारण है | ||
<math>0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0</math> | <math>0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0</math> | ||
Line 157: | Line 156: | ||
=== Q<sub>8</sub> === | === Q<sub>8</sub> === | ||
क्वाटरनियन समूह <math>\{\pm 1,\pm i,\pm j,\pm k\}</math> जहाँ <math>ijk = -1</math> और <math>i^2 = j^2 = k^2 = -1</math>, समूह का एक और उदाहरण है<ref>{{Cite web|title=abstract algebra - Can every non-simple group $G$ be written as a semidirect product?|url=https://math.stackexchange.com/questions/1504422/can-every-non-simple-group-g-be-written-as-a-semidirect-product|access-date=2020-10-29|website=Mathematics Stack Exchange}}</ref> जिसमें गैर-निचले उपसमूह हैं जो अभी तक विभाजित नहीं हुए हैं। उदाहरण के लिए | क्वाटरनियन समूह <math>\{\pm 1,\pm i,\pm j,\pm k\}</math> जहाँ <math>ijk = -1</math> और <math>i^2 = j^2 = k^2 = -1</math>, समूह का एक और उदाहरण है<ref>{{Cite web|title=abstract algebra - Can every non-simple group $G$ be written as a semidirect product?|url=https://math.stackexchange.com/questions/1504422/can-every-non-simple-group-g-be-written-as-a-semidirect-product|access-date=2020-10-29|website=Mathematics Stack Exchange}}</ref> जिसमें गैर-निचले उपसमूह हैं जो अभी तक विभाजित नहीं हुए हैं। उदाहरण के लिए <math>i</math> द्वारा उत्पन्न उपसमूह के लिए <math>\mathbb{Z}_4</math> और सामान्य आइसोमोर्फिक है। इसमें क्रम <math>2</math> का उपसमूह द्वारा उत्पन्न <math>-1</math> भी है इसका अर्थ होगा <math>Q_8</math> समूहों के निम्नलिखित काल्पनिक सटीक अनुक्रम में विभाजन विस्तार होना चाहिए: <blockquote><math>0 \to \mathbb{Z}_4 \to Q_8 \to \mathbb{Z}_2 \to 0</math>, </blockquote>परन्तु ऐसा सटीक अनुक्रम उपस्थित नहीं है। इसे पहले समूह कोहोलॉजी समूह <math>\mathbb{Z}_2</math> में गुणांक के साथ <math>\mathbb{Z}_4</math> की गणना करके दिखाया जा सकता है इसलिए <math>H^1(\mathbb{Z}_2,\mathbb{Z}_4) \cong \mathbb{Z}/2</math> और <math>\mathbb{Z}_2\times\mathbb{Z}_4</math> इन एक्सटेंशन में दो समूहों को नोट कर रहे हैं और <math>D_8</math> डायहेड्रल समूह परन्तु इनमें से कोई भी <math>Q_8</math> समूह आइसोमोर्फिक नहीं है तथा चतुष्कोणीय समूह विभाजित नहीं है। समरूपता के इस गैर-अस्तित्व को निम्न विस्तार को ध्यान में रखते हुए जाँचा जा सकता है जबकि यह छोटा है तथा <math>Q_8</math> गैर-अबेलियन है और केवल सामान्य उपसमूहों <math>\mathbb{Z}_2</math> और <math>\mathbb{Z}_4</math> को ध्यान में रखते हुए हैं लेकिन <math>Q_8</math> के तीन उपसमूह <math>\mathbb{Z}_4</math> आइसोमॉर्फिक हैं। | ||
== गुण == | == गुण == | ||
यदि {{math|''G''}} सामान्य उपसमूह का अर्ध-प्रत्यक्ष उत्पाद | यदि {{math|''G''}} सामान्य उपसमूह का अर्ध-प्रत्यक्ष उत्पाद {{math|''N''}} और उपसमूह {{math|''H''}} है और {{math|''N''}} और {{math|''H''}} दोनों परिमित हैं तो के एक समूह का क्रम {{math|''G''}} के ऑर्डर के उत्पाद {{math|''N''}} और {{math|''H''}} के बराबर है। यह इस तथ्य से अनुसरण करता है कि {{math|''G''}} उसी क्रम का है जिसका बाहरी अर्धप्रत्यक्ष उत्पाद {{math|''N''}} और {{math|''H''}} है जिसका अंतर्निहित सेट कार्टेशियन उत्पाद {{math|''N'' × ''H''}} है। | ||
=== प्रत्यक्ष उत्पादों से संबंध === | === प्रत्यक्ष उत्पादों से संबंध === | ||
कल्पना करना {{math|''G''}} सामान्य उपसमूह | कल्पना करना {{math|''G''}} सामान्य उपसमूह काअर्ध-प्रत्यक्ष उत्पाद {{math|''N''}} और उपसमूह {{math|''H''}} है यदि {{math|''H''}} में भी {{math|''G''}} सामान्य है या समतुल्य यदि कोई समरूपता {{math|''G'' → ''N''}} उपस्थित है वह सूचक {{math|''N''}} कर्नेल के साथ {{math|''H''}} है तब {{math|''G''}} के समूहों का प्रत्यक्ष उत्पाद {{math|''N''}} और {{math|''H''}} है। | ||
दो समूहों का प्रत्यक्ष उत्पाद {{math|''N''}} और {{math|''H''}} के अर्धप्रत्यक्ष उत्पाद के रूप में सोचा जा सकता है {{math|''N''}} और {{math|''H''}} इसके संबंध में {{math|''φ''(''h'') {{=}} id{{sub|''N''}}}} सभी के लिए {{math|''h''}} में {{math|''H''}}. | दो समूहों का प्रत्यक्ष उत्पाद {{math|''N''}} और {{math|''H''}} के अर्धप्रत्यक्ष उत्पाद के रूप में सोचा जा सकता है, {{math|''N''}} और {{math|''H''}} इसके संबंध में {{math|''φ''(''h'') {{=}} id{{sub|''N''}}}} सभी के लिए {{math|''h''}} में {{math|''H''}}. | ||
ध्यान दें कि प्रत्यक्ष उत्पाद में | ध्यान दें कि प्रत्यक्ष उत्पाद में कारकों का क्रम महत्वपूर्ण नहीं है क्योंकि {{math|''N'' × ''H''}} के लिए {{math|''H'' × ''N''}} आइसोमोर्फिक है जबकि अर्ध-प्रत्यक्ष उत्पादों के स्थिति में ऐसा नहीं है क्योंकि दो कारक अलग-अलग भूमिका निभाते हैं। | ||
इसके अलावा | इसके अलावा निचले-तुच्छ समरूपता के माध्यम से एक (उचित) अर्ध-प्रत्यक्ष उत्पाद का परिणाम कभी भी एक एबेलियन समूह नहीं होता है भले ही कारक समूह एबेलियन हों। | ||
=== अर्ध-प्रत्यक्ष उत्पादों की गैर-विशिष्टता (और आगे के उदाहरण) === | === अर्ध-प्रत्यक्ष उत्पादों की गैर-विशिष्टता (और आगे के उदाहरण) === | ||
समूहों के प्रत्यक्ष उत्पाद के स्थिति के विपरीत दो समूहों का अर्ध-प्रत्यक्ष उत्पाद सामान्य रूप से अद्वितीय नहीं होता है | समूहों के प्रत्यक्ष उत्पाद के स्थिति के विपरीत दो समूहों का अर्ध-प्रत्यक्ष उत्पाद सामान्य रूप से अद्वितीय नहीं होता है यदि {{math|''G''}} और {{math|''G′''}} दो समूह हैं जिनमें दोनों की आइसोमॉर्फिक प्रतियां हैं जहाँ {{math|''N''}} सामान्य उपसमूह के रूप में और {{math|''H''}} उपसमूह के रूप में और दोनों का एक अर्ध-प्रत्यक्ष उत्पाद {{math|''N''}} और {{math|''H''}} है तो यह उसका पालन नहीं करता है {{math|''G''}} और {{math|''G′''}} समूह समरूपतावाद हैं क्योंकि अर्ध-प्रत्यक्ष उत्पाद भी एक {{math|''H''}} पर {{math|''N''}} क्रिया की पसंद पर निर्भर करता है। | ||
उदाहरण के लिए, ऑर्डर 16 के चार गैर-आइसोमॉर्फिक समूह हैं जो अर्ध-प्रत्यक्ष उत्पाद हैं {{math|C{{sub|8}}}} और {{math|C{{sub|2}}}}; इस स्थिति में, {{math|C{{sub|8}}}} आवश्यक रूप से एक सामान्य उपसमूह है क्योंकि इसमें सूचकांक 2 है। इन चार अर्ध-प्रत्यक्ष उत्पादों में से एक प्रत्यक्ष उत्पाद है, जबकि अन्य तीन गैर-अबेलियन समूह हैं: | उदाहरण के लिए, ऑर्डर 16 के चार गैर-आइसोमॉर्फिक समूह हैं जो अर्ध-प्रत्यक्ष उत्पाद हैं {{math|C{{sub|8}}}} और {{math|C{{sub|2}}}}; इस स्थिति में, {{math|C{{sub|8}}}} आवश्यक रूप से एक सामान्य उपसमूह है क्योंकि इसमें सूचकांक 2 है। इन चार अर्ध-प्रत्यक्ष उत्पादों में से एक प्रत्यक्ष उत्पाद है, जबकि अन्य तीन गैर-अबेलियन समूह हैं: | ||
Line 180: | Line 179: | ||
यदि कोई दिया गया समूह अर्ध-प्रत्यक्ष उत्पाद है तो इस बात की कोई गारंटी नहीं है कि यह अपघटन अद्वितीय है। उदाहरण के लिए ऑर्डर 24 का एक समूह है (केवल क्रम 4 के छः तत्व और क्रम 6 के छः तत्व सम्मिलित हैं) जिसे निम्नलिखित तरीकों से अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त किया जा सकता है: {{math|(D{{sub|8}} ⋉ C{{sub|3}}) ≅ (C{{sub|2}} ⋉ [[Dicyclic group|Q{{sub|12}}]]) ≅ (C{{sub|2}} ⋉ D{{sub|12}}) ≅ (D{{sub|6}} ⋉ [[Klein four-group|V]])}}.<ref name="Rose2009">{{cite book|author=H.E. Rose|title=परिमित समूहों पर एक कोर्स|year=2009|publisher=Springer Science & Business Media|isbn=978-1-84882-889-6|page=183}} Note that Rose uses the opposite notation convention than the one adopted on this page (p. 152).</ref> | यदि कोई दिया गया समूह अर्ध-प्रत्यक्ष उत्पाद है तो इस बात की कोई गारंटी नहीं है कि यह अपघटन अद्वितीय है। उदाहरण के लिए ऑर्डर 24 का एक समूह है (केवल क्रम 4 के छः तत्व और क्रम 6 के छः तत्व सम्मिलित हैं) जिसे निम्नलिखित तरीकों से अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त किया जा सकता है: {{math|(D{{sub|8}} ⋉ C{{sub|3}}) ≅ (C{{sub|2}} ⋉ [[Dicyclic group|Q{{sub|12}}]]) ≅ (C{{sub|2}} ⋉ D{{sub|12}}) ≅ (D{{sub|6}} ⋉ [[Klein four-group|V]])}}.<ref name="Rose2009">{{cite book|author=H.E. Rose|title=परिमित समूहों पर एक कोर्स|year=2009|publisher=Springer Science & Business Media|isbn=978-1-84882-889-6|page=183}} Note that Rose uses the opposite notation convention than the one adopted on this page (p. 152).</ref> | ||
=== अस्तित्व === | === अस्तित्व === | ||
Line 192: | Line 190: | ||
समूह सिद्धांत के अंतर्गत अर्ध-प्रत्यक्ष उत्पादों के निर्माण को बहुत आगे बढ़ाया जा सकता है। जाप्पा–सजेप समूहों का उत्पाद सामान्यीकरण है जो इसके आंतरिक संस्करण में यह नहीं मानता है कि उपसमूह सामान्य है। | समूह सिद्धांत के अंतर्गत अर्ध-प्रत्यक्ष उत्पादों के निर्माण को बहुत आगे बढ़ाया जा सकता है। जाप्पा–सजेप समूहों का उत्पाद सामान्यीकरण है जो इसके आंतरिक संस्करण में यह नहीं मानता है कि उपसमूह सामान्य है। | ||
[[ अंगूठी सिद्धांत ]], [[ पार उत्पाद ]] में एक | [[ अंगूठी सिद्धांत |वलय सिद्धांत]], [[ पार उत्पाद |तिर्यक उत्पाद]] में एक निर्माण भी है। यह समूहों के अर्ध-प्रत्यक्ष उत्पाद के लिए समूह वलय द्वारा प्राकृतिक रूप से निर्मित होता है। रिंग-सैद्धांतिक दृष्टिकोण को लाई बीजगणित विस्तार के लिए अर्ध प्रत्यक्ष योग द्वारा सामान्यीकृत किया जा सकता है। | ||
ज्यामिति हेतु [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल स्थान]] पर | ज्यामिति हेतु [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल स्थान]] पर समूह क्रिया (गणित) के लिए तिर्यक उत्पाद भी है; दुर्भाग्य से यह सामान्य रूप से गैर-कम्यूटेटिव है भले ही समूह एबेलियन हो। इस संदर्भ में अर्ध-प्रत्यक्ष उत्पाद समूह क्रिया की कक्षाओं का स्थान है। बाद के दृष्टिकोण को [[ एलेन कोन्स ]] द्वारा पारंपरिक टोपोलॉजिकल तकनीकों के दृष्टिकोण के विकल्प के रूप में विजेता बनाया गया है; सी.एफ. [[गैर क्रमविनिमेय ज्यामिति]]। | ||
[[श्रेणी सिद्धांत]] में दूरगामी सामान्यीकरण भी हैं। वे दिखाते हैं कि [[अनुक्रमित श्रेणी]] से तंतुमय श्रेणी का निर्माण कैसे किया जाता है। यह बाहरी अर्ध-प्रत्यक्ष उत्पाद निर्माण का एक अमूर्त रूप है। | [[श्रेणी सिद्धांत]] में दूरगामी सामान्यीकरण भी हैं। वे दिखाते हैं कि [[अनुक्रमित श्रेणी]] से तंतुमय श्रेणी का निर्माण कैसे किया जाता है। यह बाहरी अर्ध-प्रत्यक्ष उत्पाद निर्माण का एक अमूर्त रूप है। |
Revision as of 23:43, 11 May 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
गणित में विशेष रूप से समूह सिद्धांत में अर्ध-प्रत्यक्ष उत्पाद की अवधारणा एक प्रत्यक्ष उत्पाद का सामान्यीकरण है। अर्ध-प्रत्यक्ष उत्पाद की दो निकट संबंधी अवधारणाएँ हैं:
- आंतरिक अर्ध-प्रत्यक्ष उत्पाद विशेष प्रकार है जिसमें एक समूह (गणित) को दो उपसमूहों से बनाया जा सकता है जिनमें से एक सामान्य उपसमूह है।
- बाहरी अर्ध-प्रत्यक्ष उत्पाद एक सेट के रूप में कार्टेशियन उत्पाद और एक विशेष गुणन क्रिया का उपयोग करके दो दिए गए समूहों से एक नया समूह बनाने का समाधान है।
प्रत्यक्ष उत्पादों की प्रकार आंतरिक और बाहरी अर्ध-प्रत्यक्ष उत्पादों के बीच एक प्राकृतिक तुल्यता होती है और दोनों को सामान्य रूप से मात्र अर्ध-प्रत्यक्ष उत्पादों के रूप में संदर्भित किया जाता है।
परिमित समूहों के लिए शूर-ज़ासेनहॉस प्रमेय अर्ध-प्रत्यक्ष उत्पाद के रूप में अपघटन के अस्तित्व के लिए पर्याप्त स्थिति प्रदान करता है (इसे विभाजन विस्तार के रूप में भी जाना जाता है)।
आंतरिक अर्ध-प्रत्यक्ष उत्पाद परिभाषाएँ
दिये गये समूह G सूचक तत्व e के साथ एक उपसमूह H और सामान्य उपसमूह N ◁ G निम्न कथन समतुल्य हैं:
- समूह G उपसमुच्चयों का गुणनफल है, उपसमूहों का गुणनफल G = NH और इन उपसमूहों में तुच्छ चौराहा N ∩ H = {e} है: .
- प्रत्येक के लिए g ∈ G अद्वितीय हैं n ∈ N और h ∈ H ऐसा है कि g = nh.
- प्रत्येक के लिए g ∈ G अद्वितीय हैं n ∈ N और h ∈ H ऐसा है कि g = hn.
- फलन संरचना π ∘ i प्राकृतिक एम्बेडिंग i: H → G का प्राकृतिक प्रक्षेपण के साथ π: G → G/N के मध्य समूह समरूपता H है और G/N भागफल समूह
- समूह समरूपता G → H उपस्थित है जो कि सूचक कार्य H प्रतिबंध (गणित) है और N कर्नेल (बीजगणित) है दूसरे शब्दों में यह विभाजित सटीक अनुक्रम है।
- समूहों का (जिसे द्वारा समूह विस्तार के रूप में भी जाना जाता है).
यदि इन कथनों में से कोई भी मान्य है (और इसलिए सभी अपनी समानता के अनुसार धारण करते हैं) तब हम कहते हैं G का अर्धप्रत्यक्ष उत्पाद N और H, लिखा हुआ
है या या तो G, N पर विभाजित हो जाता है तथा यह भी प्रदर्शित करता है कि G, N पर अभिनय करने वाले H का एक अर्ध-प्रत्यक्ष उत्पाद है या यहाँ तक कि H और N का एक अर्ध-प्रत्यक्ष उत्पाद भी है। अस्पष्टता से बचने के लिए यह निर्दिष्ट करना उचित है कि सामान्य उपसमूह कौन सा है।
यदि
तब समूह समरूपता द्वारा दिए गए और के लिए होती है
आंतरिक और बाहरी अर्ध-प्रत्यक्ष उत्पाद
आइए पहले आंतरिक अर्ध-प्रत्यक्ष उत्पाद पर विचार करें। इस स्थिति में समूह के लिए इसके सामान्य उपसमूह N और उपसमूह H (आवश्यक रूप से सामान्य नहीं) पर विचार करें। मान लीजिए कि ऊपर दी गई सूची की शर्तें। होने देना के सभी Automorphism समूहों के समूह को निरूपित करें N, जो रचना के अंतर्गत एक समूह है। एक समूह समरूपता का निर्माण करें संयुग्मन द्वारा परिभाषित,
- , सभी के लिए h में H और n में N.
इस प्रकार हम एक समूह बना सकते हैं समूह संचालन के रूप में परिभाषित किया गया
- के लिए n1, n2 में N और h1, h2 में H.
उपसमूह N और H ठानना G तुल्याकारिता तक, जैसा कि हम बाद में दिखाएंगे। इस प्रकार हम समूह बना सकते हैं G इसके उपसमूहों से। इस प्रकार के निर्माण को एक आंतरिक अर्ध-प्रत्यक्ष उत्पाद कहा जाता है (जिसे आंतरिक अर्ध-प्रत्यक्ष उत्पाद के रूप में भी जाना जाता है[1]).
आइए अब बाहरी अर्ध-प्रत्यक्ष उत्पाद पर विचार करें। किन्हीं दो समूहों को N और H और समूह समरूपता φ: H → Aut(N) दिया है जिससे हम नया समूह बना सकते हैं,N और H का बाहरी अर्धप्रत्यक्ष उत्पाद N ⋊φ H कहा जाता है एवं इसके संबंध में φ को इस प्रकार परिभाषित किया गया है:[2]
- अंतर्निहित सेट कार्टेशियन उत्पाद N × H है।
- समूह संचालन जो समरूपता φ द्वारा निर्धारित होता है
यह एक समूह को परिभाषित करता है जिसमें सूचक तत्व (eN, eH) है और (n, h) तत्व का व्युत्क्रम (φh−1(n−1), h−1) है, जोड़े (n, eH) के लिए एक सामान्य उपसमूह आइसोमोर्फिक N बनाते हैं जबकि जोड़े (eN, h) उपसमूह आइसोमोर्फिक H बनाते हैं . पूरा समूह उन दो उपसमूहों का एक अर्ध-प्रत्यक्ष उत्पाद है जैसा कि पहले दिया गया है।
इसके विपरीत, मान लीजिए कि हमें एक समूह दिया गया है G एक सामान्य उपसमूह के साथ N और एक उपसमूह H, जैसे कि हर तत्व g का G फॉर्म में विशिष्ट रूप से लिखा जा सकता है g = nh कहाँ n में निहित है N और h में निहित है H. होने देना φ: H → Aut(N) होमोमोर्फिज्म हो (लिखित φ(h) = φh) द्वारा दिए गए
सभी के लिए n ∈ N, h ∈ H.
तब G अर्ध-प्रत्यक्ष उत्पाद के लिए आइसोमॉर्फिक N ⋊φ H है तथा समरूपता λ: G → N ⋊φ H अच्छी प्रकार से परिभाषित है
λ(a) = λ(nh) = (n, h) द्वारा अपघटन की विशिष्टता के कारण a = nh. में G, अपने पास
इस प्रकार a = n1h1 और b = n2h2 के लिए प्राप्त किया
कौन सा गणितीय प्रमाण है कि λ समरूपता है। तब से λ स्पष्ट रूप से एक एपिमोर्फिज्म और मोनोमोर्फिज्म है तो यह वास्तव में एक आइसोमोर्फिज्म है। यह गुणन नियम N ⋊φ H की परिभाषा को भी स्पष्ट करता है।
प्रत्यक्ष उत्पाद अर्ध-प्रत्यक्ष उत्पाद की मुख्य स्थिति है। इसे देखने के लिए जबकि φ निम्न समरूपता हो (अर्थात प्रत्येक तत्व को भेजना H की सूचक ऑटोमोर्फिज्म N के लिए) तब N ⋊φ H प्रत्यक्ष उत्पाद है N × H.
समूहों के लिए विभाजन लेम्मा का एक संस्करण बताता है कि एक समूह G दो समूहों के एक अर्ध-प्रत्यक्ष उत्पाद के लिए समरूप है N और H यदि और केवल यदि कोई सटीक अनुक्रम उपस्थित है # लघु सटीक अनुक्रम
और एक समूह समरूपता γ: H → G ऐसा है कि α ∘ γ = idH, सूचक मानचित्र पर H. इस स्थिति में, φ: H → Aut(N) द्वारा दिया गया है φ(h) = φh, कहाँ
उदाहरण
डायहेड्रल समूह
डायहेड्रल समूह D2n साथ 2n तत्व चक्रीय समूहों के अर्ध-प्रत्यक्ष उत्पाद Cn और C2 के लिए समरूप हैं। [3] यहाँ की गैर-सूचक तत्व C2, Cn तत्वों को उल्टा करके कार्य करता है यह तब से ऑटोमोर्फिज्म है जब से Cn एबेलियन समूह है। इस समूह के लिए प्रस्तुतीकरण है:
चक्रीय समूह
समान्तयाः किसी भी दो चक्रीय समूहों Cm जनरेटर के साथ a और Cn जनरेटर के साथ b का अर्ध-प्रत्यक्ष उत्पाद अतिरिक्त संबंध द्वारा aba−1 = bk साथ k और n सह अभाज्य दिया जाता है और ;[3]वह है, प्रस्तुति:[3]:
यदि r और m कोप्राइम हैं, ar का जनरेटर Cm और arba−r = bkrहै, इसलिए प्रस्तुति:
जो पिछले वाले को समूह आइसोमोर्फिक देता है।
समूह का होलोमॉर्फ
अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त समूह का प्रामाणिक उदाहरण समूह का होलोमोर्फ (गणित) है। इसे के रूप में परिभाषित किया गया है जहाँ एक समूह का ऑटोमोर्फिज्म समूह है और संरचना का नक्शा की सही क्रिया पर से आता है। गुणा करने वाले तत्वों के संदर्भ में यह समूह संरचना देता है।
क्लेन बोतल का मौलिक समूह
क्लेन बोतल के मूलभूत समूह को निम्नलिखित रूप में प्रस्तुत किया जा सकता है।
और इसलिए पूर्णांकों के समूह का अर्धप्रत्यक्ष गुणनफल के साथ है एवं संगत समरूपता φ: → Aut() द्वारा φ(h)(n) = (−1)hn दिया गया है।
ऊपरी त्रिकोणीय मैट्रिक्स
समूह ऊपरी त्रिकोणीय मैट्रिक्स का[clarification needed] गैर-शून्य निर्धारक के साथ जो कि मुख्य विकर्ण पर गैर-शून्य प्रविष्टियों के साथ है, अर्ध-प्रत्यक्ष उत्पाद में अपघटन है
[4] जहाँ केवल के साथ मैट्रिक्स (गणित) का उपसमूह है यह विकर्ण पर है जिसे ऊपरी त्रिकोणीय मैट्रिक्स समूह कहा जाता है तथा विकर्ण मैट्रिक्स का उपसमूह है।
की सामूहिक क्रिया पर मैट्रिक्स गुणन से प्रेरित है। यदि हम सेट करते हैं,
और
तब उनका मैट्रिक्स गुणन है
यह प्रेरित समूह क्रिया देता है
में मैट्रिक्स मेट्रिसेस द्वारा और प्रदर्शित किया जा सकता है इस प्रकार .
समतल पर आइसोमेट्री का समूह
समतल के सभी कठोर गतियों (आइसोमेट्री) का यूक्लिडियन समूह (f: 2 → 2 नक्शे जैसे कि यूक्लिडियन x और y के बीच की दूरी में सभी x और y के लिए f(x) और f(y) के बीच की दूरी बराबर है) एबेलियन समूह केअर्ध-प्रत्यक्ष उत्पाद के लिए समरूप है (जो अनुवाद का वर्णन करता है) और समूह O(2) ऑर्थोगोनल मैट्रिक्स का 2 × 2 मैट्रिसेस (जो घुमाव और प्रतिबिंब का वर्णन करता है जो मूल को स्थिर रखता है)। एक अनुवाद और फिर एक रोटेशन या प्रतिबिंब को लागू करने का वही प्रभाव होता है जो पहले रोटेशन या प्रतिबिंब को लागू करता है और फिर घुमाए गए या परावर्तित अनुवाद वेक्टर द्वारा अनुवाद (यानी मूल अनुवाद के यूक्लिडियन स्थान में आइसोमेट्रीज़ के संयुग्मन को लागू करना)। इससे पता चलता है कि अनुवाद का समूह यूक्लिडियन समूह का एक सामान्य उपसमूह है, यूक्लिडियन समूह अनुवाद समूह का एक अर्ध-प्रत्यक्ष उत्पाद है और O(2), और वह संगत समरूपता φ: O(2) → Aut(2) मैट्रिक्स गुणन द्वारा दिया जाता है: φ(h)(n) = hn.
ओर्थोगोनल समूह O(n)
ऑर्थोगोनल समूह O(n) सभी ओर्थोगोनल वास्तविक संख्या की n × n मैट्रिसेस (सहजता से सभी घुमावों और प्रतिबिंबों का सेट n-आयामी स्थान जो मूल को स्थिर रखता है) समूह के एक अर्ध-प्रत्यक्ष उत्पाद के लिए समरूप है SO(n) (निर्धारक के साथ सभी ऑर्थोगोनल मेट्रिसेस से मिलकर 1, सहज रूप से के घुमाव n-आयामी स्थान) और C2. यदि हम प्रतिनिधित्व करते हैं C2 मेट्रिसेस के गुणात्मक समूह के रूप में {I, R}, कहाँ R का प्रतिबिंब है n-आयामी स्थान जो मूल को स्थिर रखता है (यानी, निर्धारक के साथ एक ऑर्थोगोनल मैट्रिक्स –1 एक समावेशन (गणित) का प्रतिनिधित्व करता है), फिर φ: C2 → Aut(SO(n)) द्वारा दिया गया है φ(H)(N) = HNH−1 सभी एच के लिए C2 और N में SO(n). गैर निम्न स्थिति में (H सूचक नहीं है) इसका अर्थ यह है कि φ(H) प्रतिबिंब द्वारा संचालन का संयुग्मन है (3-आयामी अंतरिक्ष में एक रोटेशन अक्ष और रोटेशन की दिशा उनकी दर्पण छवि द्वारा प्रतिस्थापित की जाती है)।
अर्ध-रैखिक परिवर्तन
सदिश स्थान पर सेमीलीनियर परिवर्तनों का समूह V एक क्षेत्र के ऊपर अधिकतर निरूपित ΓL(V) रैखिक समूह GL(V) (ΓL(V) का सामान्य उपसमूह) और ऑटोमोर्फिज़्म समूह के अर्ध-प्रत्यक्ष उत्पाद के लिए समरूप है।
क्रिस्टलोग्राफिक समूह
क्रिस्टलोग्राफी में क्रिस्टल का स्थानीय समूह बिंदु समूह और अनुवाद समूह के अर्ध-प्रत्यक्ष उत्पाद के रूप में विभाजित होता है यदि और केवल यदि स्थानीय समूह सममित है। गैर-सिम्मॉर्फिक स्थानीय समूहों में बिंदु समूह होते हैं जो स्थानीय समूह के उपवर्ग के रूप में भी सम्मिलित नहीं होते हैं जो उनके विश्लेषण में बहुत अधिक जटिलता के लिए जिम्मेदार है।[5]
गैर-उदाहरण
निस्सन्देह किसी भी साधारण समूह को अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त नहीं किया जा सकता है (क्योंकि उनके पास गैर-सामान्य सामान्य उपसमूह नहीं हैं) परन्तु गैर-तुच्छ सामान्य उपसमूह वाले समूहों के कुछ सामान्य प्रतिरूप हैं जो पुनः एक अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त नहीं किए जा सकते हैं। ध्यान दें कि जबकि प्रत्येक समूह के विभाजन विस्तार द्वारा के रूप में व्यक्त नहीं किया जा सकता है जिससे यह पता चला है कि इस प्रकार के समूह को माल्यार्पण उत्पाद में सार्वभौमिक एम्बेडिंग प्रमेय द्वारा एम्बेड किया जा सकता है।
Z4
चक्रीय समूह साधारण समूह नहीं है क्योंकि इसमें 2 क्रम का उपसमूह है अर्थात् एक उपसमूह है और उनका भागफल है इसलिए विस्तारण है
यदि विस्तारण विभाजन विस्तार था तो समूह में
के लिए समरूपी होगा
Q8
क्वाटरनियन समूह जहाँ और , समूह का एक और उदाहरण है[6] जिसमें गैर-निचले उपसमूह हैं जो अभी तक विभाजित नहीं हुए हैं। उदाहरण के लिए द्वारा उत्पन्न उपसमूह के लिए और सामान्य आइसोमोर्फिक है। इसमें क्रम का उपसमूह द्वारा उत्पन्न भी है इसका अर्थ होगा समूहों के निम्नलिखित काल्पनिक सटीक अनुक्रम में विभाजन विस्तार होना चाहिए:
,
परन्तु ऐसा सटीक अनुक्रम उपस्थित नहीं है। इसे पहले समूह कोहोलॉजी समूह में गुणांक के साथ की गणना करके दिखाया जा सकता है इसलिए और इन एक्सटेंशन में दो समूहों को नोट कर रहे हैं और डायहेड्रल समूह परन्तु इनमें से कोई भी समूह आइसोमोर्फिक नहीं है तथा चतुष्कोणीय समूह विभाजित नहीं है। समरूपता के इस गैर-अस्तित्व को निम्न विस्तार को ध्यान में रखते हुए जाँचा जा सकता है जबकि यह छोटा है तथा गैर-अबेलियन है और केवल सामान्य उपसमूहों और को ध्यान में रखते हुए हैं लेकिन के तीन उपसमूह आइसोमॉर्फिक हैं।
गुण
यदि G सामान्य उपसमूह का अर्ध-प्रत्यक्ष उत्पाद N और उपसमूह H है और N और H दोनों परिमित हैं तो के एक समूह का क्रम G के ऑर्डर के उत्पाद N और H के बराबर है। यह इस तथ्य से अनुसरण करता है कि G उसी क्रम का है जिसका बाहरी अर्धप्रत्यक्ष उत्पाद N और H है जिसका अंतर्निहित सेट कार्टेशियन उत्पाद N × H है।
प्रत्यक्ष उत्पादों से संबंध
कल्पना करना G सामान्य उपसमूह काअर्ध-प्रत्यक्ष उत्पाद N और उपसमूह H है यदि H में भी G सामान्य है या समतुल्य यदि कोई समरूपता G → N उपस्थित है वह सूचक N कर्नेल के साथ H है तब G के समूहों का प्रत्यक्ष उत्पाद N और H है।
दो समूहों का प्रत्यक्ष उत्पाद N और H के अर्धप्रत्यक्ष उत्पाद के रूप में सोचा जा सकता है, N और H इसके संबंध में φ(h) = idN सभी के लिए h में H.
ध्यान दें कि प्रत्यक्ष उत्पाद में कारकों का क्रम महत्वपूर्ण नहीं है क्योंकि N × H के लिए H × N आइसोमोर्फिक है जबकि अर्ध-प्रत्यक्ष उत्पादों के स्थिति में ऐसा नहीं है क्योंकि दो कारक अलग-अलग भूमिका निभाते हैं।
इसके अलावा निचले-तुच्छ समरूपता के माध्यम से एक (उचित) अर्ध-प्रत्यक्ष उत्पाद का परिणाम कभी भी एक एबेलियन समूह नहीं होता है भले ही कारक समूह एबेलियन हों।
अर्ध-प्रत्यक्ष उत्पादों की गैर-विशिष्टता (और आगे के उदाहरण)
समूहों के प्रत्यक्ष उत्पाद के स्थिति के विपरीत दो समूहों का अर्ध-प्रत्यक्ष उत्पाद सामान्य रूप से अद्वितीय नहीं होता है यदि G और G′ दो समूह हैं जिनमें दोनों की आइसोमॉर्फिक प्रतियां हैं जहाँ N सामान्य उपसमूह के रूप में और H उपसमूह के रूप में और दोनों का एक अर्ध-प्रत्यक्ष उत्पाद N और H है तो यह उसका पालन नहीं करता है G और G′ समूह समरूपतावाद हैं क्योंकि अर्ध-प्रत्यक्ष उत्पाद भी एक H पर N क्रिया की पसंद पर निर्भर करता है।
उदाहरण के लिए, ऑर्डर 16 के चार गैर-आइसोमॉर्फिक समूह हैं जो अर्ध-प्रत्यक्ष उत्पाद हैं C8 और C2; इस स्थिति में, C8 आवश्यक रूप से एक सामान्य उपसमूह है क्योंकि इसमें सूचकांक 2 है। इन चार अर्ध-प्रत्यक्ष उत्पादों में से एक प्रत्यक्ष उत्पाद है, जबकि अन्य तीन गैर-अबेलियन समूह हैं:
- क्रम 16 का डायहेड्रल समूह
- क्रम 16 का क्वासिडीहेड्रल समूह
- क्रम 16 का इवासावा समूह
यदि कोई दिया गया समूह अर्ध-प्रत्यक्ष उत्पाद है तो इस बात की कोई गारंटी नहीं है कि यह अपघटन अद्वितीय है। उदाहरण के लिए ऑर्डर 24 का एक समूह है (केवल क्रम 4 के छः तत्व और क्रम 6 के छः तत्व सम्मिलित हैं) जिसे निम्नलिखित तरीकों से अर्ध-प्रत्यक्ष उत्पाद के रूप में व्यक्त किया जा सकता है: (D8 ⋉ C3) ≅ (C2 ⋉ Q12) ≅ (C2 ⋉ D12) ≅ (D6 ⋉ V).[7]
अस्तित्व
सामान्य रूप से समूहों में अर्ध-प्रत्यक्ष उत्पादों के अस्तित्व के लिए कोई ज्ञात लक्षण वर्णन (अर्थात, एक आवश्यक और पर्याप्त स्थिति) नहीं है। जबकि कुछ पर्याप्त शर्तें ज्ञात हैं जो कुछ स्थितियों में अस्तित्व की गारंटी देती हैं। परिमित समूहों के लिए, शूर-ज़सेनहौस प्रमेय एक अर्ध-प्रत्यक्ष उत्पाद के अस्तित्व की गारंटी देता है जब सामान्य उपसमूह का क्रम (समूह सिद्धांत) भागफल समूह के क्रम के प्रति अभाज्य होता है।
उदाहरण के लिए, शूर-ज़सेनहॉस प्रमेय का तात्पर्य क्रम 6 के समूहों के बीच अर्ध-प्रत्यक्ष उत्पाद के अस्तित्व से है; ऐसे दो उत्पाद हैं, जिनमें से एक प्रत्यक्ष उत्पाद है और दूसरा डायहेड्रल समूह है। इसके विपरीत, शूर-ज़सेनहॉस प्रमेय उदाहरण के लिए क्रम 4 के समूहों या क्रम 8 के समूहों के बारे में कुछ नहीं कहता है।
सामान्यीकरण
समूह सिद्धांत के अंतर्गत अर्ध-प्रत्यक्ष उत्पादों के निर्माण को बहुत आगे बढ़ाया जा सकता है। जाप्पा–सजेप समूहों का उत्पाद सामान्यीकरण है जो इसके आंतरिक संस्करण में यह नहीं मानता है कि उपसमूह सामान्य है।
वलय सिद्धांत, तिर्यक उत्पाद में एक निर्माण भी है। यह समूहों के अर्ध-प्रत्यक्ष उत्पाद के लिए समूह वलय द्वारा प्राकृतिक रूप से निर्मित होता है। रिंग-सैद्धांतिक दृष्टिकोण को लाई बीजगणित विस्तार के लिए अर्ध प्रत्यक्ष योग द्वारा सामान्यीकृत किया जा सकता है।
ज्यामिति हेतु टोपोलॉजिकल स्थान पर समूह क्रिया (गणित) के लिए तिर्यक उत्पाद भी है; दुर्भाग्य से यह सामान्य रूप से गैर-कम्यूटेटिव है भले ही समूह एबेलियन हो। इस संदर्भ में अर्ध-प्रत्यक्ष उत्पाद समूह क्रिया की कक्षाओं का स्थान है। बाद के दृष्टिकोण को एलेन कोन्स द्वारा पारंपरिक टोपोलॉजिकल तकनीकों के दृष्टिकोण के विकल्प के रूप में विजेता बनाया गया है; सी.एफ. गैर क्रमविनिमेय ज्यामिति।
श्रेणी सिद्धांत में दूरगामी सामान्यीकरण भी हैं। वे दिखाते हैं कि अनुक्रमित श्रेणी से तंतुमय श्रेणी का निर्माण कैसे किया जाता है। यह बाहरी अर्ध-प्रत्यक्ष उत्पाद निर्माण का एक अमूर्त रूप है।
ग्रुपोइड्स
अन्य सामान्यीकरण ग्रुपॉयड्स के लिए है। यह टोपोलॉजी में होता है क्योंकि यदि समूह G एक स्थान X पर कार्य करता है यह मूलभूत समूह π1(X) के स्थान पर भी कार्य करता है। अर्ध-प्रत्यक्ष उत्पाद π1(X) ⋊ G तब कक्षा स्थान के मूलभूत समूह X/G को खोजने के लिए प्रासंगिक है एवं पूर्ण विवरण के लिए नीचे संदर्भित पुस्तक का अध्याय 11 देखें और एनलैब में अर्ध-प्रत्यक्ष उत्पाद में कुछ विवरण भी देखें[8]।
एबेलियन श्रेणियां
गैर-निचले अर्ध-प्रत्यक्ष उत्पाद एबेलियन श्रेणियों में उत्पन्न नहीं होते हैं जैसे कि मॉड्यूल की श्रेणी। इस स्थिति में विभाजन लेम्मा से पता चलता है कि प्रत्येक अर्ध-प्रत्यक्ष उत्पाद एक प्रत्यक्ष उत्पाद है। इस प्रकार अर्ध प्रत्यक्ष उत्पादों का अस्तित्व एबेलियन होना श्रेणी की विफलता को दर्शाता है।
नोटेशन
सामान्य रूप से एक समूह का अर्ध-प्रत्यक्ष उत्पाद H समूह पर कार्य करना N, N ⋊ H या H ⋉ N (ज्यादातर मामलों में एक सामान्य समूह के उपसमूह के रूप में संयुग्मन द्वारा) द्वारा निरूपित किया जाता है जबकि कुछ स्रोत[9] इस चिन्ह का विपरीत अर्थ में प्रयोग कर सकते हैं। यदि कार्रवाई में φ: H → Aut(N) को स्पष्ट किया जाना चाहिए तो किसी एक को N ⋊φ H भी लिखा जा सकता है। N ⋊ H प्रतीक विषय में एक अन्य प्रकार से ध्यान दिया जा सकता है कि सामान्य उपसमूह (◁) के प्रतीक और उत्पाद (×) के प्रतीक के संयोजन के रूप में है। बैरी साइमन ने समूह प्रतिनिधित्व सिद्धांत पर अपनी पुस्तक में,[10] असामान्य अंकन को अर्ध-प्रत्यक्ष उत्पाद के लिए नियोजित करता है।
यूनिकोड चार रूपों को सूचीबद्ध करता है:[11]
मान गणित एमएल यूनिकोड विवरण ⋉ U+22C9 एल बार बायाँ सामान्य कारक अर्ध-प्रत्यक्ष उत्पाद ⋊ U+22CA आर बार दायां सामान्य कारक अर्ध-प्रत्यक्ष उत्पाद ⋋ U+22CB एल तृतीय बायाँ अर्ध-प्रत्यक्ष उत्पाद ⋌ U+22CC आर तृतीय दायाँ अर्ध-प्रत्यक्ष उत्पाद
यहाँ आर बार प्रतीक का यूनिकोड विवरण दायां सामान्य कारक कहता है जो गणितीय अभ्यास में इसके सामान्य अर्थ के विपरीत है।
LaTeX (सॉफ्टवेयर प्रणाली) में निर्देश \आर बार और \एल बार संबंधित वर्ण उत्पन्न करते हैं। एएमएस प्रतीक पैकेज लोड होने के साथ, \बाएं तीन बार ⋋ उत्पन्न करता है और \दाएं तीन बार ⋌ उत्पन्न करता है।
यह भी देखें
- Affine झूठ बीजगणित
- ग्रोथेंडिक निर्माण, एक श्रेणीबद्ध निर्माण जो अर्धप्रत्यक्ष उत्पाद का सामान्यीकरण करता है
- होलोमॉर्फ (गणित)
- झूठे बीजगणित विस्तार#द्वारा अर्द्धप्रत्यक्ष योग
- उपनिर्देश उत्पाद
- माल्यार्पण उत्पाद
- ज़प्पा-ज़ेप उत्पाद
- पार उत्पाद
टिप्पणियाँ
- ↑ DS Dummit and RM Foote (1991), Abstract algebra, Englewood Cliffs, NJ: Prentice Hall, 142.
- ↑ Robinson, Derek John Scott (2003). सार बीजगणित का एक परिचय. Walter de Gruyter. pp. 75–76. ISBN 9783110175448.
- ↑ 3.0 3.1 3.2 Mac Lane, Saunders; Birkhoff, Garrett (1999). बीजगणित (3rd ed.). American Mathematical Society. pp. 414–415. ISBN 0-8218-1646-2.
- ↑ Milne. बीजगणितीय समूह (PDF). pp. 45, semi-direct products. Archived (PDF) from the original on 2016-03-07.
- ↑ Thompson, Nick. "इरेड्यूसिबल ब्रिलौइन जोन और बैंड संरचनाएं". bandgap.io. Retrieved 13 December 2017.
- ↑ "abstract algebra - Can every non-simple group $G$ be written as a semidirect product?". Mathematics Stack Exchange. Retrieved 2020-10-29.
- ↑ H.E. Rose (2009). परिमित समूहों पर एक कोर्स. Springer Science & Business Media. p. 183. ISBN 978-1-84882-889-6. Note that Rose uses the opposite notation convention than the one adopted on this page (p. 152).
- ↑ "Ncatlab.org".
- ↑ e.g., E. B. Vinberg (2003). A Course in Algebra. Providence, RI: American Mathematical Society. p. 389. ISBN 0-8218-3413-4.
- ↑ B. Simon (1996). परिमित और कॉम्पैक्ट समूहों का प्रतिनिधित्व. Providence, RI: American Mathematical Society. p. 6. ISBN 0-8218-0453-7.
- ↑ See unicode.org
संदर्भ
This article needs additional citations for verification. (June 2009) (Learn how and when to remove this template message) |
- R. Brown, Topology and groupoids, Booksurge 2006. ISBN 1-4196-2722-8