क्वांटम ज्यामिति: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Quantum mechanics}} | {{Quantum mechanics}} | ||
[[सैद्धांतिक भौतिकी]] में, क्वांटम [[ज्यामिति]] अवधारणाओं को सामान्यीकृत करने वाली गणितीय अवधारणाओं का समूह है, | [[सैद्धांतिक भौतिकी]] में, क्वांटम [[ज्यामिति]] अवधारणाओं को सामान्यीकृत करने वाली गणितीय अवधारणाओं का समूह है, जिसका अध्ययन [[प्लैंक लंबाई]] की तुलना में दूरी के स्तर पर भौतिक घटनाओं का वर्णन करने के लिए आवश्यक है। इन दूरियों पर, [[क्वांटम यांत्रिकी]] का भौतिक घटनाओं पर गंभीर प्रभाव पड़ता है। | ||
== क्वांटम गुरुत्व == | == क्वांटम गुरुत्व == | ||
Line 8: | Line 8: | ||
{{Main|क्वांटम गुरुत्वाकर्षण}} | {{Main|क्वांटम गुरुत्वाकर्षण}} | ||
[[ क्वांटम गुरुत्वाकर्षण | क्वांटम गुरुत्व]] का प्रत्येक सिद्धांत क्वांटम ज्यामिति शब्द का उपयोग | [[ क्वांटम गुरुत्वाकर्षण | क्वांटम गुरुत्व]] का प्रत्येक सिद्धांत क्वांटम ज्यामिति शब्द का उपयोग भिन्न प्रकार से करता है। [[स्ट्रिंग सिद्धांत]], गुरुत्वाकर्षण के क्वांटम सिद्धांत के लिए प्रमुख, क्वांटम ज्यामिति शब्द का उपयोग [[टी-द्वैत]] और अन्य [[ज्यामितीय द्वंद्व]], [[दर्पण समरूपता (स्ट्रिंग सिद्धांत)|दर्पण समरूपता]], [[टोपोलॉजी]]-परिवर्तित संक्रमण, न्यूनतम संभव दूरी स्तर, जैसे विदेशी घटनाओं का वर्णन करने के लिए करता है।{{clarify|date=May 2016}} अन्य प्रभाव जो अंतर्ज्ञान को आह्वान देते हैं। अधिक प्रौद्योगिकी रूप से, क्वांटम ज्यामिति [[स्पेसटाइम मैनिफोल्ड|अंतरिक्षसमय मैनिफोल्ड]] के आकार को संदर्भित करता है जैसा कि [[डी-branes|डी-ब्रेन]] द्वारा अनुभव किया जाता है जिसमें [[मीट्रिक टेंसर|मापीय टेंसर]] में क्वांटम संशोधन सम्मिलित हैं, जैसे कि वर्ल्डशीट[[ एक पल | इंस्टेंटन होता है]] । उदाहरण के लिए, चक्र के क्वांटम आयतन की गणना इस चक्र पर लिपटे [[झिल्ली (एम-सिद्धांत)|ब्रैन]] के द्रव्यमान से की जाती है। | ||
[[ पाश क्वांटम गुरुत्वाकर्षण |लूप क्वांटम गुरुत्व]] (एलक्यूजी) कहे जाने वाले क्वांटम गुरुत्व के वैकल्पिक दृष्टिकोण में, वाक्यांश क्वांटम ज्यामिति सामान्यतः एलक्यूजी के अंदर [[वैज्ञानिक औपचारिकता|औपचारिकता]] को संदर्भित करता है, जहाँ ज्यामिति के सम्बन्ध में सूचना प्राप्त करने वाले वेधशालाएँ अब [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट अंतरिक्ष]] पर उचित प्रकार से परिभाषित ऑपरेटर हैं। विशेष रूप से, कुछ भौतिक वेधशालाओं, जैसे कि क्षेत्र में [[असतत स्पेक्ट्रम (भौतिकी)|असतत स्पेक्ट्रम]] होता है। यह भी दिखाया गया है कि लूप क्वांटम ज्यामिति [[गैर-कम्यूटेटिव ज्यामिति|गैर-विनिमेय]] है।<ref>{{citation | [[ पाश क्वांटम गुरुत्वाकर्षण |लूप क्वांटम गुरुत्व]] (एलक्यूजी) कहे जाने वाले क्वांटम गुरुत्व के वैकल्पिक दृष्टिकोण में, वाक्यांश क्वांटम ज्यामिति सामान्यतः एलक्यूजी के अंदर [[वैज्ञानिक औपचारिकता|औपचारिकता]] को संदर्भित करता है, जहाँ ज्यामिति के सम्बन्ध में सूचना प्राप्त करने वाले वेधशालाएँ अब [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट अंतरिक्ष]] पर उचित प्रकार से परिभाषित ऑपरेटर हैं। विशेष रूप से, कुछ भौतिक वेधशालाओं, जैसे कि क्षेत्र में [[असतत स्पेक्ट्रम (भौतिकी)|असतत स्पेक्ट्रम]] होता है। यह भी दिखाया गया है कि लूप क्वांटम ज्यामिति [[गैर-कम्यूटेटिव ज्यामिति|गैर-विनिमेय]] है।<ref>{{citation | ||
Line 24: | Line 24: | ||
}}.</ref> | }}.</ref> | ||
यह संभव है ( | यह संभव है (किन्तु असंभाव्य माना जाता है) कि ज्यामिति की यह कठोरता से परिमाणित स्ट्रिंग सिद्धांत से उत्पन्न होने वाली ज्यामिति की क्वांटम छवि के अनुरूप होगी। | ||
अधिक सफल, दृष्टिकोण, जो पूर्व सिद्धांतों से अंतरिक्ष-समय की ज्यामिति को पुनः बनाने का प्रयास करता है, [[असतत लोरेंट्ज़ियन क्वांटम गुरुत्व]] है। | अधिक सफल, दृष्टिकोण, जो पूर्व सिद्धांतों से अंतरिक्ष-समय की ज्यामिति को पुनः बनाने का प्रयास करता है, [[असतत लोरेंट्ज़ियन क्वांटम गुरुत्व]] है। |
Revision as of 10:17, 29 April 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
सैद्धांतिक भौतिकी में, क्वांटम ज्यामिति अवधारणाओं को सामान्यीकृत करने वाली गणितीय अवधारणाओं का समूह है, जिसका अध्ययन प्लैंक लंबाई की तुलना में दूरी के स्तर पर भौतिक घटनाओं का वर्णन करने के लिए आवश्यक है। इन दूरियों पर, क्वांटम यांत्रिकी का भौतिक घटनाओं पर गंभीर प्रभाव पड़ता है।
क्वांटम गुरुत्व
क्वांटम गुरुत्व का प्रत्येक सिद्धांत क्वांटम ज्यामिति शब्द का उपयोग भिन्न प्रकार से करता है। स्ट्रिंग सिद्धांत, गुरुत्वाकर्षण के क्वांटम सिद्धांत के लिए प्रमुख, क्वांटम ज्यामिति शब्द का उपयोग टी-द्वैत और अन्य ज्यामितीय द्वंद्व, दर्पण समरूपता, टोपोलॉजी-परिवर्तित संक्रमण, न्यूनतम संभव दूरी स्तर, जैसे विदेशी घटनाओं का वर्णन करने के लिए करता है।[clarification needed] अन्य प्रभाव जो अंतर्ज्ञान को आह्वान देते हैं। अधिक प्रौद्योगिकी रूप से, क्वांटम ज्यामिति अंतरिक्षसमय मैनिफोल्ड के आकार को संदर्भित करता है जैसा कि डी-ब्रेन द्वारा अनुभव किया जाता है जिसमें मापीय टेंसर में क्वांटम संशोधन सम्मिलित हैं, जैसे कि वर्ल्डशीट इंस्टेंटन होता है । उदाहरण के लिए, चक्र के क्वांटम आयतन की गणना इस चक्र पर लिपटे ब्रैन के द्रव्यमान से की जाती है।
लूप क्वांटम गुरुत्व (एलक्यूजी) कहे जाने वाले क्वांटम गुरुत्व के वैकल्पिक दृष्टिकोण में, वाक्यांश क्वांटम ज्यामिति सामान्यतः एलक्यूजी के अंदर औपचारिकता को संदर्भित करता है, जहाँ ज्यामिति के सम्बन्ध में सूचना प्राप्त करने वाले वेधशालाएँ अब हिल्बर्ट अंतरिक्ष पर उचित प्रकार से परिभाषित ऑपरेटर हैं। विशेष रूप से, कुछ भौतिक वेधशालाओं, जैसे कि क्षेत्र में असतत स्पेक्ट्रम होता है। यह भी दिखाया गया है कि लूप क्वांटम ज्यामिति गैर-विनिमेय है।[1]
यह संभव है (किन्तु असंभाव्य माना जाता है) कि ज्यामिति की यह कठोरता से परिमाणित स्ट्रिंग सिद्धांत से उत्पन्न होने वाली ज्यामिति की क्वांटम छवि के अनुरूप होगी।
अधिक सफल, दृष्टिकोण, जो पूर्व सिद्धांतों से अंतरिक्ष-समय की ज्यामिति को पुनः बनाने का प्रयास करता है, असतत लोरेंट्ज़ियन क्वांटम गुरुत्व है।
क्वांटम राज्य विभेदक रूपों के रूप में
वेज उत्पाद का उपयोग करते हुए क्वांटम राज्यों को व्यक्त करने के लिए विभेदक रूपों का उपयोग किया जाता है:[2]
जहां स्थिति सदिश है:
अंतर मात्रा तत्व है:
और x1, x2, x3 निर्देशांक का इच्छानुसार समुच्चय है, ऊपरी सूचकांक संकेतन विपरीतता का संकेत देते हैं, निचले सूचकांक सहप्रसरण का संकेत देते हैं, इसलिए स्पष्ट रूप से अंतर रूप में क्वांटम स्थिति है:
ओवरलैप इंटीग्रल द्वारा दिया गया है:
विभेदक रूप में यह है:
स्थान R के किसी क्षेत्र में कण के मिलने की संभावना उस क्षेत्र पर अभिन्न द्वारा दिया गया है:
नियमानुसार तरंग फलन सामान्यीकृत हो। जब R पूर्ण 3डी स्थिति स्थान है, तो कण उपस्थित होने पर इंटीग्रल 1 होना चाहिए।
विभेदक रूप वक्र और सतहों की ज्यामिति का समन्वय स्वतंत्र प्रकार से वर्णन करने के लिए दृष्टिकोण है। क्वांटम यांत्रिकी में, आयताकार कार्टेशियन निर्देशांक में आदर्श स्थितियाँ होती हैं, जैसे कि संभावित कुआँ, बॉक्स में कण, क्वांटम हार्मोनिक ऑसिलेटर, और गोलाकार ध्रुवीय निर्देशांक जैसे परमाणुओं और अणुओं में इलेक्ट्रॉनों में अधिक यथार्थवादी सन्निकटन होता है। सामान्यता के लिए, औपचारिकता जिसका उपयोग किसी भी समन्वय प्रणाली में किया जा सकता है वह उपयोगी है।
यह भी देखें
संदर्भ
- ↑ Ashtekar, Abhay; Corichi, Alejandro; Zapata, José A. (1998), "Quantum theory of geometry. III. Non-commutativity of Riemannian structures", Classical and Quantum Gravity, 15 (10): 2955–2972, arXiv:gr-qc/9806041, Bibcode:1998CQGra..15.2955A, doi:10.1088/0264-9381/15/10/006, MR 1662415, S2CID 250895945.
- ↑ The Road to Reality, Roger Penrose, Vintage books, 2007, ISBN 0-679-77631-1
अग्रिम पठन
- Supersymmetry, Demystified, P. Labelle, McGraw-Hill (USA), 2010, ISBN 978-0-07-163641-4
- Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 9780131461000
- Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546 9
- Quantum Field Theory, D. McMahon, Mc Graw Hill (USA), 2008, ISBN 978-0-07-154382-8