बृहत् वृत्त: Difference between revisions

From Vigyanwiki
No edit summary
Line 70: Line 70:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/04/2023]]
[[Category:Created On 25/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 08:06, 16 May 2023

बड़ा वृत्त गोले को दो समान अर्धगोले में विभाजित करता है।

गणित में, बड़ा वृत्त या ऑर्थोड्रोम वृत्त का वृत्ताकार प्रतिच्छेदन (ज्यामिति) एवं समतल (ज्यामिति) आपतन (ज्यामिति) वृत्त का केंद्र (ज्यामिति) होता है।[1][2]

बड़े वृत्त का कोई भी वृत्ताकार चाप, वृत्त का भूगणितीय होता है, इसलिए वृत्ताकार ज्यामिति में बड़े वृत्त यूक्लिडियन अंतरिक्ष में रेखा (ज्यामिति) के प्राकृतिक अनुरूप होते हैं। वृत्त पर भिन्न-भिन्न गैर-एंटीपोडल बिंदु (ज्यामिति) की किसी भी जोड़ी के लिए, दोनों के मध्य से प्रवाहित होने वाला बड़ा चक्र है। (किसी भी बिंदु से होकर जाने वाला प्रत्येक बड़ा वृत्त अपने प्रतिव्यास बिंदु से होकर भी प्रवाहित होता है, इसलिए दो प्रतिव्यास बिंदुओं के माध्यम से असीम रूप से कई बड़े वृत्त होते हैं।) वृत्त पर दो भिन्न-भिन्न बिंदुओं के मध्य दो बड़े वृत्त के अल्प चाप को लघु चाप कहा जाता है, एवं उनके मध्य सबसे अल्प सतह-पथ है। इस चाप की लंबाई बिंदुओं ( वृत्त पर आंतरिक मीट्रिक) के मध्य की महान-वृत्त दूरी है, एवं दो बिंदुओं एवं वृत्त के केंद्र द्वारा गठित केंद्रीय कोण के कोण माप के समानुपाती होती है।

सबसे बड़ा वृत्त है, जिसे किसी दिए गए वृत्त पर खींचा जा सकता है। किसी भी बड़े वृत्त का कोई भी व्यास वृत्त के व्यास के साथ मेल खाता है, एवं इसलिए प्रत्येक बड़े वृत्त के साथ केंद्रित वस्तु है एवं समान त्रिज्या सम्मिलित करते है। किसी भी अन्य गोले को अल्प वृत्त कहा जाता है, एवं यह उस वृत्त का प्रतिच्छेदन है जिसके केंद्र से कोई समतल प्रवाहित नहीं होता है। अल्प वृत्त यूक्लिडियन अंतरिक्ष में मंडलियों के वृत्ताकार-ज्यामिति एनालॉग होते हैं।

यूक्लिडियन 3-अंतरिक्ष में प्रत्येक वृत्त उचित गोले का बड़ा वृत्त है।

बड़े वृत्त से घिरी हुई डिस्क (गणित) को बड़ी डिस्क कहा जाता है, यह गेंद (ज्यामिति) एवं उसके केंद्र से प्रवाहित होने वाले समतल का प्रतिच्छेदन है। उच्च आयामों में, n वृत्त पर बड़े वृत्त 2-तलों के साथ n-वृत्त का प्रतिच्छेदन हैं, जो यूक्लिडियन अंतरिक्ष Rn + 1 में उत्पत्ति के माध्यम से प्रवाहित होते हैं। .

सबसे अल्प पथों की व्युत्पत्ति

यह प्रमाणित करने के लिए कि बड़े वृत्त का लघु चाप वृत्त की सतह पर दो बिंदुओं को जोड़ने वाला सबसे अल्प पथ है, इसमें विविधताओं की कलन प्रारम्भ की जा सकती है।

बिंदु से सभी नियमित पथों की कक्षा पर विचार करें दूसरे बिंदु पर . वृत्ताकार निर्देशांक प्रस्तुत करे जिससे उत्तरी ध्रुव से मेल खाता है। वृत्त पर कोई भी वक्र जो किसी भी ध्रुव को नहीं काटता है, संभवत: अंतिम बिंदुओं को त्यागकर, पैरामीट्रिज्ड किया जा सकता है।

हम अनुमति दें मनमाना वास्तविक मूल्यों को ग्रहण करने के लिए। इन निर्देशांकों में अपरिमेय चाप की लंबाई है।

तो वक्र की लंबाई से को द्वारा दिए गए वक्र का कार्यात्मक (गणित) है।

यूलर-लैग्रेंज समीकरण के अनुसार, यदि एवं केवल कम किया जाता है।

,

जहाँ है -स्वतंत्र स्थिरांक, एवं

इन दोनों के प्रथम समीकरण से यह प्राप्त किया जा सकता है।

.

दोनों पक्षों को एकीकृत करना एवं सीमा की स्थिति पर विचार करना, का वास्तविक समाधान शून्य है। इस प्रकार, एवं 0 एवं के मध्य कोई भी मान हो सकता है, , यह दर्शाता है कि वक्र वृत्त के याम्योत्तर पर स्थित होना चाहिए। कार्तीय निर्देशांक में, यह है.

जो कि मूल बिंदु से होकर जाने वाला तल है, अर्थात, वृत्त का केंद्र होता है।

अनुप्रयोग

खगोलीय क्षेत्र पर महान वृत्तों के कुछ उदाप्रत्येकणों में [[आकाशीय क्षितिज]], [[आकाशीय भूमध्य रेखा]] एवं क्रांतिवृत्त सम्मिलित हैं। वायु या समुद्र के लिए पृथ्वी की सतह पर दीर्घवृत्ताभ पर भू-भौतिकी के स्थिर सन्निकटन के रूप में बृहत् वृत्त का भी उपयोग किया जाता है, बृहत् वृत्त मार्गदर्शन (चूकि यह पृथ्वी का आकार है), साथ ही वृत्ताकार आकाशीय पिंडों पर भी होता है।

आदर्श पृथ्वी की भूमध्य रेखा बड़ा चक्र है एवं कोई भी मध्याह्न रेखा एवं इसके विपरीत भूमध्य रेखा महान चक्र बनाती है। एवं बड़ा वृत्त वह है जो भूमि एवं जल गोलार्धों को विभाजित करता है। बड़ा वृत्त पृथ्वी को पृथ्वी के दो गोलार्द्धों में विभाजित करता है एवं यदि बड़ा वृत्त बिंदु से होकर प्रवाहित होता है तो उसे स्वयं प्रतिध्रुव बिंदु से होकर प्रवाहित होना होगा।

फंक ट्रांसफॉर्म क्षेत्र के सभी महान मंडलियों के साथ फंक्शन को एकीकृत करता है।

यह भी देखें

संदर्भ

  1. W., Weisstein, Eric. "ग्रेट सर्किल - वोल्फ्राम मैथवर्ल्ड से". mathworld.wolfram.com (in English). Retrieved 2022-09-30.{{cite web}}: CS1 maint: multiple names: authors list (link)
  2. Weintrit, Adam; Kopcz, Piotr (2014). नेविगेशन में लॉक्सोड्रोम (रंब लाइन), ऑर्थोड्रोम (ग्रेट सर्कल), ग्रेट एलिप्से और जियोडेटिक लाइन (जियोडेसिक). USA: CRC Press, Inc. ISBN 978-1-138-00004-9.


बाप्रत्येकी संबंध