बाइनरी डेटा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 58: Line 58:
* {{cite book |title=Modelling Binary Data |first=David |last=Collett |year=2002 |publisher=CRC Press |edition=Second |isbn=9781420057386}}
* {{cite book |title=Modelling Binary Data |first=David |last=Collett |year=2002 |publisher=CRC Press |edition=Second |isbn=9781420057386}}
{{refend}}
{{refend}}
[[Category: सांख्यिकीय डेटा प्रकार]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/04/2023]]
[[Category:Created On 25/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:सांख्यिकीय डेटा प्रकार]]

Latest revision as of 17:24, 16 May 2023

बाइनरी डेटा वह डेटा है जिसकी इकाई मात्र दो संभावित अवस्थाओं को ग्रहण कर सकती है। इन्हें अधिकांशतः बाइनरी अंक प्रणाली और बूलियन बीजगणित के अनुसार 0 और 1 के रूप में लेबल जाता है।

बाइनरी डेटा कई अलग-अलग विधि और वैज्ञानिक क्षेत्रों में होता है, जहां इसे कंप्यूटर विज्ञान में बिट (बाइनरी अंक) सहित विभिन्न नामों से बुलाया जा सकता है, गणितीय तर्क और संबंधित डोमेन में सत्य मान और सांख्यिकी में बाइनरी चर है।

गणितीय और संयोजक मूल

असतत चर जो मात्र एक स्थिति ले सकता है उसमें शून्य सूचना होती है, और 2 1 के बाद अगली प्राकृतिक संख्या है। यही कारण है कि बिट, मात्र दो संभावित मानों वाला चर सूचना की एक मानक प्राथमिक इकाई है।

n बिट के संग्रह में 2n अवस्थाएँ हो सकती हैं: विवरण के लिए बाइनरी संख्या देखें। असतत चरों के संग्रह के स्थिति की संख्या चरों की संख्या पर घातीय फलन पर निर्भर करती है, और मात्र प्रत्येक चर के स्थिति की संख्या पर घात नियम के रूप में हैं। दस बिट में तीन दशमलव अंकों (1000) से अधिक (1024) अवस्थाएँ होती हैं। 10k बिट सूचना (एक संख्या या कुछ और) का प्रतिनिधित्व करने के लिए पर्याप्त से अधिक हैं जिसकी लिए 3k दशमलव अंक की आवश्यकता होती है इसलिए त्रैमासिक अंक प्रणाली, 4, 5, 6, 7, 8, 9, नेपर... स्थिति के साथ असतत चर में निहित सूचना को कभी भी दो, तीन, या चार गुना अधिक बिट आवंटित करके बदला जा सकता है। इसलिए, 2 के अतिरिक्त किसी अन्य छोटी संख्या का उपयोग लाभ प्रदान नहीं करता है।

एक हास आरेख: निर्देशित आरेख के रूप में बूलियन बीजगणित का प्रतिनिधित्व

इसके अतिरिक्त, बूलियन बीजगणित बिट के संग्रह के लिए सुविधाजनक गणितीय संरचना प्रदान करते है, जिसमें प्रस्तावित चर के संग्रह का संदर्भ है। कंप्यूटर विज्ञान में बूलियन बीजगणित संचालन को बिटवार संचालन के रूप में जाना जाता है। बूलियन फलन का सैद्धांतिक रूप से ठीक रूप से अध्ययन किया जाता है और सरलता से प्रयुक्त किया जा सकता है, या तो कंप्यूटर प्रोग्राम के साथ या अंकीय इलेक्ट्रॉनिकी में तथाकथित तर्क गेट द्वारा यह विभिन्न डेटा का प्रतिनिधित्व करने के लिए बिट के उपयोग में योगदान देते है, यहां तक ​​​​कि मूल रूप से बाइनरी नहीं है।

सांख्यिकी में

डेटा में, बाइनरी डेटा सांख्यिकीय डेटा प्रकार होता है जिसमें स्पष्ट डेटा होता है जो A और B, या चित व पट जैसे दो संभावित मान ले सकते है। इसे द्विभाजित डेटा भी कहा जाता है, और प्राचीन पद क्वान्टमी डेटा है।[1] दो मान को अधिकांशतः सामान्य रूप से सफलता और विफलता के रूप में संदर्भित किया जाता है।[1] श्रेणीबद्ध डेटा के रूप के रूप में, बाइनरी डेटा नाममात्र डेटा है, जिसका अर्थ है कि मान गुणात्मक गुण हैं और संख्यात्मक रूप से तुलना नहीं की जा सकती। चूँकि, मानों को अधिकांशतः 1 या 0 के रूप में दर्शाया जाता है, जो एकल परीक्षण में सफलताओं की संख्या की गणना के अनुरूप होते है: 1 (सफलता) या 0 (विफलता) ; § गणना देखें।

अधिकांशतः, बाइनरी डेटा का उपयोग दो वैचारिक रूप से विपरीत मानों में से का प्रतिनिधित्व करने के लिए किया जाता है, जैसे:

  • एक प्रयोग के परिणाम (सफलता या विफलता)
  • हाँ-नहीं प्रश्न का उत्तर (हाँ या नहीं)
  • कुछ विशेषता की उपस्थिति या अनुपस्थिति (उपस्थित है या उपस्थित नहीं है)
  • किसी प्रस्ताव की सत्यता या असत्यता (सत्य या असत्य, उचित या अनुचित)

चूँकि, इसका उपयोग उन डेटा के लिए भी किया जा सकता है, जिन्हें मात्र दो संभावित मान माना जाता है, तथापि वे वैचारिक रूप से विरोध न करते हों या अवधारणात्मक रूप से समष्टि में सभी संभावित मान का प्रतिनिधित्व करते हों। उदाहरण के लिए, संयुक्त राज्य अमेरिका, अर्थात गणतांत्रिक दल (संयुक्त राज्य) या लोकतांत्रिक दल (संयुक्त राज्य) में चुनावों में मतदाताओं के दल के चयन का प्रतिनिधित्व करने के लिए अधिकांशतः बाइनरी डेटा का उपयोग किया जाता है। इस स्थिति में, कोई अंतर्निहित कारण नहीं है कि क्यों मात्र दो राजनीतिक दल का अस्तित्व होना चाहिए, और वस्तुतः, अन्य दल अमेरिका में उपस्थित हैं, किंतु वे इतने छोटे हैं कि उन्हें सामान्यतः अनदेखा कर दिया जाता है। विश्लेषण उद्देश्यों के लिए बाइनरी चर के रूप में मॉडलिंग निरंतर डेटा (या 2 से अधिक श्रेणियों का श्रेणीबद्ध डेटा) को द्विभाजनकरण (एक द्विभाजन बनाना) कहा जाता है। सभी असंततकरण के जैसे, इसमें असंततकरण की त्रुटि सम्मिलित है, किंतु लक्ष्य त्रुटि के अतिरिक्त कुछ मूल्यवान सीखना है: इसे हाथ में उद्देश्य के लिए नगण्य के रूप में मानना, किंतु यह याद रखना कि इसे सामान्य रूप से नगण्य नहीं माना जा सकता है।

बाइनरी चर

बाइनरी चर बाइनरी प्रकार का यादृच्छिक चर है, जिसका अर्थ है दो संभावित मान। स्वतंत्र और समान रूप से वितरित यादृच्छिक चर (आई.आई.डी.) बाइनरी चर बर्नौली वितरण का पालन करते हैं, किंतु सामान्य बाइनरी डेटा में आई.आई.डी से आने की आवश्यकता नहीं होती है। चर आई.आई.डी. की कुल संख्या बाइनरी चर (समतुल्य रूप से, 1 या 0 के रूप में कोडित आई.आई.डी. बाइनरी चर के योग) द्विपद वितरण का पालन करते हैं, किंतु जब बाइनरी चर आई.आई.डी नहीं होते हैं, तो वितरण को द्विपद होने की आवश्यकता नहीं होती है।

गणना

श्रेणीबद्ध डेटा के जैसे, बाइनरी डेटा को प्रत्येक संभावित मान के लिए निर्देशांक लिखकर और होने वाले मान के लिए 1 की गणना करके, और न होने वाले मान के लिए 0 की गणना करके डेटा की सरणी डेटा संरचना में परिवर्तित किया जा सकता है।[2] उदाहरण के लिए, यदि मान A और B हैं, तो डेटा समूह A, A, B को (1, 0), (1, 0), (0, 1) के रूप में गणना में दर्शाया जा सकता है। एक बार गणना में परिवर्तित हो जाने पर, बाइनरी डेटा को समूहीकृत किया जा सकता है और गणना को जोड़ा जा सकता है। उदाहरण के लिए, यदि समूह A, A, B को समूहीकृत किया जाता है, तो कुल संख्याएँ (2, 1) : 2 A's और 1 B (3 परीक्षणों में से) हैं।

चूंकि मात्र दो संभावित मान हैं, इसे मान को सफलता और दूसरे को विफलता के रूप में मानते हुए, सफलता के मान को 1 के रूप में और विफलता को 0 के रूप में कोडित करके एकल गणना (एक अदिश मान) के लिए सरल बनाया जा सकता है (मात्र का उपयोग करके) सफलता मान के लिए समन्वय, विफलता मान के लिए समन्वय नहीं)। उदाहरण के लिए, यदि मान A को सफलता माना जाता है (और इस प्रकार B को विफलता माना जाता है), तो डेटा समूह A, A, B को 1, 1, 0 के रूप में दर्शाया जाएगा। जब इसे समूहीकृत किया जाता है, तो मान जोड़े जाते हैं, जबकि संख्या परीक्षण का सामान्यतः निहित ट्रैक किया जाता है। उदाहरण के लिए, A, A, B को 1 + 1 + 0 = 2 सफलताओं ( परीक्षणों में से) के रूप में समूहीकृत किया जाएगा। दूसरी ओर जाकर, के साथ डेटा की गणना करना बाइनरी डेटा है, जिसमें दो वर्ग 0 (विफलता) या 1 (सफलता) हैं।

आई.आई.डी. बाइनरी चर परीक्षणों की कुल संख्या (समूहित डेटा में अंक) के साथ एक द्विपद वितरण का पालन करते हैं।

प्रतिगमन

अनुमानित परिणामों पर प्रतिगमन विश्लेषण जो बाइनरी चर हैं, बाइनरी प्रतिगमन के रूप में जाना जाता है; जब बाइनरी डेटा को गणना डेटा में परिवर्तित किया जाता है और आई.आई.डी के रूप में मॉडलिंग की जाती है, चर (इसलिए उनका द्विपद वितरण है), द्विपद प्रतिगमन का उपयोग किया जा सकता है। बाइनरी डेटा के लिए सबसे सामान्य प्रतिगमन विधियाँ तार्किक प्रतिगमन, प्रोबिट प्रतिगमन या संबंधित प्रकार के बाइनरी विकल्प मॉडल हैं।

इसी प्रकार आई.आई.डी. दो से अधिक श्रेणियों वाले श्रेणीबद्ध चर को बहुराष्ट्रीय प्रतिगमन के साथ प्रतिरूपित किया जा सकता है। गैर-आई.आई.डी. बाइनरी डेटा को अधिक जटिल वितरणों द्वारा प्रतिरूपित किया जा सकता है, जैसे कि बीटा-द्विपद वितरण (एक यौगिक वितरण)। वैकल्पिक रूप से संबंध को सामान्यीकृत रैखिक मॉडल, जैसे अर्ध- संभाव्यता और अर्ध-समानता मॉडल से विधियों का उपयोग करके निर्गम चर के वितरण को स्पष्ट रूप से मॉडल करने की आवश्यकता के बिना मॉडल किया जा सकता है; अतिपरिक्षेपण § द्विपद देखें।

कंप्यूटर विज्ञान में

सामान्य 24-बिट वर्ण गभीरता प्रतिबिंब के विपरीत, क्यूआर कोड केबाइनरी प्रतिबिंब, जो 1 बिट प्रति पिक्सेल का प्रतिनिधित्व करती है।

आधुनिक कंप्यूटर में, बाइनरी डेटा किसी भी डेटा को उच्च स्तर पर व्याख्या करने या किसी अन्य रूप में डेटा रूपांतरण के अतिरिक्त बाइनरी रूप में प्रदर्शित करने के लिए संदर्भित करते है। निम्नतम स्तर पर, बिट को स्थिरता उपकरण जैसे फ्लिप-फ्लॉप (इलेक्ट्रॉनिकी) में संग्रहित किया जाता है। जबकि अधिकांश बाइनरी डेटा का प्रतीकात्मक अर्थ होता है (डोंट केयर के अतिरिक्त) सभी बाइनरी डेटा संख्यात्मक नहीं होते हैं। कुछ बाइनरी डेटा अनुदेश (कंप्यूटर विज्ञान) से मेल खाते हैं, जैसे कि प्रोसेसर रजिस्टर के डेटा को नियंत्रण ईकाई द्वारा विकोडन किया जाता है, जो कि अनयन-विकोडन -निष्पादित चक्र के साथ होते है। निष्पादन कारणों से कंप्यूटर संभवतः ही कभी अलग-अलग बिट को संशोधित करते हैं। इसके अतिरिक्त, डेटा निश्चित संख्या में बिट के समूहों में डेटा संरचना संरेखण है, सामान्यतः 1 बाइट (8 बिट) इसलिए, कंप्यूटर में बाइनरी डेटा वस्तुतः बाइट के अनुक्रम होते हैं। उच्च स्तर पर, 32-बिट प्रणाली के लिए 1 पद (कम्प्यूटर संरचना) (4 बाइट) के समूहों में और 64-बिट प्रणाली के लिए 2 पदों में डेटा उपयोग किया जाता है।

निर्देश (कंप्यूटर विज्ञान) और सूचना प्रौद्योगिकी क्षेत्र में, बाइनरी डेटा पद अधिकांशतः टेक्स्ट-आधारित डेटा के विपरीत होते है, जो किसी भी प्रकार के डेटा का संदर्भ देते है जिसे टेक्स्ट के रूप में व्याख्या नहीं किया जा सकता है। टेक्स्ट बनाम बाइनरी भेद कभी-कभी फ़ाइल की अर्थगत संदर्भ को संदर्भित कर सकते है (उदाहरण के लिए लिखित दस्तावेज़ बनाम अंकीय प्रतिबिंब)। चूँकि, यह अधिकांशतः विशेष रूप से संदर्भित करते है कि फ़ाइल के अलग-अलग बाइट टेक्स्ट के रूप में व्याख्या करने योग्य हैं (अक्षरों को सांकेतिक अक्षरों में बदलना देखें) या व्याख्या नहीं की जा सकती है। जब यह अंतिम अर्थ अभिप्रेत है तो अधिक विशिष्ट पद बाइनरी प्रारूप और टेक्स्ट (यूएल) प्रारूप कभी-कभी उपयोग किए जाते हैं। अर्थगत टेक्स्टुअल डेटा को बाइनरी प्रारूप में प्रदर्शित किया जा सकता है (उदाहरण के लिए जब संपीडित किया जाता है या कुछ प्रारूप में जो विभिन्न प्रकार के प्रारूप कोड को मिश्रित करते हैं, जैसा कि माइक्रोसॉफ्ट वर्ड द्वारा उपयोग किए जाने वाले डॉक्यूमेंट (कंप्यूटिंग) में होते है; इसके विपरीत, प्रतिबिंब डेटा को कभी-कभी टेक्स्ट प्रारूप में दर्शाया जाता है (उदाहरण के लिए एक्स विंडो प्रणाली में उपयोग किया जाने वाला एक्स पिक्समैप प्रतिबिंब प्रारूप)।

1 और 0 और कुछ नहीं किंतु मात्र दो अलग-अलग वोल्टता स्तर हैं। आप कंप्यूटर को उच्च वोल्टता के लिए 1 और निम्न वोल्टता के लिए 0 समझा सकते हैं। दो वोल्टता स्तरों को संचयन करने के कई अलग-अलग विधि हैं। यदि आपने फ़्लॉपी देखा है, तो आपको चुंबकीय टेप मिलेगा जिसमें लोह चुंबकीय पदार्थ का लेप होता है, यह प्रकार का अनुचुंबकीय पदार्थ होता है, जिसमें पदार्थ के माध्यम से धाराओं को हटाने के बाद भी अवशेष चुंबकीय क्षेत्र देने के लिए विशेष दिशा में डोमेन संरेखित होते हैं या चुंबकीय क्षेत्र चुंबकीय टेप में डेटा लोड करने के समय, डोमेन के सेव किए गए अभिविन्यास को कॉल करने के लिए चुंबकीय क्षेत्र को दिशा में पारित किया जाता है और चुंबकीय क्षेत्र को दूसरी दिशा में पारित किया जाता है, तो डोमेन का सेव किया गया अभिविन्यास 0 होता है। इस प्रकार सामान्यतः, 1 और 0 डेटा संग्रहीत होते हैं।[3]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Collett 2002, p. 1.
  2. Agresti, Alan (2012). "1.2.2 Multinomial Distribution". श्रेणीबद्ध डेटा विश्लेषण (3rd ed.). Wiley. p. 6. ISBN 978-0470463635.
  3. Gul, Najam (2022-08-18). "How do different types of Data get stored in form of 0 and 1?". Curiosity Tea (in English). Retrieved 2023-01-05.
  • Collett, David (2002). Modelling Binary Data (Second ed.). CRC Press. ISBN 9781420057386.