संरचनात्मक ध्वनिकी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
संरचनात्मक ध्वनिकी संरचनाओं में यांत्रिक तरंग का अध्ययन है और [[लहर]] कैसे आसन्न मीडिया के साथ सूचना का आदान प्रदान और विकिरण करते हैं। संरचनात्मक ध्वनिकी के क्षेत्र को प्रायः यूरोप और एशिया में विब्रो ध्वनिकी कहा जाता है। | संरचनात्मक ध्वनिकी संरचनाओं में यांत्रिक तरंग का अध्ययन है और [[लहर]] कैसे आसन्न मीडिया के साथ सूचना का आदान प्रदान और विकिरण करते हैं। संरचनात्मक ध्वनिकी के क्षेत्र को प्रायः यूरोप और एशिया में विब्रो ध्वनिकी कहा जाता है। जो लोग संरचनात्मक ध्वनिकी के क्षेत्र में कार्य करते हैं उन्हें संरचनात्मक ध्वनि-विज्ञानी के रूप में जाना जाता है। संरचनात्मक ध्वनिकी का क्षेत्र [[शोर|रव]], [[ट्रांसड्यूसर|पारगमन]], [[पानी के नीचे ध्वनिकी|अंतर्जलीय ध्वानिकी]] और [[भौतिक ध्वनिकी]] सहित ध्वनिकी के कई अन्य क्षेत्रों से निकटता से संबंधित हो सकता है। | ||
== संरचनाओं में कंपन<ref>{{citation |url=https://www.researchgate.net/publication/243716526 |title=STRUCTURAL ACOUSTICS Tutorial I, Vibrations in structures |accessdate=2021-01-28|author=Stephen A. Hambric, Applied Research Lab at The Pennsylvania State University}}</ref>== | == संरचनाओं में कंपन<ref>{{citation |url=https://www.researchgate.net/publication/243716526 |title=STRUCTURAL ACOUSTICS Tutorial I, Vibrations in structures |accessdate=2021-01-28|author=Stephen A. Hambric, Applied Research Lab at The Pennsylvania State University}}</ref>== |
Revision as of 14:08, 12 May 2023
संरचनात्मक ध्वनिकी संरचनाओं में यांत्रिक तरंग का अध्ययन है और लहर कैसे आसन्न मीडिया के साथ सूचना का आदान प्रदान और विकिरण करते हैं। संरचनात्मक ध्वनिकी के क्षेत्र को प्रायः यूरोप और एशिया में विब्रो ध्वनिकी कहा जाता है। जो लोग संरचनात्मक ध्वनिकी के क्षेत्र में कार्य करते हैं उन्हें संरचनात्मक ध्वनि-विज्ञानी के रूप में जाना जाता है। संरचनात्मक ध्वनिकी का क्षेत्र रव, पारगमन, अंतर्जलीय ध्वानिकी और भौतिक ध्वनिकी सहित ध्वनिकी के कई अन्य क्षेत्रों से निकटता से संबंधित हो सकता है।
संरचनाओं में कंपन[1]
संपीड़न और कतरनी तरंगें (समानुवर्ती, सजातीय सामग्री)
संपीड़न तरंगें,(प्रायः अनुदैर्ध्य तरंगों के रूप में संदर्भित) तरंग गति के समान दिशा (या विपरीत) में प्रसार और अनुबंध करती हैं। तरंग समीकरण x दिशा में तरंग की गति को निर्धारित करता है।
जहाँ विस्थापन और अनुदैर्ध्य तरंग गति है। इसका एक आयाम में ध्वनिक तरंग समीकरण के समान रूप है। के अनुसार गुणधर्म संरचना(आयतन मापांक और घनत्व ) द्वारा निर्धारित किया जाता है
जब संरचना के दो आयाम तरंग दैर्ध्य (सामान्यतः बीम कहा जाता है) के संबंध में छोटे होते हैं, तो तरंग गति के स्थान पर यंग मापांक द्वारा निर्धारित होती है और इसके फलस्वरूप अनंत मीडिया की तुलना में धीमी होती हैं।
अपरूपण तरंगें अपरूपण कठोरता के कारण उत्पन्न होती हैं और एक समान समीकरण का अनुसरण करती हैं, किन्तु अनुप्रस्थ दिशा में होने वाले विस्थापन के साथ, तरंग गति के लंबवत होती है।
अपरूपण तरंग गति अपरूपण मापांक द्वारा नियंत्रित होती है जो और से कम होती है जिससे अपरूपण तरंगें अनुदैर्ध्य तरंगों की तुलना में धीमी हो जाती हैं।
बीम और प्लेट में बंकन तरंग
अधिकांश ध्वनि विकिरण बंकन (या फ्लेक्सुरल) तरंगों के कारण होते है, जो संरचना को उसी प्रकार अनुप्रस्थतः विकृत करते हैं जिस प्रकार वे प्रसारित होते हैं। बंकन तरंगें संपीड़न या कतरनी तरंगों की तुलना में अधिक जटिल होती हैं और भौतिक गुणों के साथ-साथ ज्यामितीय गुणों पर निर्भर करती हैं। परिक्षेपी होने के कारण भिन्न-भिन्न आवृत्तियाँ भिन्न-भिन्न गति से यात्रा करती हैं।
मॉडलिंग कंपन
जटिल संरचनाओं के कंपन की भविष्यवाणी करने के लिए परिमित तत्व विश्लेषण का उपयोग किया जा सकता है। एक परिमित अवयव विधि कंप्यूटर प्रोग्राम ज्यामिति अवयवों और भौतिक गुणों के आधार पर द्रव्यमान, कठोरता और अवमंदन को एकत्रित करके अनुप्रयुक्त भार के आधार पर स्पंदन प्रतिक्रिया के लिए हल करेगा।
ध्वनि-संरचना अंतःक्रिया[2]
द्रव-संरचना अंतःक्रिया
जब एक कंपन संरचना तरल पदार्थ के संपर्क में होती है तो अंतराफलक पर सामान्य कण वेग को संरक्षित किया जाना चाहिए (अर्थात समतुल्य होना चाहिए)। यह संरचना से कुछ ऊर्जा को तरल पदार्थ में निकृष्ट का कारण बनता है, जिनमें से कुछ ध्वनि के रूप में विकीर्ण हो जाती हैं तथा कुछ संरचना से दूर न जाते हुए उनके समीप ही रहती हैं। अधिकांश अभियान्त्रिकी अनुप्रयोगों के लिए, विब्रो-ध्वनिकी में सम्मिलित द्रव-संरचना की पारस्परिक क्रिया का संख्यात्मक अनुकरण परिमित तत्व विधि और सीमा तत्व विधि का योग करके प्राप्त किया जा सकता है।
यह भी देखें
- ध्वनि विज्ञान
- ध्वनिक तरंग समीकरण
- लैम्ब तरंग
- रैखिक प्रत्यास्थता
- रव नियंत्रण
- ध्वनि
- पृष्ठ ध्वनि तरंग
- तरंग
- तरंग समीकरण
संदर्भ
- ↑ Stephen A. Hambric, Applied Research Lab at The Pennsylvania State University, STRUCTURAL ACOUSTICS Tutorial I, Vibrations in structures, retrieved 2021-01-28
- ↑ Stephen A. Hambric and John B. Fahnline, Applied Research Lab at The Pennsylvania State University, STRUCTURAL ACOUSTICS Tutorial II, SOUND—STRUCTURE INTERACTION, retrieved 2021-01-28
- Fahy F., Gardonio P. (2007). Sound Structure Interaction (2nd ed.). Academic Press. pp. 60–61. ISBN 978-3-540-67458-0.
बाहरी संबंध
- asa.aip.org Archived 1996-11-19 at the Wayback Machine—Website of the Acoustical Society of America