रैखिक लोच गणितीय मॉडल ऐसा गणितीय प्रारूप है जिससे यह पता किया जाता है कि कैसे निर्धारित लोडिंग स्थितियों के कारण ठोस वस्तुएं विरूपण (भौतिकी) और आंतरिक रूप से तन्यता (यांत्रिकी) बन सकती हैं। यह अधिक सामान्य परिमित तन्यता सिद्धांत और यह यांत्रिकी की शाखा का सरलीकरण है।
रेखीय लोच की मौलिक रेखीयकरण धारणाएं हैं: अतिसूक्ष्म तन्यता सिद्धांत या छोटे विरूपण (या तन्यता) और तन्यता और तन्यता के घटकों के बीच रैखिक संबंध होता हैं। इसके अतिरिक्त रैखिक लोच केवल तन्यता वाली स्थिति के लिए मान्य है जो यील्ड (इंजीनियरिंग) का उत्पादन नहीं करते हैं।
ये धारणाएँ कई इंजीनियरिंग सामग्री और इंजीनियरिंग डिज़ाइन परिदृश्यों के लिए उचित हैं। अधिकांशतः परिमित तत्व विश्लेषण की सहायता से रैखिक लोच इसलिए संरचनात्मक विश्लेषण और इंजीनियरिंग प्रारूप में बड़े पैमाने पर उपयोग किया जाता है।
रैखिक लोचदार सीमा मूल्य समस्या को नियंत्रित करने वाले समीकरण संवेग के संरक्षण के लिए तीन टेन्सर आंशिक अंतर समीकरणों और छह अति सूक्ष्म तन्यता-विस्थापन क्षेत्र (यांत्रिकी) संबंधों पर आधारित हैं। अवकल समीकरणों की प्रणाली रैखिक समीकरण बीजगणितीय संघटक समीकरणों के सेट द्वारा पूरी की जाती है।
डायरेक्ट टेंसर फॉर्म
प्रत्यक्ष टेंसर रूप में जो समन्वय प्रणाली की पसंद से स्वतंत्र है, उक्त समीकरण इस प्रकार प्रदर्शित किया जाता हैं:[1]
संवेग किसी निकाय के लिए रेखीय संवेग, जो न्यूटन के गति के नियमों की अभिव्यक्ति है, न्यूटन का दूसरा नियम के अनुसार:
इनफिनिटिमल स्ट्रेन सिद्धांत या स्ट्रेन-विस्थापन समीकरण:
संवैधानिक समीकरण को लोचदार सामग्री के लिए, हुक के नियम द्वारा इसके भौतिक स्थिति का प्रतिनिधित्व करता है और अज्ञात तन्यता से संबंधित रहता है। हुक के नियम का सामान्य समीकरण है इस प्रकार हैं-
जहाँ कॉची तन्यता टेन्सर है, अतिसूक्ष्म तन्यता टेंसर है, विस्थापन (वेक्टर) है, चौथा क्रम कठोरता टेन्सर कहलाता हैं, यहाँ पर प्रति इकाई आयतन भौतिक बल है, द्रव्यमान घनत्व है, नाबला ऑपरेटर का प्रतिनिधित्व करता है, स्थानान्तरण का प्रतिनिधित्व करता है, समय के संबंध में दूसरी व्युत्पत्ति का प्रतिनिधित्व करता है, और दो दूसरे क्रम के टेंसरों का आंतरिक उत्पाद है जो विशेषकर दोहराए गए सूचकांकों पर योग को निहित रखता है)।
कार्तीय समन्वय रूप
आयताकार कार्टेशियन समन्वय प्रणाली के संबंध में घटकों के संदर्भ में व्यक्त होने वाले रैखिक लोच के लिए स्थिति समीकरण को इस प्रकार प्रदर्शित करते हैं:[1]
कॉची संवेग समीकरण:
जहां सबस्क्रिप्ट के लिए आशुलिपि है और दर्शाता है , कॉची स्ट्रेस (भौतिकी) टेंसर है, भौतिक बल घनत्व है, द्रव्यमान घनत्व है, और विस्थापन है। ये रेखीय समीकरणों की 3 प्रणाली हैं 6 स्वतंत्र अज्ञात (तन्यता) के साथ स्वतंत्रता समीकरण द्वारा इंजीनियरिंग संकेतन के रूप में इस प्रकार प्रदर्शित करते हैं:
विरूपण (यांत्रिकी) तन्यता या तन्यता विस्थापन समीकरण:
जहाँ तन्यता है। ये 9 स्वतंत्र अज्ञात (स्ट्रेन और विस्थापन) के साथ तन्यता और विस्थापन से संबंधित 6 स्वतंत्र समीकरण हैं। इंजीनियरिंग संकेतन में ये इस प्रकार हैं:
संवैधानिक समीकरण या हुक के नियम का समीकरण है:
जहाँ कठोरता टेंसर है। ये तन्यता और विकृति से संबंधित 6 स्वतंत्र समीकरण हैं। तन्यता और तन्यता टेंसरों की समरूपता की आवश्यकता से कई लोचदार स्थिरांक की समानता हो जाती है, जिससे विभिन्न तत्वों की संख्या 21 हो जाती है[2] इसे द्वारा प्रदर्शित करते हैं।
आइसोटोपिक सजातीय मीडिया के लिए इलास्टोस्टेटिक सीमा के मान से होने वाली समस्या के लिए 15 स्वतंत्र समीकरणों और समान संख्या में अज्ञात (3 संतुलन समीकरण, 6 तन्यता-विस्थापन समीकरण, और 6 संवैधानिक समीकरण) की प्रणाली बनाई जाती है। इस प्रकार सीमा शर्तों को निर्दिष्ट करते हुए सीमा मूल्य समस्या को पूर्ण रूप से परिभाषित किया जा सकता हैं। प्रणाली को हल करने के लिए सीमा मान समस्या की सीमा स्थितियों के अनुसार दो दृष्टिकोण विस्थापन सूत्रीकरण, और तन्यता सूत्रीकरण अपनाए जाते हैं।
गोलाकार निर्देशांक (r, θ, φ) जैसा कि सामान्यतः भौतिकी में उपयोग किया जाता है: रेडियल दूरी r, ध्रुवीय कोण θ (थीटा), और अज़ीमुथल कोण φ (phi)। प्रतीक ρ (रो) अधिकांशतः आर के अतिरिक्त प्रयोग किया जाता है।
गोलाकार निर्देशांक में तन्यता टेन्सर है
(ए) आइसोट्रोपिक (इन) सजातीय मीडिया
हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेन्सर तन्यता (परिणामस्वरूप आंतरिक तन्यता) और उपभेदों (परिणामस्वरूप विकृतियों) के बीच संबंध देता है। आइसोटोपिक माध्यम के लिए, कठोरता टेंसर की कोई पसंदीदा दिशा नहीं होती है: लागू बल समान विस्थापन (बल की दिशा के सापेक्ष) देगा, चाहे जिस दिशा में बल लगाया जाता हैं। आइसोटोपिक स्थिति में, कठोरता टेंसर लिखा जाता है:
जहाँ क्रोनकर डेल्टा है, K थोक मापांक (या असंपीड़्यता) है, और कतरनी मापांक (या कठोरता) है, जिसके लिए दो लोचदार मापांक निर्धारित किये जाते हैं। यदि माध्यम विषम होता हैं, तो आइसोट्रोपिक मॉडल का उपयोग किया जाता है इसके अतिरिक्त इसके माध्यम के लिए टुकड़े-टुकड़े पर स्थिर या कमजोर रूप से विषम स्थिति को दृढ़ता से अमानवीय चिकने मॉडल में, अनिसोट्रॉपी का हिसाब देना पड़ता है। यदि माध्यम सजातीय (रसायन विज्ञान) है, तो लोचदार मोडुली माध्यम में स्थिति से स्वतंत्र होगी तो संवैधानिक समीकरण को इस रूप में लिखा जा सकता है:
यह अभिव्यक्ति तन्यता को बाईं ओर अदिश भाग में अलग करती है जो अदिश दबाव से जुड़ा हो सकता है, और दाईं ओर ट्रेसलेस भाग जो कतरनी बलों से जुड़ा हो सकता है। सरल अभिव्यक्ति है:[3][4]
जहां λ लैम पैरामीटर लैम का पहला पैरामीटर है। चूँकि संवैधानिक समीकरण केवल रेखीय समीकरणों का समूह है, तन्यता को तन्यता के कार्य के रूप में व्यक्त किया जा सकता है:[5]
जो फिर से, बाईं ओर अदिश भाग और दाईं ओर ट्रेसलेस कतरनी भाग है। इसके लिए समीकरण इस प्रकार हैं:
जहाँ पोइसन का अनुपात है और यंग का मापांक है।
इलास्टोस्टैटिक्स
इलास्टोस्टैटिक्स संतुलन की शर्तों के अनुसार रैखिक लोच का अध्ययन है, जिसमें लोचदार भौतिक पर सभी बलों का योग शून्य होता है, और विस्थापन समय का कार्य नहीं होता है। इस प्रकार इस प्रणाली के लिए रैखिक गति का मान कुछ इस प्रकार होता हैं-
इंजीनियरिंग संकेतन में (कतरनी तन्यता के रूप में टाऊ के साथ),
यह खंड केवल आइसोट्रोपिक सजातीय की स्थिति पर आधारित हैं।
विस्थापन सूत्रीकरण
इस स्थिति में, सीमा में हर जगह विस्थापन निर्धारित हैं। इस दृष्टिकोण में, तन्यता और तन्यता को सूत्रीकरण से समाप्त कर दिया जाता है, विस्थापन को अज्ञात के रूप में इस स्थिति के लिए समीकरणों में हल करने के लिए छोड़ दिया जाता है।
इस प्रकार सबसे पहले, तन्यता-विस्थापन समीकरणों को संवैधानिक समीकरणों (हुक के नियम) में प्रतिस्थापित किया जाता है, अज्ञात के रूप में उपभेदों को हटा दिया जाता है:
विभेद करना (मान लेना और स्थानिक रूप से समान हैं) उपज:
संतुलन समीकरण पैदावार में प्रतिस्थापन:
या (डबल (डमी) (= सारांश) सूचकांक k,k को j,j द्वारा प्रतिस्थापित करना और सूचकांकों को इंटरचेंज करना, ij से, ji के बाद, दूसरे डेरिवेटिव की समरूपता के आधार पर श्वार्ज प्रमेय द्वारा किया जाता हैं।)
जहाँ और लमे पैरामीटर हैं।
इस तरह, केवल अज्ञात ही विस्थापन रह जाता है, इसलिए इस फॉर्मूलेशन का नाम है। इस तरह से प्राप्त नियामक समीकरणों को इलास्टोस्टैटिक समीकरण कहा जाता है, जो नीचे दिए गए 'नेवियर-कॉची समीकरण' का विशेष स्थिति है।
Derivation of Navier–Cauchy equations in Engineering notation
सबसे पहले -दिशा पर विचार किया जाएगा। तनाव-विस्थापन समीकरणों को संतुलन समीकरण में प्रतिस्थापित करना -दिशा हमारे पास है
फिर इन समीकरणों को संतुलन समीकरण में प्रतिस्थापित करना -दिशा हमारे पास है
इस धारणा का उपयोग करना कि और स्थिर हैं हम पुनर्व्यवस्थित और प्राप्त कर सकते हैं:
इसके लिए भी यही प्रक्रिया अपना रहे हैं -दिशा और -दिशा हमारे पास है
ये अंतिम 3 समीकरण नेवियर-कॉची समीकरण हैं, जिन्हें सदिश संकेतन के रूप में भी व्यक्त किया जा सकता है
एक बार विस्थापन क्षेत्र की गणना हो जाने के पश्चात विस्थापन को तन्यता के समाधान के लिए तन्यता-विस्थापन समीकरणों में प्रतिस्थापित किया जाता है, जो बाद में तन्यता को हल करने के लिए संवैधानिक समीकरणों में उपयोग किया जाता है।
बिहारमोनिक समीकरण
इलास्टोस्टैटिक समीकरण लिखा जा सकता है:
इलास्टोस्टेटिक समीकरण के दोनों पक्षों के विचलन को लेते हुए और यह मानते हुए कि भौतिक बलों () में शून्य विचलन (डोमेन में सजातीय) है-
यह देखते हुए कि सारांशित सूचकांकों का मिलान नहीं होना चाहिए, और यह कि आंशिक डेरिवेटिव कम्यूट करते हैं, दो अंतर शब्द समान दिखाई देते हैं:
जिससे हम यह निष्कर्ष निकालते हैं कि:
इलास्टोस्टैटिक समीकरण के दोनों पक्षों के लाप्लासियन को लेना, और इसके अतिरिक्त इसका मान मानने पर हमारे पास उक्त समीकरण प्राप्त होता हैं-
अपसरण समीकरण से, बाईं ओर का पहला पद शून्य है यहाँ पर ध्यान दें कि फिर से, सारांशित सूचकांकों का मिलान नहीं होना चाहिए:
जिससे हम यह निष्कर्ष निकालते हैं कि:
या, समन्वय मुक्त संकेतन में जो कि सिर्फ बिहारमोनिक समीकरण से प्रदर्शित होता है।
तन्यता सूत्रीकरण
इस स्थिति में, सतही सीमा पर हर जगह सतही कर्षण निर्धारित हैं। इस दृष्टिकोण में, तन्यता और विस्थापनों को समाप्त कर दिया जाता है जिससे तन्यता को अज्ञात के रूप में शासकीय समीकरणों में हल किया जा सकता है। इस प्रकार तन्यता क्षेत्र मिल जाने के बाद, तब संरचनात्मक समीकरणों का उपयोग करके उपभेदों को पाया जाता है।
स्ट्रेस टेन्सर के छह स्वतंत्र घटक हैं जिन्हें निर्धारित करने की आवश्यकता है, फिर भी विस्थापन सूत्रीकरण में, विस्थापन वेक्टर के केवल तीन घटक हैं जिन्हें निर्धारित करने की आवश्यकता है। इसका अर्थ यह है कि स्वतंत्रता की डिग्री की संख्या को तीन तक कम करने के लिए कुछ बाधाएं हैं जिन्हें तन्यता टेंसर पर रखा जाना चाहिए। इसके लिए संवैधानिक समीकरणों का उपयोग करते हुए, इन बाधाओं को सीधे संबंधित बाधाओं से प्राप्त किया जाता है, जो तन्यता टेंसर के लिए धारण करना चाहिए, जिसमें छह स्वतंत्र घटक भी होते हैं। विस्थापन सदिश क्षेत्र के कार्य के रूप में तन्यता टेन्सर पर बाधाएं सीधे तन्यता टेंसर की परिभाषा से व्युत्पन्न होती हैं, जिसका अर्थ है कि ये बाधाएं कोई नई अवधारणा या जानकारी प्रस्तुत नहीं करती हैं। यह तन्यता टेंसर पर बाधाएं हैं जिन्हें सबसे आसानी से समझा जा सकता है। यदि लोचदार माध्यम को अप्रतिबंधित अवस्था में असीम घनों के सेट के रूप में देखा जाता है, तो माध्यम के तन्यताग्रस्त होने के पश्चात तन्यता टेंसर के लिए ऐसी स्थिति में उत्पन्न करनी चाहिए जिसमें विकृत घन अभी भी अतिव्यापी बिना साथ फिट होते हैं। दूसरे शब्दों में, किसी दिए गए तन्यता के लिए, निरंतर सदिश क्षेत्र (विस्थापन) सम्मिलित होना चाहिए जिससे उस तन्यता टेंसर को प्राप्त किया जा सके। तन्यता टेंसर पर बाधाएं जो यह सुनिश्चित करने के लिए आवश्यक हैं कि यह स्थिति संत वेनेंट द्वारा खोजा गया था, और उन्हें संत-वेनेंट की अनुकूलता की स्थिति कहा जाता है। ये 81 समीकरण हैं, जिनमें से 6 स्वतंत्र गैर-तुच्छ समीकरण हैं, जो विभिन्न तन्यता घटकों से संबंधित हैं। इन्हें इंडेक्स नोटेशन में इस प्रकार व्यक्त किया जाता है:
इसका इंजीनियरिंग संकेतन इस प्रकार हैं:
इस समीकरण में उपभेदों को तब संवैधानिक समीकरणों का उपयोग करते हुए तन्यता के रूप में व्यक्त किया जाता है, जो तन्यता टेंसर पर संबंधित बाधाओं को उत्पन्न करता है। तन्यता टेंसर पर इन बाधाओं को बेल्ट्रामी-मिशेल अनुकूलता के समीकरण के रूप में जाना जाता है:
विशेष स्थिति में जहां भौतिक बल सजातीय होता है, उपरोक्त समीकरण कम हो जाते हैं[6]
इस स्थिति में अनुकूलता के लिए आवश्यक, किन्तु अपर्याप्त शर्त या है।[1]
ये बाधाएं, संतुलन समीकरण (या इलास्टोडायनामिक्स के लिए गति के समीकरण) के साथ तन्यता टेंसर क्षेत्र की गणना की अनुमति देती हैं। इन समीकरणों से तन्यता क्षेत्र की गणना हो जाने के पश्चात उपभेदों को संवैधानिक समीकरणों से और विस्थापन क्षेत्र को तन्यता-विस्थापन समीकरणों से प्राप्त किया जाता हैं।
इस प्रकार वैकल्पिक समाधान तकनीक तन्यता टेंसर को तन्यता कार्य के संदर्भ में व्यक्त किया जाता हैं जो स्वचालित रूप से संतुलन समीकरण के समाधान का उत्पादन करता है। तन्यता कार्य तब एकल अंतर समीकरण का पालन करते हैं जो संगतता समीकरणों से मेल खाता है।
इलास्टोस्टैटिक स्थिति के लिए समाधान
थॉमसन का समाधान - अनंत आइसोट्रोपिक माध्यम में बिंदु बल
नेवियर-कॉची या इलास्टोस्टैटिक समीकरण का सबसे महत्वपूर्ण समाधान अनंत समस्थानिक माध्यम में बिंदु पर अभिनय करने वाले बल के लिए है। यह समाधान 1848 (थॉमसन 1848) में विलियम थॉमसन, प्रथम बैरन केल्विन (बाद में लॉर्ड केल्विन) द्वारा खोजा गया था। यह समाधान इलेक्ट्रोस्टाटिक्स में कूलम्ब के नियम का अनुरूप है। लैंडौ और लाइफशिट्ज में व्युत्पत्ति दी गई है।[7]: §8
जहाँ पोइसन का अनुपात है, समाधान के रूप में व्यक्त किया जा सकता है-
जहाँ बल वेक्टर बिंदु पर लागू किया जा रहा है, और टेंसर ग्रीन का कार्य है जिसे कार्टेशियन निर्देशांक में लिखा जा सकता है:
इसे संक्षेप में इस प्रकार भी लिखा जा सकता है:
और इसे स्पष्ट रूप से लिखा जा सकता है:
बेलनाकार निर्देशांक में () इसे इस प्रकार लिखा जा सकता है:
जहाँ r इंगित करने के लिए कुल दूरी है।
बिंदु बल के लिए विस्थापन को बेलनाकार निर्देशांक में लिखना विशेष रूप से सहायक होता है z- अक्ष के साथ निर्देशित। परिभाषित और इकाई वैक्टर के रूप में और निर्देश क्रमशः इस प्रकार प्रदर्शित किये जा सकते हैं:
यह देखा जा सकता है कि बल की दिशा में विस्थापन का घटक है, जो कम हो जाता है, जैसा कि इलेक्ट्रोस्टैटिक्स में क्षमता के स्थिति में होता है, जैसे बड़े r के लिए 1/r तथा इसके अतिरिक्त ρ-निर्देशित घटक भी सम्मिलित हैं।
बूसिनेसक सेरुति समाधान - अनंत आइसोट्रोपिक अर्ध-स्थान के मूल में बिंदु बल
एक अन्य उपयोगी समाधान बिंदु बल का है जो अनंत आधे स्थान की सतह पर कार्य करता है। यह बाऊसीनेस्क्यू द्वारा प्राप्त किया गया था[8] स्पर्शरेखा बल के लिए सामान्य बल और सेरुति के लिए और लैंडौ और लाइफशिट्ज में व्युत्पत्ति दी गई है।[7]: §8 इस स्थिति में, समाधान को फिर से हरे रंग के टेंसर के रूप में लिखा जाता है जो अनंत पर शून्य हो जाता है, और सतह पर सामान्य तन्यता टेंसर का घटक विलुप्त हो जाता है। यह समाधान कार्टेशियन निर्देशांक में लिखा जा सकता है [याद रखें: और , = प्वासों का अनुपात]:
अन्य उपाय
एक अनंत समस्थानिक अर्ध-अंतरिक्ष के अंदर बिंदु बल होता हैं।[9]
इलास्टोडायनामिक्स लोचदार तरंगों का अध्ययन है और इसमें समय में भिन्नता के साथ रैखिक लोच सम्मिलित है। लोचदार तरंग प्रकार की यांत्रिक तरंग है जो लोचदार या चिपचिपापन सामग्री में फैलती है। सामग्री की लोच लहर की बहाली शक्ति प्रदान करती है। जब वे भूकंप या अन्य गड़बड़ी के परिणामस्वरूप पृथ्वी में उत्पन्न होती हैं, तो लोचदार तरंगों को सामान्यतः भूकंपीय तरंगें कहा जाता है।
रैखिक संवेग समीकरण केवल अतिरिक्त जड़त्वीय पद के साथ संतुलन समीकरण है:
यदि सामग्री अनिसोट्रोपिक हुक के नियम द्वारा नियंत्रित होती है (पूरी सामग्री में कठोरता टेंसर सजातीय के साथ), तो इलास्टोडायनामिक्स का विस्थापन समीकरण प्राप्त करता है:
यदि सामग्री आइसोटोपिक और सजातीय है, तो नेवियर-कॉची समीकरण प्राप्त होता है:
इलास्टोडायनामिक तरंग समीकरण को इस रूप में भी व्यक्त किया जा सकता है
जहाँ
ध्वनिक अंतर ऑपरेटर है, और क्रोनकर डेल्टा है।
हूक के नियम आइसोट्रोपिक सामग्री मीडिया में, कठोरता टेंसर का रूप है
जहाँ थोक मापांक (या असंपीड़्यता) है, और कतरनी मापांक (या कठोरता) है, दो लोचदार मापांक। यदि सामग्री सजातीय है (अर्ताथ कठोरता टेंसर पूरी सामग्री में स्थिर है), ध्वनिक ऑपरेटर बन जाता है:
तरंगों के लिए, उपरोक्त अंतर ऑपरेटर ध्वनिक बीजगणितीय ऑपरेटर बन जाता है:
जहाँ
इसका आइजन मान हैं, जिसे आइजन्वेक्टर के साथ दिशा के समानांतर और ऑर्थोगोनल , द्वारा संबद्ध तरंगों को अनुदैर्ध्य और अपरूपण प्रत्यास्थ तरंगें कहा जाता है। भूकंपीय साहित्य में, संबंधित समतल तरंगों को पी-तरंगें और एस-तरंगें (भूकंपीय तरंग देखें) कहा जाता है।
तन्यता के संदर्भ में इलास्टोडायनामिक्स
गवर्निंग समीकरणों से विस्थापन और तन्यता के उन्मूलन से इलास्टोडायनामिक्स के इग्नाज़ाक समीकरण की ओर जाता है[11]
स्थानीय आइसोट्रॉपी के स्थिति में, यह कम हो जाता है
इस फॉर्मूलेशन की प्रमुख विशेषताओं में सम्मिलित हैं: (1) अनुपालन के ग्रेडियेंट से बचा जाता है किन्तु द्रव्यमान घनत्व के ग्रेडियेंट प्रस्तुत करता है; (2) यह परिवर्तनशील सिद्धांत से व्युत्पन्न है; (3) यह कर्षण प्रारंभिक-सीमा मूल्य समस्याओं से निपटने के लिए फायदेमंद है, (4) लोचदार तरंगों के तन्य वर्गीकरण की अनुमति देता है, (5) लोचदार तरंग प्रसार समस्याओं में अनुप्रयोगों की श्रृंखला प्रदान करता है; (6) विभिन्न प्रकार के इंटरेक्टिंग क्षेत्रों (थर्मोलेस्टिक, द्रव-संतृप्त झरझरा, पीजोइलेक्ट्रो-इलास्टिक ...) के साथ-साथ नॉनलाइनियर मीडिया के साथ मौलिक या माइक्रोपोलर ठोस की गतिशीलता तक बढ़ाया जा सकता है।
अनिसोट्रोपिक मीडिया के लिए, कठोरता टेंसर अधिक जटिल है। तन्यता टेंसर की समरूपता इसका मतलब है कि तन्यता के अधिकतम 6 अलग-अलग तत्व हैं। इसी प्रकार, तन्यता टेन्सर के अधिक से अधिक 6 विभिन्न तत्व होते हैं . इसलिए चौथे क्रम की कठोरता टेन्सर मैट्रिक्स के रूप में लिखा जा सकता है (दूसरे क्रम का टेंसर)। Voigt संकेतन टेन्सर सूचकांकों के लिए मानक मानचित्रण है,
इस अंकन के साथ, किसी भी रैखिक रूप से लोचदार माध्यम के लिए लोच मैट्रिक्स लिख सकते हैं:
जैसा कि दिखाया गया है, मैट्रिक्स सममित है, यह तन्यता ऊर्जा घनत्व समारोह के अस्तित्व का परिणाम है जो संतुष्ट करता है . इसलिए, के अधिकतम 21 अलग-अलग तत्व हैं।
आइसोटोपिक विशेष स्थिति में 2 स्वतंत्र तत्व हैं:
सबसे सरल अनिसोट्रोपिक स्थिति, क्यूबिक समरूपता के 3 स्वतंत्र तत्व हैं:
अनुप्रस्थ आइसोट्रॉपी का स्थिति, जिसे ध्रुवीय अनिसोट्रॉपी भी कहा जाता है, (समरूपता के एकल अक्ष (3-अक्ष) के साथ) में 5 स्वतंत्र तत्व हैं:
जब अनुप्रस्थ आइसोट्रॉपी कमजोर होती है (अर्थात आइसोट्रॉपी के करीब), थॉमसन पैरामीटर का उपयोग करने वाला वैकल्पिक पैरामीट्रिजेशन, तरंग गति के सूत्रों के लिए सुविधाजनक होता है।
ऑर्थोट्रॉपी (एक ईंट की समरूपता) के स्थिति में 9 स्वतंत्र तत्व हैं:
इलास्टोडायनामिक्स
अनिसोट्रोपिक मीडिया के लिए इलास्टोडायनामिक वेव समीकरण को इस रूप में व्यक्त किया जा सकता है
जहाँ
ध्वनिक अंतर ऑपरेटर है, और क्रोनकर डेल्टा है।
समतल तरंगें और क्रिस्टोफेल समीकरण
समतल तरंग का रूप होता है
यहाँ पर इकाई लंबाई को प्रदर्शित करती हैं।
यह शून्य बल के साथ तरंग समीकरण का समाधान है, यदि और केवल यदि और ध्वनिक बीजगणितीय ऑपरेटर के आइगेनवैल्यू/ईजेनवेक्टर जोड़ी का गठन करता हैं।
इस प्रसार की स्थिति (जिसे 'क्रिस्टोफेल समीकरण' के रूप में भी जाना जाता है) को इस रूप में लिखा जा सकता है।