हुक का नियम

From Vigyanwiki
हुक का नियम: बल विस्तार के समानुपाती होता है
बूरदां नलिका हुक के नियम पर आधारित हैं। ऊपर कुंडलित धातु नलिका के अंदर गैस के विकृति द्वारा बनाया गया बल इसे विकृति के समानुपाती मात्रा में दाब कम है।
कई यांत्रिक-घड़ी और घड़ियों के मूल में संतुलन चक्र हुक के नियम पर निर्भर करता है। चूंकि कुंडलित स्प्रिंग द्वारा उत्पन्न टोक़ पहिया द्वारा घुमाए गए कोण के समानुपाती होता है, इसके दोलनों की अवधि लगभग स्थिर होती है।

भौतिकी में, हुक का नियम एक अनुभवजन्य नियम है जो बताता है कि बल () को कुछ दूरी (x) माप द्वारा उस दूरी के संबंध में रैखिक रूप से विस्तारित या संपीड़ित करने की आवश्यकता होती है- अर्थात Fs = kx है, जहाँ k स्प्रिंग की एक स्थिर कारक विशेषता (अर्थात, इसकी दृढता) है, और x स्प्रिंग के कुल संभावित विरूपण की तुलना में छोटा है। नियम का नाम 17वीं सदी के ब्रिटिश भौतिक विज्ञानी रॉबर्ट हुक के नाम पर रखा गया है। उन्होंने पहली बार 1676 में नियम को को लैटिन विपर्यय के रूप में बताया था।[1][2] उन्होंने 1678[3] में यूट टेंसियो, सिक विस ("जैसा विस्तार, इसलिए बल" या "विस्तार बल के समानुपातिक है") के रूप में अपने विपर्यय का समाधान प्रकाशित किया। हूक ने 1678 के काम में कहा है कि वह 1660 से नियम के बारे में जानता था।

हूक का समीकरण कई अन्य स्थितियों में (अधिकांश सीमा तक) होता है जहां एक प्रत्यास्थ (भौतिकी) पिंड विरूपण (भौतिकी) होता है, जैसे कि एक ऊंची इमारत पर वायु निरक्षेपण, और एक संगीतकार गिटार की एक तार (संगीत) बजाता है। प्रत्यास्थ पिंड या पदार्थ जिसके लिए इस समीकरण को ग्रहण किया जा सकता है, उसे रैखिक प्रत्यास्थ या हुकियन कहा जाता है।

हुक का नियम प्रयुक्त बलों के लिए स्प्रिंग्स और अन्य प्रत्यास्थ निकायों की वास्तविक प्रतिक्रिया के लिए केवल एक प्रथम-क्रम रैखिक सन्निकटन है। एक बार जब बल कुछ सीमा से अधिक हो जाते हैं, तो यह अंततः विफल हो जाना चाहिए, क्योंकि किसी भी पदार्थ को एक निश्चित न्यूनतम आकार से अधिक संकुचित नहीं किया जा सकता है, या बिना किसी स्थायी विरूपण या परिवर्तन के अधिकतम आकार से आगे बढ़ाया जा सकता है। उन प्रत्यास्थ सीमाओं तक पहुंचने से पहले कई पदार्थों हूक के नियम से स्पष्ट रूप से विचलित हो जाएंगी।

दूसरी ओर, हूक का नियम अधिकांश ठोस पिंडों के लिए एक परिशुद्ध सन्निकटन है, जब तक कि बल और विकृति अधिकतम कम हैं। इस कारण से, विज्ञान और अभियांत्रिकी की सभी शाखाओं में हूक के नियम का व्यापक रूप से उपयोग किया जाता है, और यह भूकंप विज्ञान, आणविक यांत्रिकी और ध्वनिकी जैसे कई विषयों की नींव है। यह स्प्रिंग पैमाने, दाबमापी, ताप-वैद्युत धारामापी और यांत्रिक घड़ी के संतोलक चक्र के पीछे भी मूलभूत सिद्धांत है।

प्रत्यास्थता का आधुनिक सिद्धांत हूक के नियम को यह कहने के लिए सामान्यीकृत करता है कि एक प्रत्यास्थ वस्तु या पदार्थ का विरूपण (यांत्रिकी) उस पर प्रयुक्त प्रतिबल (यांत्रिकी) के समानुपाती होता है। हालांकि, चूंकि सामान्य प्रतिबल और दाब में कई स्वतंत्र घटक हो सकते हैं, आनुपातिकता कारक अब केवल एक वास्तविक संख्या नहीं हो सकता है, बल्कि एक रैखिक मानचित्र (एक प्रदिश) है जिसे वास्तविक संख्याओं के आव्यूह (गणित) द्वारा दर्शाया जा सकता है।

इस सामान्य रूप में, हुक का नियम उन पदार्थों के आंतरिक गुणों के संदर्भ में जटिल वस्तुओं के लिए प्रतिबल और दाब के बीच संबंध को कम करना संभव बनाता है जिससे वे बने हैं। उदाहरण के लिए, कोई यह निष्कर्ष निकाल सकता है कि समान अनुप्रस्थ परिच्छेद (ज्यामिति) के साथ एक सजातीय छड़ खींचे जाने पर साधारण स्प्रिंग की तरह व्यवहार करेगी, जिसकी कठोरता k इसके अनुप्रस्थ परिच्छेद क्षेत्रफल के सीधे आनुपातिक और इसकी लंबाई के व्युत्क्रमानुपाती होगी।

औपचारिक परिभाषा

रैखिक स्प्रिंग्स के लिए

साधारण कुंडलित वक्रता स्प्रिंग पर विचार करें जिसका एक सिरा किसी स्थिर वस्तु से जुड़ा है, जबकि मुक्त सिरे को एक बल द्वारा खींचा जा रहा है जिसका परिमाण Fs है। मान लीजिए कि स्प्रिंग यांत्रिक संतुलन की स्थिति में पहुंच गया है, जहां इसकी लंबाई अब नहीं बदल रही है। मान लीजिए x वह राशि हो जिससे स्प्रिंग का मुक्त सिरा अपनी विश्रांत की स्थिति (जब इसे खींचा नहीं जा रहा हो) से विस्थापित हो गया। हूक का नियम कहता है कि

या, समकक्ष रूप से,
जहाँ k एक धनात्मक वास्तविक संख्या है, जो स्प्रिंग का अभिलाक्षणिक है। इसके अतिरिक्त, जब स्प्रिंग संकुचित होता है तो वही सूत्र होता है, उस स्थिति में एफएस और एक्स दोनों ऋणात्मक होते हैं। इस सूत्र के अनुसार, लगाए गए बल Fs का आरेख विस्थापन x के फलन के रूप में मूल बिंदु से होकर गुजरने वाली एक सीधी रेखा होगी, जिसका प्रवणता k है।

स्प्रिंग के लिए हुक का नियम कभी-कभी, लेकिन संभव्यता ही कभी, सम्मेलन के अंतर्गत कहा गया है कि Fs स्प्रिंग द्वारा प्रत्यवस्थान बल है जो इसके मुक्त सिरे को खींच रहा है। ऐसे में समीकरण बन जाता है

क्योंकि प्रत्यवस्थान बल की दिशा विस्थापन की दिशा के विपरीत होती है।

सामान्य अदिश स्प्रिंग्स

हूक का स्प्रिंग नियम सामान्य रूप से किसी भी प्रत्यास्थ वस्तु पर प्रयुक्त होता है, यादृच्छिक रूप से जटिलता के रूप में, जब तक विरूपण और प्रतिबल दोनों को समान संख्या द्वारा व्यक्त किया जा सकता है जो धनात्मक और ऋणात्मक दोनों हो सकता है।

उदाहरण के लिए, जब दो समानांतर प्लेटों से जुड़ा रबर का एक ब्लॉक कर्षण या संपीड़न के अतिरिक्त अपरूपण से विकृत होता है, तो अपरूपण बल Fs और प्लेटों का पार्श्वमार्ग में विस्थापन x हुक के नियम (छोटे पर्याप्त विरूपण के लिए) का अनुसरण करता है।

हुक का नियम तब भी प्रयुक्त होता है जब एक प्रत्यक्ष इस्पात छड या ठोस किरण (जैसे कि इमारतों में उपयोग की जाने वाली किरण-पुंज), दोनों सिरों पर समर्थित होती है, जिसे किसी मध्यवर्ती बिंदु पर रखे गए भार F द्वारा मोड़ा जाता है। इस स्थिति में विस्थापन x किरण का विचलन है, जिसे इसके अभारित आकार के सापेक्ष अनुप्रस्थ दिशा में मापा जाता है।

यह नियम तब भी प्रयुक्त होता है जब एक तानित हुए इस्पात के तार को एक सिरे से जुड़े उत्तोलक को कर्षण वक्रित किया जाता है। इस स्थिति में दाब Fs को उत्तोलक पर लगाए गए बल के रूप में लिया जा सकता है, और x को इसके वृत्ताकार पथ के साथ निर्धारित की गई दूरी के रूप में लिया जा सकता है। या समतुल्य रूप से, Fs को उत्तोलक द्वारा तार के सिरे में लगाया गया आघूर्ण बल हो सकता है, और x वह कोण हो सकता है जिसके द्वारा वह सिरा वक्रित होता है। किसी भी स्थिति में F, x के समानुपाती होता है हालाँकि स्थिर k प्रत्येक स्थिति में भिन्न होता है।

सदिश सूत्रीकरण

कुंडलिनी स्प्रिंग के स्थिति में जो अपनी धुरी (गणित) के साथ विस्तृत या संकुचित होता है, प्रयुक्त (या प्रत्यवस्थान) बल और परिणामी वृद्धि या संपीड़न की समान (जो उक्त अक्ष की दिशा है) दिशा होती है। इसलिए, यदि Fs और x को सदिश के रूप में परिभाषित किया गया है, तो हुक का समीकरण अभी भी मान्य है और कहता है कि बल सदिश एक निश्चित अदिश द्वारा गुणा किया गया सदिश है।

सामान्य प्रदिश समघात

अलग दिशा के बल के अधीन होने पर कुछ प्रत्यास्थ निकाय एक दिशा में विकृत हो जाएंगे। एक उदाहरण गैर-वर्ग आयताकार अनुप्रस्थ परिच्छेद वाला एक क्षैतिज लकड़ी का बीम है जो अनुप्रस्थ भार से बंकित है जो न तो लंबवत है और न ही क्षैतिज है। ऐसे स्थितियों में, विस्थापन x का परिमाण बल Fs के परिमाण के समानुपाती होगा, जब तक कि बाद वाले की (और इसका मान बहुत बड़ा नहीं है) दिशा समान रहती है; अतः हुक के नियम Fs = −kx का अदिश संस्करण वैध होगा। हालाँकि, बल और विस्थापन सदिश एक दूसरे के अदिश गुणक नहीं होंगे, क्योंकि उनकी अलग-अलग दिशाएँ हैं। इसके अतिरिक्त, उनके परिमाणों के बीच k का अनुपात सदिश Fs की दिशा पर निर्भर करेगा।

फिर भी, ऐसे स्थितियों में प्रायः बल और विरूपण सदिशों के बीच एक निश्चित रेखीय मानचित्र होता है, जब तक कि वे अपेक्षाकृत अधिक छोटे होते हैं। अर्थात्, सदिशों से सदिशों तक एक फलन κ होता है, जैसे कि F = κ(X), और κ(αX1 + βX2) = ακ(X1) + βκ(X2) किसी भी वास्तविक संख्या के लिए α, β और किसी भी विस्थापन सदिश X1, X2 के लिए इस तरह के फलन को (द्वितीय क्रम) प्रदिश कहा जाता है।

यादृच्छिक से कार्तीय समन्वय प्रणाली के संबंध में, बल और विस्थापन सदिश को वास्तविक संख्याओं के 3 × 1 आव्यूहों द्वारा दर्शाया जा सकता है। फिर उन्हें जोड़ने वाले प्रदिश κ को वास्तविक गुणांक के 3 × 3 आव्यूह κ द्वारा दर्शाया जा सकता है, जब विस्थापन सदिश द्वारा गुणा किया जाता है, तो बल सदिश देता है:


अर्थात्,

i = 1, 2, 3 के लिए, इसलिए हुक के नियम F = κX को तब भी मान्य कहा जा सकता है जब X और F परिवर्तनशील दिशाओं वाले सदिश हों, सिवाय इसके कि वस्तु की कठोरता एकल वास्तविक संख्या k के अतिरिक्त एक प्रदिश κ है।

सतत माध्यम के लिए हुक का नियम

(a) एक बहुलक नैनोस्प्रिंग की योजनाबद्ध कुंडल त्रिज्या, R, प्रवणता, P, स्प्रिंग की लंबाई,, और घूर्णन की संख्या, N, क्रमशः 2.5 माइक्रोन, 2.0 माइक्रोन, 13 माइक्रोन और 4 हैं। नैनोस्प्रिंग के इलेक्ट्रॉन सूक्ष्मलेख, भारित करने से पहले (बी-ई), विस्तृत (f), संपीड़ित (g), बंकन (h), और प्रतिलब्ध (i) सभी पैमाना छड़ 2μm हैं। स्प्रिंग प्रयुक्त बल के विपरीत एक रैखिक प्रतिक्रिया का अनुसरण करता है, नैनो-पैमाना पर हुक के नियम की वैधता का प्रदर्शन करता है।[4]

एक सतत यांत्रिकी प्रत्यास्थ पदार्थ (जैसे रबड़ का एक ब्लॉक, बायलर की परत, या इस्पात छड) के अंदर पदार्थ के प्रतिबल और विकृति एक रैखिक संबंध से जुड़े होते हैं। यह गणितीय रूप से हुक के स्प्रिंग नियम के समान है और प्रायः इसे इसी नाम से संदर्भित किया जाता है।

हालाँकि, किसी बिंदु के आसपास ठोस माध्यम में प्रतिबल की स्थिति को एक सदिश द्वारा वर्णित नहीं किया जा सकता है। पदार्थ का समान समूह, फिर वह कितना भी छोटा क्यों न हो, समान समय में अलग-अलग दिशाओं में संकुचित, कर्षण और अपरूपण किया जा सकता है। इसी तरह, उस खंड में प्रतिबल एक साथ अपकर्षण, कर्षण और अपरूपण हो सकता है।

इस जटिलता को प्रग्रहण करने के लिए, एक बिंदु के आसपास माध्यम की प्रासंगिक स्थिति को दो-द्वितीय क्रम के प्रदिश, प्रतिबल प्रदिश ε (विस्थापन के बदले में X) और कौशी प्रतिबल प्रदिश σ (पुनर्स्थापना बल F के बदले मे) द्वारा दर्शाया जाना चाहिए। सतत माध्यम के लिए हुक के स्प्रिंग नियम का अनुरूप है

जहां c एक चतुर्थ क्रम का प्रदिश है (अर्थात, दूसरे क्रम के प्रदिशो के बीच एक रेखीय मानचित्र) जिसे सामान्य रूप से संदृढता प्रदिश या प्रत्यास्थ प्रदिश कहा जाता है। कोई इसे इस रूप में भी लिख सकता है
जहां प्रदिश s, जिसे संदृढता प्रदिश कहा जाता है, उक्त रेखीय मानचित्र के व्युत्क्रम का प्रतिनिधित्व करता है।

कार्टेशियन समन्वय प्रणाली में, प्रतिबल और विकृति प्रदिशो को 3 × 3 आव्यूहों द्वारा दर्शाया जा सकता है

नौ संख्या σij और नौ संख्या εkl के बीच एक रैखिक मानचित्रण होने के कारण, संदृढता प्रदिश c को 3 × 3 × 3 × 3 = 81 वास्तविक संख्या cijkl के आव्यूह द्वारा दर्शाया गया है। हुक का नियम तब कहता है
जहां i,j = 1,2,3.

तीनों प्रदिश सामान्य रूप से माध्यम के अंदर एक बिंदु से दूसरे बिंदु तक भिन्न होते हैं, और समय के साथ-साथ भिन्न भी हो सकते हैं। प्रतिबल प्रदिश ε केवल बिंदु के प्रतिवेश में मध्यम कणों के विस्थापन को निर्दिष्ट करता है, जबकि प्रतिबल प्रदिश σ उन बलों को निर्दिष्ट करता है जो माध्यम के प्रतिवेश खंड एक दूसरे पर कार्य कर रहे हैं। इसलिए, वे पदार्थ की संरचना और भौतिक स्थिति से स्वतंत्र हैं। संदृढता प्रदिश c, दूसरी ओर, पदार्थ का एक गुण है, और प्रायः तापमान, विकृति और सूक्ष्म जैसे भौतिक अवस्था चर पर निर्भर करता है।

σ, ε, और c की अंतर्निहित समरूपता के कारण, उत्तरार्द्ध के केवल 21 प्रत्यास्थ गुणांक स्वतंत्र हैं।[5] विषमलंबाक्ष क्रिस्टल के लिए पदार्थ 9 की समरूपता, षट्कोणीय संरचना के लिए 5, और घन समरूपता के लिए 3 की समरूपता द्वारा इस संख्या को और कम किया जा सकता है।[6] समदैशिक माध्यम के लिए जिसमें किसी भी दिशा में समान भौतिक गुण होते हैं, और c को केवल दो स्वतंत्र संख्याओं, विस्तृत मापांक K और अपरूपण मापांक G तक घटाया जा सकता है, जो क्रमशः आयतन में परिवर्तन और अपरूपण विकृति के लिए पदार्थ के प्रतिरोध की मात्रा निर्धारित करता है। .

समवृत्तिक नियम

चूंकि हुक का नियम दो राशियों के बीच एक सरल आनुपातिकता है, इसके सूत्र और परिणाम गणितीय रूप से कई अन्य भौतिक नियमों के समान हैं, जैसे कि तरल पदार्थ की गति का वर्णन करने वाले, या विद्युत क्षेत्र द्वारा परावैद्युत का आयनिक ध्रुवीकरण होता है।

विशेष रूप से, टेन्सर समीकरण σ = cε प्रत्यास्थ प्रतिबल को विकृति से संबंधित समीकरण τ = με̇ के समान है जो श्यान तरल पदार्थों के प्रवाह में श्यान प्रतिबल प्रदिश τ और विकृति दर प्रदिश ε̇ से संबंधित है; हालांकि पूर्व स्थिर प्रतिबल (विरूपण की राशि से संबंधित) से संबंधित है, जबकि बाद वाला गतिशील विकृति (विरूपण की दर से संबंधित) से संबंधित है।

माप की इकाइयाँ

इकाइयों की अंतर्राष्ट्रीय प्रणाली में, विस्थापन मीटर (m) में मापा जाता है, और न्यूटन (N or kg·m/s2) में बलों को मापा जाता है। इसलिए, स्प्रिंग स्थिरांक k, और प्रदिश κ के प्रत्येक तत्व को न्यूटन प्रति मीटर (N/m), या किलोग्राम प्रति सेकंड वर्ग (kg/s2) में मापा जाता है।

निरंतर मीडिया के लिए, प्रतिबल प्रदिश σ का प्रत्येक तत्व एक क्षेत्र द्वारा विभाजित बल है; इसलिए इसे दबाव की इकाइयों, अर्थात् पास्कल (Pa, या N/m2, या kg/(m·s2)) में मापा जाता है। प्रतिबल प्रदिश के तत्व ε आयामहीन होते हैं जिन्हे विस्थापनों को दूरियों से विभाजित किया जाता है। इसलिए, cijkl की प्रविष्टि को विकृति की इकाइयों में भी व्यक्त किया जाता है।

प्रत्यास्थ पदार्थ के लिए सामान्य अनुप्रयोग

वस्तुएं जो एक बल द्वारा विकृत होने के बाद शीघ्र से अपने मूल आकार को पुनः प्राप्त कर लेती हैं, उनकी पदार्थ के अणुओं या परमाणुओं के साथ स्थिर संतुलन की प्रारंभिक स्थिति में वापस आती हैं, प्रायः हुक के नियम का अनुसरण करती हैं।

विकृति-प्रतिबल वक्र कम-कार्बन इस्पात के लिए, प्रतिबल (प्रति इकाई क्षेत्र पर बल) और प्रतिबल के बीच संबंध दर्शाता है जिसके परिणामस्वरूप दबाव/ कर्षण, विरूपण के रूप में जाना जाता है। हुक का नियम केवल मूल और उत्पादन बिंदु (2) के बीच वक्र के भाग के लिए मान्य है। * अधिकतम सामर्थ्य * उत्पादन शक्ति (उत्पादन बिंदु) * विच्छेद * विकृति दृढ़ क्षेत्र * मध्यकृशन क्षेत्र * स्पष्ट प्रतिबल (F/A0) * वास्तविक प्रतिबल (F/A)

हुक का नियम केवल कुछ पदार्थों के लिए कुछ संभारण शर्तों के अंतर्गत प्रयुक्त होता है। अधिकांश अभियांत्रिकी अनुप्रयोगों में इस्पात रैखिक-प्रत्यास्थ व्यवहार प्रदर्शित करता है; हूक का नियम इसके पूरे प्रत्यास्थ श्रेणी (अर्थात, उत्पादन (अभियांत्रिकी) के नीचे के प्रतिबलों के लिए) के लिए मान्य है। कुछ अन्य पदार्थों के लिए, जैसे कि एल्यूमीनियम, हुक का नियम केवल प्रत्यास्थ सीमा के एक भाग के लिए मान्य है। इन पदार्थों के लिए एक आनुपातिक सीमा प्रतिबल परिभाषित किया गया है, जिसके नीचे रैखिक सन्निकटन से जुड़ी त्रुटियां नगण्य हैं।

रबर को सामान्य रूप से एक गैर-हुकेन पदार्थ के रूप में माना जाता है क्योंकि इसकी प्रत्यास्थ प्रतिबल पर निर्भर होती है और तापमान और भारण दर के प्रति संवेदनशील होती है।

परिमित प्रतिबल सिद्धांत के स्थिति में हुक के नियम का सामान्यीकरण नव-हुकियन ठोस और मूनी-रिवलिन ठोस के मॉडल द्वारा प्रदान किया गया है।

व्युत्पन्न सूत्र

एक समान छड़ का विकृति प्रतिबल

किसी भी प्रत्यास्थ (भौतिकी) पदार्थ की एक छड़ को रैखिक स्प्रिंग (उपकरण) के रूप में देखा जा सकता है। रॉड की लंबाई L और अनुप्रस्थ परिच्छेद क्षेत्र A है। इसका तन्य प्रतिबल σ प्रत्यास्थ के मापांक E द्वारा इसके आंशिक विस्तार या विकृति ε के रैखिक रूप से आनुपातिक है:

प्रत्यास्थ के मापांक को प्रायः स्थिर माना जा सकता है। बदले में,
(अर्थात, लंबाई में भिन्नात्मक परिवर्तन), और तब से
यह इस प्रकार है कि:
लंबाई में परिवर्तन के रूप में व्यक्त किया जा सकता है


स्प्रिंग ऊर्जा

एक स्प्रिंग में संचित स्थितिज ऊर्जा Uel(x) द्वारा दिया जाता है

जो स्प्रिंग को संवर्धित रूप से संपीडित करने में लगने वाली ऊर्जा को जोड़ने से आता है। अर्थात्, विस्थापन पर बल का समाकलन होता है। चूंकि बाहरी बल की दिशा विस्थापन के समान ही होती है, स्प्रिंग की स्थितिज ऊर्जा सदैव गैर-ऋणात्मक होती है।

यह विभव Uel को Ux-तल पर परवलय के रूप में देखा जा सकता है जैसे कि Uel(x) = 1/2kx2 होता है। चूंकि स्प्रिंग धनात्मक x-दिशा में विस्तृत है, स्थैतिज ऊर्जा परवलयिक रूप से बढ़ती है स्प्रिंग के संकुचित होने पर भी ऐसा ही होता है। चूँकि स्थैतिज ऊर्जा में परिवर्तन एक स्थिर दर से बदलता है:

ध्यान दें कि विस्थापन और त्वरण शून्य होने पर भी U में परिवर्तन स्थिर रहता है।

विश्रांत बल स्थिरांक (सामान्यीकृतअनुवृत्ति स्थिरांक)

विश्रांत बल स्थिरांक (सामान्यीकृत अनुवृत्ति स्थिरांक के व्युत्क्रम) आणविक प्रणालियों के लिए विशिष्ट रूप से परिभाषित होते हैं, जो सामान्य कठोर बल स्थिरांक के विपरीत होते हैं, और इस प्रकार उनका उपयोग प्रतिक्रियाशील संक्रमण अवस्थाओ और रासायनिक प्रतिक्रिया के उत्पादों के लिए गणना किए गए बल क्षेत्रों के बीच सार्थक सहसंबंध बनाने की स्वीकृति देता है। जिस प्रकार स्थितिज ऊर्जा को आंतरिक निर्देशांकों में द्विघात रूप में लिखा जा सकता है, उसी प्रकार इसे सामान्यीकृत बलों के रूप में भी लिखा जा सकता है। परिणामी गुणांकों को अनुवृत्ति स्थिरांक कहा जाता है। सामान्य मोड विश्लेषण करने की आवश्यकता के बिना, अणु के किसी भी आंतरिक समन्वय के लिए अनुवृत्ति स्थिरांक की गणना के लिए एक प्रत्यक्ष विधि सम्मिलित है।[7] सहसंयोजक बंधन शक्ति निरूपक के रूप में विश्रांत बल स्थिरांक (प्रतिलोम अनुवृत्ति स्थिरांक) की उपयुक्तता को 1980 के प्रारंभ में प्रदर्शित किया गया था। हाल ही में, गैर-सहसंयोजक बंधन शक्ति निरूपक के रूप में उपयुक्तता का भी प्रदर्शन किया गया था।[8]


सरल आवर्ती दोलक

स्प्रिंग द्वारा निलंबित पिंड एक सरल आवृत्ति दोलक का उत्कृष्ट उदाहरण है

स्प्रिंग के सिरे से जुड़ा पिंड m सरल आवर्ती दोलक का एक उत्कृष्ट उदाहरण है। पिंड पर आंशिक कर्षण और फिर इसे छोड़ कर, प्रणाली संतुलन स्थिति के बारे में ज्यावक्रीय दोलन गति में स्थापित हो जाएगा। जिस सीमा तक स्प्रिंग हुक के नियम का अनुसरण करती है, और कोई घर्षण और स्प्रिंग के पिंड की उपेक्षा कर सकता है, दोलन का आयाम स्थिर रहेगा और इसकी आवृत्ति f इसके आयाम से स्वतंत्र होगी, जो केवल पिंड और स्प्रिंग की कठोरता से निर्धारित होती है:

इस घटना ने परिशुद्ध यांत्रिक-घड़ी और घड़ियों के निर्माण को संभव बनाया जिन्हें जहाजों और लोगों की पॉकेट पर ले जाया जा सकता था।

गुरुत्व मुक्त स्थान में घूर्णन

यदि पिंड m एक स्प्रिंग से जुड़ा होता है जिसमें निरंतर k बल होता है और मुक्त स्थान में घूमता है, तो स्प्रिंग प्रतिबल (Ft) आवश्यक अभिकेन्द्र बल (FC) की आपूर्ति करेगा:

तब से Ft = Fc और x = r तब:
दिया गया है कि ω = 2πf यह उपरोक्त के समान आवृत्ति समीकरण की ओर जाता है:


सतत माध्यम के लिए रैखिक प्रत्यास्थ सिद्धांत

नोट: पुनरावर्तित सूचकांकों पर योग की आइंस्टाइन संकलन परिपाटी का प्रयोग नीचे किया गया है।

समदैशिक पदार्थ

श्यान तरल पदार्थ के समान विकास के लिए, श्यानता देखें।


समदैशिक पदार्थों की विशेषता उन गुणों से होती है जो अंतरिक्ष में दिशा से स्वतंत्र होते हैं। समदैशिक पदार्थों से जुड़े भौतिक समीकरणों को उनका प्रतिनिधित्व करने के लिए चयन की गई समन्वय प्रणाली से स्वतंत्र होना चाहिए। प्रतिबल प्रदिश एक सममित प्रदिश है। चूंकि किसी भी प्रदिश का पथरेख (रैखिक बीजगणित) किसी भी समन्वय प्रणाली से स्वतंत्र है, एक सममित प्रदिश का सबसे पूर्ण समन्वय-मुक्त अपघटन इसे एक निरंतर प्रदिश और एक अनुपस्थित सममित प्रदिश के योग के रूप में प्रस्तुत करना है।[9] इस प्रकार सूचकांक संकेतन में:

जहां δij क्रोनकर डेल्टा है। प्रत्यक्ष प्रदिश संकेतन में:
जहां I द्वितीय क्रम की पहचान प्रदिश है।

दाईं ओर पहला पद स्थिर प्रदिश है, जिसे आयतन-विकृति प्रदिश के रूप में भी जाना जाता है, और दूसरा पद अनुपस्थित सममित प्रदिश है, जिसे विचलनात्मक विकृति प्रदिश या अपरूपण प्रदिश के रूप में भी जाना जाता है।

समदैशिक पदार्थों के लिए हुक के नियम का सबसे सामान्य रूप अब इन दो प्रदिशो के रैखिक संयोजन के रूप में लिखा जा सकता है:

जहां K विस्तृत मापांक है और G अपरूपण मापांक है।

प्रत्यास्थ मॉड्यूलस के बीच संबंधों का उपयोग करके, इन समीकरणों को अन्य तरीकों से भी व्यक्त किया जा सकता है। समदैशिक पदार्थों के लिए हुक के नियम का एक सामान्य रूप, प्रत्यक्ष प्रदिश संकेतन[10] में व्यक्त किया गया है। जहां λ = K2/3G = c1111 − 2c1212 और μ = G = c1212 लेमे स्थिरांक हैं, I द्वितीय पद की पहचान प्रदिश है, और I चतुर्थ पद की पहचान प्रदिश का सममित भाग है। इस प्रकार सूचकांक संकेतन में:

व्युत्क्रम संबंध है[11]
इसलिए, संबंध में अनुवृत्ति प्रदिश ε = s : σ है
यंग के मापांक और पॉसों के अनुपात के संदर्भ में, समदैशिक पदार्थों के लिए हुक के नियम को तब व्यक्त किया जा सकता है
यह वह समघात है जिसमें अभियांत्रिकी में प्रतिबल प्रदिश के संदर्भ में प्रतिबल व्यक्त किया जाता है। विस्तारित रूप में अभिव्यक्ति है
जहां E यंग का मापांक है और ν प्वासों (3-D प्रत्यास्थ देखें) का अनुपात है।

हूक के नियम की तीन आयामों में व्युत्पत्ति

हूक के नियम का त्रि-आयामी रूप प्वासों के अनुपात और हुक के नियम के एक-आयामी रूप का उपयोग करके निम्नानुसार प्राप्त किया जा सकता है। भार की दिशा में कर्षण (1) और लम्बवत दिशाओं (2 और 3) में संकुचन (भार के कारण) के दो प्रभावों के अध्यारोपण के रूप में प्रतिबल और विकृति संबंध पर विचार करें।

जहां ν प्वासों अनुपात है और E यंग मापांक है।

हम 2 और 3 दिशाओं में भार के समान समीकरण प्राप्त करते हैं,

और

तीनों स्थितियों का एक साथ योग करने पर (εi = εi′ + εi″ + εi‴) हम प्राप्त करते हैं

या एक νσ को जोड़कर और घटाकर
और आगे हम σ1 को हल करके प्राप्त करते हैं

योग की गणना करने पर

और इसे σ1 के लिए हल किए गए समीकरण में प्रतिस्थापित करने पर प्राप्त होता है
जहां μ और λ लैम पैरामीटर हैं।

दिशाओं 2 और 3 का समान संशोधन हुक के नियम को तीन आयामों में देता है।

आव्यूह रूप में, समदैशिक पदार्थों के लिए हुक के नियम को इस प्रकार लिखा जा सकता है

जहां γij = 2εij अभियांत्रिकी अपरूपण विकृति है। व्युत्क्रम संबंध के रूप में लिखा जा सकता है
जिसे लेमे स्थिरांक के लिए सरल बनाया जा सकता है:
सदिश संकेतन में यह बन जाता है
जहां I पहचान प्रदिश है।

समतल प्रतिबल

समतल प्रतिबल के अंतर्गत σ31 = σ13 = σ32 = σ23 = σ33 = 0 समतल प्रतिबल की स्थिति होती है। उस स्थिति में हुक का नियम रूप लेता है

सदिश संकेतन में यह बन जाता है
व्युत्क्रम संबंध सामान्य रूप से कम रूप में लिखा जाता है


समतल विकृति

अतिसूक्ष्म प्रतिबल सिद्धांत के अंतर्गत समतल विकृति की स्थिति ε31 = ε13 = ε32 = ε23 = ε33 = 0 प्राप्त होती है। इस स्थिति में हुक का नियम रूप लेता है


विषमदैशिक पदार्थ

कॉची प्रतिबल प्रदिश (σij = σji) और सामान्यीकृत हुक के नियम (σij = cijklεkl) की समरूपता का तात्पर्य cijkl = cjikl है। इसी प्रकार, अतिसूक्ष्म प्रतिबल प्रदिश की समरूपता का तात्पर्य cijkl = cijlk होता है। इन समरूपताओं को दृढ़ता प्रदिश c की छोटी समरूपता कहा जाता है। यह प्रत्यास्थ स्थिरांक की संख्या को 81 से घटाकर 36 कर देता है।

यदि इसके अतिरिक्त, चूंकि विस्थापन प्रवणता और कौशी प्रतिबल फलन संयुग्मी हैं, प्रतिबल-विकृति संबंध एक विकृति ऊर्जा घनत्व क्रियात्मक (U) से प्राप्त किया जा सकता है, तब

अवकल के क्रम की यादृच्छिकता का तात्पर्य cijkl = cklij है। इन्हें संदृढता प्रदिश की प्रमुख समरूपता कहा जाता है। यह प्रत्यास्थ स्थिरांक की संख्या को 36 से घटाकर 21 कर देता है। प्रमुख और छोटी समरूपता दर्शाती है कि संदृढता प्रदिश में केवल 21 स्वतंत्र घटक हैं।

आव्यूह प्रतिनिधित्व (संदृढता प्रदिश)

आव्यूह संकेतन में हुक के नियम के विषमदैशिक रूप को व्यक्त करना प्रायः उपयोगी होता है, जिसे वायगट संकेतन भी कहा जाता है। ऐसा करने के लिए हम प्रतिबल और विकृति प्रदिश की समरूपता का लाभ प्राप्त करते हैं और उन्हें प्रसामान्य लांबिक निर्देशांक प्रणाली में छह-आयामी सदिश (e1,e2,e3) के रूप में व्यक्त करते हैं जैसे

फिर संदृढता प्रदिश (c) के रूप में व्यक्त किया जा सकता है
और हुक का नियम इस प्रकार लिखा जाता है
इसी प्रकार अनुवृत्ति प्रदिश (s) को इस रूप में लिखा जा सकता है