सममित फलन वलय: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
[[बीजगणित]] में और विशेष रूप से [[बीजगणितीय कॉम्बिनेटरिक्स|बीजगणितीय साहचर्य]] में, सममित कार्यों की अंगूठी 'n' अनिश्चित में [[सममित बहुपद]] की [[अंगूठी (गणित)]] की विशिष्ट सीमा है, क्योंकि 'n' अनंत तक जाती है। यह वलय सार्वभौमिक संरचना के रूप में कार्य करता है जिसमें सममित बहुपदों के बीच संबंधों को निर्धारकों की संख्या ''n'' से स्वतंत्र विधियों से व्यक्त किया जा सकता है (किन्तु इसके तत्व न तो बहुपद हैं और न ही कार्य)। अन्य बातों के अतिरिक्त, यह वलय सममित समूह के प्रतिनिधित्व सिद्धांत में महत्वपूर्ण भूमिका निभाता है।
[[बीजगणित]] में और विशेष रूप से [[बीजगणितीय कॉम्बिनेटरिक्स|बीजगणितीय साहचर्य]] में, सममित फलन की रिंग 'n' अनिश्चित में [[सममित बहुपद]] की [[अंगूठी (गणित)|रिंग (गणित)]] की विशिष्ट सीमा है, क्योंकि 'n' अनंत तक जाती है। यह वलय सार्वभौमिक संरचना के रूप में कार्य करता है जिसमें सममित बहुपदों के बीच संबंधों को निर्धारकों की संख्या ''n'' से स्वतंत्र विधियों से व्यक्त किया जा सकता है (किन्तु इसके तत्व न तो बहुपद हैं और न ही कार्य)। अन्य बातों के अतिरिक्त, यह वलय सममित समूह के प्रतिनिधित्व सिद्धांत में महत्वपूर्ण भूमिका निभाता है।


सममित कार्यों की अंगूठी को सह-उत्पाद और [[द्विरेखीय रूप]] दिया जा सकता है जो इसे सकारात्मक स्वसम्मिलित श्रेणीबद्ध बीजगणित हॉपफ बीजगणित में बनाता है जो क्रमविनिमेय और सहसम्बन्धी दोनों है।
सममित फलन की रिंग को सह-उत्पाद और [[द्विरेखीय रूप]] दिया जा सकता है जो इसे सकारात्मक स्वसम्मिलित श्रेणीबद्ध बीजगणित हॉपफ बीजगणित में बनाता है जो क्रमविनिमेय और सहसम्बन्धी दोनों है।


== सममित बहुपद ==
== सममित बहुपद ==
Line 7: Line 7:
{{main |सममित बहुपद}}
{{main |सममित बहुपद}}


सममित कार्यों का अध्ययन सममित बहुपदों पर आधारित है। अनिश्चितकों के कुछ परिमित समुच्चय में बहुपद वलय में, बहुपद को सममित कहा जाता है यदि यह वही रहता है जब भी किसी भी प्रकार से अनिश्चित को अनुमति दी जाती है। अधिक औपचारिक रूप से, [[सममित समूह]] S<sub>n</sub> के [[अंगूठी (गणित)|अंगूठी स्वत:]]आकारिता द्वारा [[समूह क्रिया]] होती है n अनिश्चित में बहुपद की अंगूठी पर, जहां क्रमचय उपयोग किए गए क्रम[[परिवर्तन]] के अनुसार प्रत्येक अनिश्चित को साथ प्रतिस्थापित करके बहुपद पर कार्य करता है। अपरिवर्तनीय (गणित) इस क्रिया के लिए समूह क्रिया के अंतर्गत अपरिवर्तित सममित बहुपदों का उपसमूह बनाता है। यदि अनिश्चित ''X''<sub>1</sub>, ..., ''X<sub>n</sub>'',हैं, तो ऐसे सममित बहुपदों के उदाहरण हैं
सममित फलन का अध्ययन सममित बहुपदों पर आधारित है। अनिश्चितकों के कुछ परिमित समुच्चय में बहुपद वलय में, बहुपद को सममित कहा जाता है यदि यह वही रहता है जब भी किसी भी प्रकार से अनिश्चित को अनुमति दी जाती है। अधिक औपचारिक रूप से, [[सममित समूह]] S<sub>n</sub> के [[अंगूठी (गणित)|रिंग स्वत:]]आकारिता द्वारा [[समूह क्रिया]] होती है n अनिश्चित में बहुपद की रिंग पर, जहां क्रमचय उपयोग किए गए क्रम[[परिवर्तन]] के अनुसार प्रत्येक अनिश्चित को साथ प्रतिस्थापित करके बहुपद पर कार्य करता है। अपरिवर्तनीय (गणित) इस क्रिया के लिए समूह क्रिया के अंतर्गत अपरिवर्तित सममित बहुपदों का उपसमूह बनाता है। यदि अनिश्चित ''X''<sub>1</sub>, ..., ''X<sub>n</sub>'',हैं, तो ऐसे सममित बहुपदों के उदाहरण हैं


: <math>X_1+X_2+\cdots+X_n, \, </math>
: <math>X_1+X_2+\cdots+X_n, \, </math>
Line 16: Line 16:
कुछ और जटिल उदाहरण है''X''<sub>1</sub><sup>3</sup>''X''<sub>2</sub>''X''<sub>3</sub> + ''X''<sub>1</sub>''X''<sub>2</sub><sup>3</sup>''X''<sub>3</sub> + ''X''<sub>1</sub>''X''<sub>2</sub>''X''<sub>3</sub><sup>3</sup> + ''X''<sub>1</sub><sup>3</sup>''X''<sub>2</sub>''X''<sub>4</sub> + ''X''<sub>1</sub>''X''<sub>2</sub><sup>3</sup>''X''<sub>4</sub> + ''X''<sub>1</sub>''X''<sub>2</sub>''X''<sub>4</sub><sup>3</sup> + ... जहां योग कुछ चर और दो अन्य चर की तीसरी शक्ति के सभी उत्पादों को सम्मलित करता है। कई विशिष्ट प्रकार के सममित बहुपद हैं, जैसे [[प्राथमिक सममित बहुपद]], [[शक्ति योग सममित बहुपद]], [[मोनोमियल सममित बहुपद|एकपद सममित बहुपद]], [[पूर्ण सजातीय सममित बहुपद]], और [[शूर बहुपद]]।
कुछ और जटिल उदाहरण है''X''<sub>1</sub><sup>3</sup>''X''<sub>2</sub>''X''<sub>3</sub> + ''X''<sub>1</sub>''X''<sub>2</sub><sup>3</sup>''X''<sub>3</sub> + ''X''<sub>1</sub>''X''<sub>2</sub>''X''<sub>3</sub><sup>3</sup> + ''X''<sub>1</sub><sup>3</sup>''X''<sub>2</sub>''X''<sub>4</sub> + ''X''<sub>1</sub>''X''<sub>2</sub><sup>3</sup>''X''<sub>4</sub> + ''X''<sub>1</sub>''X''<sub>2</sub>''X''<sub>4</sub><sup>3</sup> + ... जहां योग कुछ चर और दो अन्य चर की तीसरी शक्ति के सभी उत्पादों को सम्मलित करता है। कई विशिष्ट प्रकार के सममित बहुपद हैं, जैसे [[प्राथमिक सममित बहुपद]], [[शक्ति योग सममित बहुपद]], [[मोनोमियल सममित बहुपद|एकपद सममित बहुपद]], [[पूर्ण सजातीय सममित बहुपद]], और [[शूर बहुपद]]।


== सममित कार्यों की अंगूठी ==
== सममित फलन की रिंग ==
सममित बहुपदों के बीच अधिकांश संबंध अनिर्धारकों की संख्या n पर निर्भर नहीं करते हैं, अतिरिक्त इसके कि संबंध में कुछ बहुपदों को n को परिभाषित करने के लिए अधिक बड़ा होना आवश्यक हो सकता है। उदाहरण के लिए न्यूटन की तत्समक तीसरी घात योग बहुपद p<sub>3</sub> के लिए न्यूटन की तत्समक ओर जाता है
सममित बहुपदों के बीच अधिकांश संबंध अनिर्धारकों की संख्या n पर निर्भर नहीं करते हैं, अतिरिक्त इसके कि संबंध में कुछ बहुपदों को n को परिभाषित करने के लिए अधिक बड़ा होना आवश्यक हो सकता है। उदाहरण के लिए न्यूटन की तत्समक तीसरी घात योग बहुपद p<sub>3</sub> के लिए न्यूटन की तत्समक ओर जाता है
:<math>p_3(X_1,\ldots,X_n)=e_1(X_1,\ldots,X_n)^3-3e_2(X_1,\ldots,X_n)e_1(X_1,\ldots,X_n)+3e_3(X_1,\ldots,X_n),</math>
:<math>p_3(X_1,\ldots,X_n)=e_1(X_1,\ldots,X_n)^3-3e_2(X_1,\ldots,X_n)e_1(X_1,\ldots,X_n)+3e_3(X_1,\ldots,X_n),</math>
जहां <math>e_i</math> प्रारंभिक सममित बहुपदों को निरूपित करें; यह सूत्र सभी [[प्राकृतिक संख्या]]ओं n के लिए मान्य है और इस पर एकमात्र उल्लेखनीय निर्भरता यह है कि ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') = 0 जब भी n < k. कोई इसे पहचान के रूप में लिखना चाहेगा
जहां <math>e_i</math> प्रारंभिक सममित बहुपदों को निरूपित करें; यह सूत्र सभी [[प्राकृतिक संख्या]]ओं n के लिए मान्य है और इस पर एकमात्र उल्लेखनीय निर्भरता यह है कि ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') = 0 जब भी n < k. कोई इसे पहचान के रूप में लिखना चाहेगा
:<math>p_3=e_1^3-3e_2 e_1 + 3e_3</math>
:<math>p_3=e_1^3-3e_2 e_1 + 3e_3</math>
यह n पर बिल्कुल भी निर्भर नहीं करता है और यह सममित कार्यों के वलय में किया जा सकता है। उस वलय में अशून्य तत्व ''e<sub>k</sub>'' होते हैं सभी [[पूर्णांक]] k ≥ 1 के लिए, और अंगूठी के किसी भी तत्व को तत्वों e<sub>''k''</sub> में बहुपद अभिव्यक्ति द्वारा दिया जा सकता है।
यह n पर बिल्कुल भी निर्भर नहीं करता है और यह सममित फलन के वलय में किया जा सकता है। उस वलय में अशून्य तत्व ''e<sub>k</sub>'' होते हैं सभी [[पूर्णांक]] k ≥ 1 के लिए, और रिंग के किसी भी तत्व को तत्वों e<sub>''k''</sub> में बहुपद अभिव्यक्ति द्वारा दिया जा सकता है।


=== परिभाषाएँ ===
=== परिभाषाएँ ===


सममित कार्यों की अंगूठी को किसी भी [[ क्रमविनिमेय अंगूठी |क्रमविनिमेय अंगूठी]] R पर परिभाषित किया जा सकता है और इसे Λ<sub>''R''</sub> के रूप में दर्शाया जाएगा; मूल अवस्था R = 'Z' के लिए है। अंगूठी Λ<sub>''R''</sub> वास्तव में वलय के ऊपर वर्गीकृत वलय R-बीजगणित है। इसके लिए दो मुख्य निर्माण हैं; नीचे दिया गया पहला (स्टेनली, 1999) में पाया जा सकता है और दूसरा अनिवार्य रूप से (मैकडोनाल्ड, 1979) में दिया गया है।
सममित फलन की रिंग को किसी भी [[ क्रमविनिमेय अंगूठी |क्रमविनिमेय रिंग]] R पर परिभाषित किया जा सकता है और इसे Λ<sub>''R''</sub> के रूप में दर्शाया जाएगा; मूल अवस्था R = 'Z' के लिए है। रिंग Λ<sub>''R''</sub> वास्तव में वलय के ऊपर वर्गीकृत वलय R-बीजगणित है। इसके लिए दो मुख्य निर्माण हैं; नीचे दिया गया पहला (स्टेनली, 1999) में पाया जा सकता है और दूसरा अनिवार्य रूप से (मैकडोनाल्ड, 1979) में दिया गया है।


==== औपचारिक शक्ति श्रृंखला की अंगूठी के रूप में ====
==== औपचारिक शक्ति श्रृंखला की रिंग के रूप में ====


सबसे सरल (चूंकि कुछ सीमा तक भारी) निर्माण कई चर में औपचारिक शक्ति श्रृंखला शक्ति श्रृंखला की अंगूठी से प्रारंभ होता है <math>R[[X_1,X_2,...]]</math> R पर असीम रूप से (गणना करने योग्य अनंत) कई अनिश्चित; इस शक्ति श्रृंखला अंगूठी के तत्व शर्तों के औपचारिक अनंत योग हैं, जिनमें से प्रत्येक में R से गुणांक [[ एकपद |एकपद]] द्वारा गुणा किया जाता है, जहां प्रत्येक एकपद अनिश्चित रूप से कई परिमित शक्तियों का उत्पाद होता है। Λ<sub>''R''</sub> को परिभाषित करता है इसके उप-वलय के रूप में उन शक्ति श्रृंखला S से मिलकर बनता है जो संतुष्ट करती हैं
सबसे सरल (चूंकि कुछ सीमा तक भारी) निर्माण कई चर में औपचारिक शक्ति श्रृंखला शक्ति श्रृंखला की रिंग से प्रारंभ होता है <math>R[[X_1,X_2,...]]</math> R पर असीम रूप से (गणना करने योग्य अनंत) कई अनिश्चित; इस शक्ति श्रृंखला रिंग के तत्व शर्तों के औपचारिक अनंत योग हैं, जिनमें से प्रत्येक में R से गुणांक [[ एकपद |एकपद]] द्वारा गुणा किया जाता है, जहां प्रत्येक एकपद अनिश्चित रूप से कई परिमित शक्तियों का उत्पाद होता है। Λ<sub>''R''</sub> को परिभाषित करता है इसके उप-वलय के रूप में उन शक्ति श्रृंखला S से मिलकर बनता है जो संतुष्ट करती हैं
#S अनिश्चित के किसी भी क्रमपरिवर्तन के अनुसार अपरिवर्तनीय है, और
#S अनिश्चित के किसी भी क्रमपरिवर्तन के अनुसार अपरिवर्तनीय है, और
#S में होने वाले एकपदों के बहुपद की कोटि परिबद्ध है।
#S में होने वाले एकपदों के बहुपद की कोटि परिबद्ध है।
ध्यान दें कि दूसरी स्थिति के कारण, घात श्रृंखला का उपयोग यहां केवल निश्चित डिग्री के असीम रूप से कई पदों को अनुमति देने के लिए किया जाता है, अतिरिक्त सभी संभावित डिग्री के पदों के योग के लिए। इसकी अनुमति देना जरूरी है क्योंकि तत्व जिसमें उदाहरण के लिए X<sub>1</sub> शब्द होता है X<sub>''i''</sub> शब्द भी होना चाहिए सममित होने के लिए प्रत्येक i > 1 के लिए। पूरी शक्ति श्रृंखला अंगूठी के विपरीत, उपअंगूठी Λ<sub>''R''</sub> एकपदीयों की कुल डिग्री द्वारा वर्गीकृत किया जाता है: स्थिति 2 के कारण, Λ<sub>''R''</sub> का प्रत्येक तत्व Λ<sub>''R''</sub> के [[सजातीय बहुपद]] तत्वों का परिमित योग है (जो स्वयं समान कोटि के पदों के अनंत योग हैं)। प्रत्येक k ≥ 0 के लिए, तत्व e<sub>''k''</sub>∈ Λ<sub>''R''</sub> k विशिष्ट अनिश्चित के सभी उत्पादों के औपचारिक योग के रूप में परिभाषित किया गया है, जो डिग्री k का स्पष्ट रूप से सजातीय है।
ध्यान दें कि दूसरी स्थिति के कारण, घात श्रृंखला का उपयोग यहां केवल निश्चित डिग्री के असीम रूप से कई पदों को अनुमति देने के लिए किया जाता है, अतिरिक्त सभी संभावित डिग्री के पदों के योग के लिए। इसकी अनुमति देना जरूरी है क्योंकि तत्व जिसमें उदाहरण के लिए X<sub>1</sub> शब्द होता है X<sub>''i''</sub> शब्द भी होना चाहिए सममित होने के लिए प्रत्येक i > 1 के लिए। पूरी शक्ति श्रृंखला रिंग के विपरीत, उपरिंग Λ<sub>''R''</sub> एकपदीयों की कुल डिग्री द्वारा वर्गीकृत किया जाता है: स्थिति 2 के कारण, Λ<sub>''R''</sub> का प्रत्येक तत्व Λ<sub>''R''</sub> के [[सजातीय बहुपद]] तत्वों का परिमित योग है (जो स्वयं समान कोटि के पदों के अनंत योग हैं)। प्रत्येक k ≥ 0 के लिए, तत्व e<sub>''k''</sub>∈ Λ<sub>''R''</sub> k विशिष्ट अनिश्चित के सभी उत्पादों के औपचारिक योग के रूप में परिभाषित किया गया है, जो डिग्री k का स्पष्ट रूप से सजातीय है।


==== बीजगणितीय सीमा के रूप में ====
==== बीजगणितीय सीमा के रूप में ====


Λ<sub>''R''</sub> का एक और निर्माण वर्णन करने में कुछ अधिक समय लगता है, किन्तु अंगूठी ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup> के साथ संबंध को बेहतर ढंग से इंगित करता है। अनिश्चित में सममित बहुपदों का प्रत्येक n के लिए [[विशेषण]] वलय समरूपता ρ<sub>''n''</sub> है समरूप वलय ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>]<sup>'''S'''<sub>''n''+1</sub></sup> पर और अनिश्चित के साथ ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup>, अंतिम अनिश्चित X को सेट करके ''X<sub>n</sub>''<sub>+1</sub>से 0 परिभाषित किया गया है । चूंकि ρ<sub>''n''</sub> गैर-तुच्छ कर्नेल (बीजगणित) है, उस कर्नेल के गैर-शून्य तत्वों में कम से कम डिग्री है <math>n+1</math> (वे X के गुणक हैं ''X''<sub>1</sub>''X''<sub>2</sub>...''X<sub>n</sub>''<sub>+1</sub>) । इसका मतलब है कि ρ<sub>''n''</sub> का प्रतिबंध अधिक से अधिक n डिग्री के तत्वों के लिए विशेषण [[रैखिक नक्शा]] है, और ''ρ<sub>n</sub>''(''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>)) = ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') for all ''k'' ≤ ''n''. इस प्रतिबंध के व्युत्क्रम को विशिष्ट रूप से अंगूठी समरूपता φ<sub>''n''</sub> तक बढ़ाया जा सकता है ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup> से ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>]<sup>'''S'''<sub>''n''+1</sub></sup>, जैसा कि उदाहरण के लिए सममित बहुपदों के मूलभूत प्रमेय से लिया गया है। छवियों के बाद से ''φ<sub>n</sub>''(''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'')) = ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>) , ''k'' = 1,...,''n'' के लिए अभी भी R, समाकारिता φ<sub>''n''</sub> पर [[इंजेक्शन|अन्तःक्षेपण]] बीजगणितीय रूप से स्वतंत्र हैं और इसे अंगूठी के समावेश (कुछ असामान्य) के रूप में देखा जा सकता है; φ<sub>''n''</sub> लागू करना से पहले उपस्तिथ एकपद से समरूपता द्वारा प्राप्त नए अनिश्चित वाले सभी एकपद को जोड़ने के लिए बहुपद राशि। अंगूठी Λ<sub>''R''</sub> तब इन समावेशन के अधीन इन सभी अंगूठियो का संघ ([[प्रत्यक्ष सीमा]]) है। चूंकि सभी φ<sub>''n''</sub> सम्मलित अंगूठी की कुल डिग्री द्वारा ग्रेडिंग के साथ संगत हैं, Λ<sub>''R''</sub> वर्गीकृत अंगूठी की संरचना प्राप्त करता है।
Λ<sub>''R''</sub> का एक और निर्माण वर्णन करने में कुछ अधिक समय लगता है, किन्तु रिंग ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup> के साथ संबंध को बेहतर ढंग से इंगित करता है। अनिश्चित में सममित बहुपदों का प्रत्येक n के लिए [[विशेषण]] वलय समरूपता ρ<sub>''n''</sub> है समरूप वलय ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>]<sup>'''S'''<sub>''n''+1</sub></sup> पर और अनिश्चित के साथ ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup>, अंतिम अनिश्चित X को सेट करके ''X<sub>n</sub>''<sub>+1</sub>से 0 परिभाषित किया गया है । चूंकि ρ<sub>''n''</sub> गैर-तुच्छ कर्नेल (बीजगणित) है, उस कर्नेल के गैर-शून्य तत्वों में कम से कम डिग्री है <math>n+1</math> (वे X के गुणक हैं ''X''<sub>1</sub>''X''<sub>2</sub>...''X<sub>n</sub>''<sub>+1</sub>) । इसका मतलब है कि ρ<sub>''n''</sub> का प्रतिबंध अधिक से अधिक n डिग्री के तत्वों के लिए विशेषण [[रैखिक नक्शा]] है, और ''ρ<sub>n</sub>''(''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>)) = ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') for all ''k'' ≤ ''n''. इस प्रतिबंध के व्युत्क्रम को विशिष्ट रूप से रिंग समरूपता φ<sub>''n''</sub> तक बढ़ाया जा सकता है ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>'']<sup>'''S'''<sub>''n''</sub></sup> से ''R''[''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>]<sup>'''S'''<sub>''n''+1</sub></sup>, जैसा कि उदाहरण के लिए सममित बहुपदों के मूलभूत प्रमेय से लिया गया है। छवियों के बाद से ''φ<sub>n</sub>''(''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'')) = ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>) , ''k'' = 1,...,''n'' के लिए अभी भी R, समाकारिता φ<sub>''n''</sub> पर [[इंजेक्शन|अन्तःक्षेपण]] बीजगणितीय रूप से स्वतंत्र हैं और इसे रिंग के समावेश (कुछ असामान्य) के रूप में देखा जा सकता है; φ<sub>''n''</sub> लागू करना से पहले उपस्तिथ एकपद से समरूपता द्वारा प्राप्त नए अनिश्चित वाले सभी एकपद को जोड़ने के लिए बहुपद राशि। रिंग Λ<sub>''R''</sub> तब इन समावेशन के अधीन इन सभी अंगूठियो का संघ ([[प्रत्यक्ष सीमा]]) है। चूंकि सभी φ<sub>''n''</sub> सम्मलित रिंग की कुल डिग्री द्वारा ग्रेडिंग के साथ संगत हैं, Λ<sub>''R''</sub> वर्गीकृत रिंग की संरचना प्राप्त करता है।


यह निर्माण (मैकडोनाल्ड, 1979) में से थोड़ा अलग है। वह निर्माण केवल विशेषण आकारिकी ρ<sub>''n''</sub> का उपयोग करता है अन्तःक्षेपण रूपवाद φ<sub>''n''</sub> का उल्लेख किए बिना। यह Λ<sub>''R''</sub> के सजातीय घटकों का निर्माण करता है अलग से, एक और ρ<sub>''n''</sub> का उपयोग करके उनके [[प्रत्यक्ष योग]] को अंगूठी संरचना से तैयार करता है। यह भी देखा गया है कि परिणाम को वर्गीकृत अंगूठियो की [[श्रेणी (गणित)]] में व्युत्क्रम सीमा के रूप में वर्णित किया जा सकता है। चूंकि यह विवरण कुछ सीमा तक इंजेक्शन आकारिता की सीधी सीमा के लिए विशिष्ट महत्वपूर्ण संपत्ति को अस्पष्ट करता है, अर्थात् प्रत्येक व्यक्तिगत तत्व (सममित कार्य) पहले से ही सीमा निर्माण में उपयोग की जाने वाली किसी वस्तु में eमानदारी से प्रतिनिधित्व किया जाता है, यहां अंगूठी ''R''[''X''<sub>1</sub>,...,''X<sub>d</sub>'']<sup>'''S'''<sub>''d''</sub></sup> यह d के लिए सममित फलन की डिग्री लेने के लिए पर्याप्त है, क्योंकि उस अंगूठी के डिग्री d में भाग को समरूप रूप से मैप किया जाता है, जो कि φn द्वारा अधिक अनिश्चित होता है। सभी के लिए n≥ d। इसका तात्पर्य है कि अलग-अलग तत्वों के बीच संबंधों का अध्ययन करने के लिए सममित बहुपदों और सममित कार्यों के बीच कोई मूलभूत अंतर नहीं है।
यह निर्माण (मैकडोनाल्ड, 1979) में से थोड़ा अलग है। वह निर्माण केवल विशेषण आकारिकी ρ<sub>''n''</sub> का उपयोग करता है अन्तःक्षेपण रूपवाद φ<sub>''n''</sub> का उल्लेख किए बिना। यह Λ<sub>''R''</sub> के सजातीय घटकों का निर्माण करता है अलग से, एक और ρ<sub>''n''</sub> का उपयोग करके उनके [[प्रत्यक्ष योग]] को रिंग संरचना से तैयार करता है। यह भी देखा गया है कि परिणाम को वर्गीकृत अंगूठियो की [[श्रेणी (गणित)]] में व्युत्क्रम सीमा के रूप में वर्णित किया जा सकता है। चूंकि यह विवरण कुछ सीमा तक इंजेक्शन आकारिता की सीधी सीमा के लिए विशिष्ट महत्वपूर्ण संपत्ति को अस्पष्ट करता है, अर्थात् प्रत्येक व्यक्तिगत तत्व (सममित कार्य) पहले से ही सीमा निर्माण में उपयोग की जाने वाली किसी वस्तु में eमानदारी से प्रतिनिधित्व किया जाता है, यहां रिंग ''R''[''X''<sub>1</sub>,...,''X<sub>d</sub>'']<sup>'''S'''<sub>''d''</sub></sup> यह d के लिए सममित फलन की डिग्री लेने के लिए पर्याप्त है, क्योंकि उस रिंग के डिग्री d में भाग को समरूप रूप से मैप किया जाता है, जो कि φn द्वारा अधिक अनिश्चित होता है। सभी के लिए n≥ d। इसका तात्पर्य है कि अलग-अलग तत्वों के बीच संबंधों का अध्ययन करने के लिए सममित बहुपदों और सममित फलन के बीच कोई मूलभूत अंतर नहीं है।


=== व्यक्तिगत सममित कार्यों को परिभाषित करना ===
=== व्यक्तिगत सममित फलन को परिभाषित करना ===


Λ<sub>''R''</sub> के तत्वों के लिए नाम सममित कार्य [[मिथ्या नाम]] है: न तो निर्माण में तत्व कार्य (गणित) हैं और वास्तव में, सममित बहुपदों के विपरीत, ऐसे तत्वों से स्वतंत्र चर का कोई कार्य नहीं जोड़ा जा सकता है (उदाहरण के लिए e<sub>1</sub> सभी असीम रूप से कई चरों का योग होगा, जो तब तक परिभाषित नहीं होता है जब तक कि चर पर प्रतिबंध नहीं लगाया जाता है)। चूँकि नाम पारंपरिक और अच्छी प्रकार से स्थापित है; यह (मैकडॉनल्ड, 1979) दोनों में पाया जा सकता है, जो कहता है (पृष्ठ 12 पर फुटनोट)
Λ<sub>''R''</sub> के तत्वों के लिए नाम सममित कार्य [[मिथ्या नाम]] है: न तो निर्माण में तत्व कार्य (गणित) हैं और वास्तव में, सममित बहुपदों के विपरीत, ऐसे तत्वों से स्वतंत्र चर का कोई कार्य नहीं जोड़ा जा सकता है (उदाहरण के लिए e<sub>1</sub> सभी असीम रूप से कई चरों का योग होगा, जो तब तक परिभाषित नहीं होता है जब तक कि चर पर प्रतिबंध नहीं लगाया जाता है)। चूँकि नाम पारंपरिक और अच्छी प्रकार से स्थापित है; यह (मैकडॉनल्ड, 1979) दोनों में पाया जा सकता है, जो कहता है (पृष्ठ 12 पर फुटनोट)
<blockquote>Λ के तत्व (Λ<sub>''n''</sub> के तत्वों के विपरीत) अब बहुपद नहीं हैं: वे एकपदी के औपचारिक अनंत योग हैं। इसलिए हम सममित कार्यों की पुरानी शब्दावली पर वापस आ गए हैं।</blockquote>
<blockquote>Λ के तत्व (Λ<sub>''n''</sub> के तत्वों के विपरीत) अब बहुपद नहीं हैं: वे एकपदी के औपचारिक अनंत योग हैं। इसलिए हम सममित फलन की पुरानी शब्दावली पर वापस आ गए हैं।</blockquote>
(यहाँ Λ<sub>''n''</sub> एन अनिश्चित में सममित बहुपदों की अंगूठी को दर्शाता है), और (स्टेनली, 1999) में भी।
(यहाँ Λ<sub>''n''</sub> एन अनिश्चित में सममित बहुपदों की रिंग को दर्शाता है), और (स्टेनली, 1999) में भी।


सममित फलन को परिभाषित करने के लिए या तो पहले निर्माण के रूप में सीधे शक्ति श्रृंखला का संकेत देना चाहिए, या दूसरे निर्माण के साथ संगत विधियों से प्रत्येक प्राकृतिक संख्या n के लिए n अनिश्चित में सममित बहुपद देना चाहिए। उदाहरण के लिए, अनिश्चित संख्या में अभिव्यक्ति दोनों कर सकती है
सममित फलन को परिभाषित करने के लिए या तो पहले निर्माण के रूप में सीधे शक्ति श्रृंखला का संकेत देना चाहिए, या दूसरे निर्माण के साथ संगत विधियों से प्रत्येक प्राकृतिक संख्या n के लिए n अनिश्चित में सममित बहुपद देना चाहिए। उदाहरण के लिए, अनिश्चित संख्या में अभिव्यक्ति दोनों कर सकती है
Line 50: Line 50:
प्राथमिक सममित फलन की परिभाषा के रूप में लिया जा सकता है यदि अनिश्चित की संख्या अनंत है, या किसी भी परिमित संख्या में प्राथमिक सममित बहुपद की परिभाषा के रूप में। समान सममित फलन के लिए सममित बहुपदों को समरूपता ρ<sub>''n''</sub> के साथ संगत होना चाहिए (उनमें से कुछ को शून्य पर सेट करके अनिश्चितताओं की संख्या घटाकर प्राप्त की जाती है, जिससे शेष अनिश्चितताओं में किसी भी एकपद के गुणांक अपरिवर्तित रहें), और उनकी डिग्री बंधी रहनी चाहिए। (सममित बहुपदों के परिवार का उदाहरण जो दोनों स्थितियों में विफल रहता है <math>\textstyle\prod_{i=1}^nX_i</math>; परिवार <math>\textstyle\prod_{i=1}^n(X_i+1)</math> केवल दूसरी स्थिति में विफल रहता है।) n अनिश्चित में किसी भी सममित बहुपद का उपयोग सममित बहुपदों के संगत परिवार के निर्माण के लिए किया जा सकता है, समरूपता का उपयोग करके ρ<sub>''i''</sub> i < n अनिश्चित की संख्या कम करने के लिए, और φ<sub>''i''</sub> i ≥ n के लिए अनिश्चितताओं की संख्या बढ़ाने के लिए (जो पहले से उपस्तिथ एकपदीयों से समरूपता द्वारा प्राप्त नए अनिश्चितकों में सभी एकपदीयों को जोड़ने के बराबर है)।
प्राथमिक सममित फलन की परिभाषा के रूप में लिया जा सकता है यदि अनिश्चित की संख्या अनंत है, या किसी भी परिमित संख्या में प्राथमिक सममित बहुपद की परिभाषा के रूप में। समान सममित फलन के लिए सममित बहुपदों को समरूपता ρ<sub>''n''</sub> के साथ संगत होना चाहिए (उनमें से कुछ को शून्य पर सेट करके अनिश्चितताओं की संख्या घटाकर प्राप्त की जाती है, जिससे शेष अनिश्चितताओं में किसी भी एकपद के गुणांक अपरिवर्तित रहें), और उनकी डिग्री बंधी रहनी चाहिए। (सममित बहुपदों के परिवार का उदाहरण जो दोनों स्थितियों में विफल रहता है <math>\textstyle\prod_{i=1}^nX_i</math>; परिवार <math>\textstyle\prod_{i=1}^n(X_i+1)</math> केवल दूसरी स्थिति में विफल रहता है।) n अनिश्चित में किसी भी सममित बहुपद का उपयोग सममित बहुपदों के संगत परिवार के निर्माण के लिए किया जा सकता है, समरूपता का उपयोग करके ρ<sub>''i''</sub> i < n अनिश्चित की संख्या कम करने के लिए, और φ<sub>''i''</sub> i ≥ n के लिए अनिश्चितताओं की संख्या बढ़ाने के लिए (जो पहले से उपस्तिथ एकपदीयों से समरूपता द्वारा प्राप्त नए अनिश्चितकों में सभी एकपदीयों को जोड़ने के बराबर है)।


निम्नलिखित सममित कार्यों के मूलभूत उदाहरण हैं।
निम्नलिखित सममित फलन के मूलभूत उदाहरण हैं।
* 'एकपद सममित फलन ' m<sub>α</sub>. मान लीजिए α = (α<sub>1</sub>,α<sub>2</sub>,...) गैर-ऋणात्मक पूर्णांकों का अनुक्रम है, जिनमें से केवल बहुत से गैर-शून्य हैं। तब हम α: X द्वारा परिभाषित एकपद पर विचार कर सकते हैंα: ''X''<sup>α</sup> = ''X''<sub>1</sub><sup>α<sub>1</sub></sup>''X''<sub>2</sub><sup>α<sub>2</sub></sup>''X''<sub>3</sub><sup>α<sub>3</sub></sup>.... फिर m<sub>α</sub> X<sup>α</sup> द्वारा निर्धारित सममित कार्य है, अर्थात X<sup>α</sup> से प्राप्त सभी एकपदीयों का योग समरूपता द्वारा। औपचारिक परिभाषा के लिए, β ~ α को परिभाषित करें जिसका अर्थ है कि अनुक्रम β अनुक्रम α और सेट का क्रमपरिवर्तन है
* 'एकपद सममित फलन ' m<sub>α</sub>. मान लीजिए α = (α<sub>1</sub>,α<sub>2</sub>,...) गैर-ऋणात्मक पूर्णांकों का अनुक्रम है, जिनमें से केवल बहुत से गैर-शून्य हैं। तब हम α: X द्वारा परिभाषित एकपद पर विचार कर सकते हैंα: ''X''<sup>α</sup> = ''X''<sub>1</sub><sup>α<sub>1</sub></sup>''X''<sub>2</sub><sup>α<sub>2</sub></sup>''X''<sub>3</sub><sup>α<sub>3</sub></sup>.... फिर m<sub>α</sub> X<sup>α</sup> द्वारा निर्धारित सममित कार्य है, अर्थात X<sup>α</sup> से प्राप्त सभी एकपदीयों का योग समरूपता द्वारा। औपचारिक परिभाषा के लिए, β ~ α को परिभाषित करें जिसका अर्थ है कि अनुक्रम β अनुक्रम α और सेट का क्रमपरिवर्तन है
::<math>m_\alpha=\sum\nolimits_{\beta\sim\alpha}X^\beta.</math>
::<math>m_\alpha=\sum\nolimits_{\beta\sim\alpha}X^\beta.</math>
:यह सममित कार्य एकपद सममित बहुपद ''m''<sub>α</sub>(''X''<sub>1</sub>,...,''X<sub>n</sub>'') से मेल खाता है किसी भी बड़े n के लिए एकपदी X<sup>α</sup> रखने के लिए पर्याप्त है। अलग-अलग एकपद सममित कार्यों को [[पूर्णांक विभाजन]] द्वारा पैरामीटर किया जाता है (प्रत्येक m<sub>α</sub> अद्वितीय प्रतिनिधि एकपदी X<sup>λ</sup> है भागों के साथ λ<sub>''i''</sub> कमजोर घटते क्रम में)। चूंकि किसी भी सममित फलन में कुछ m<sub>α</sub> के एकपद सम्मलित हैं एक ही गुणांक के साथ उन सभी को सम्मलित करना चाहिए, प्रत्येक सममित फलन को एकपद सममित कार्यों के आर-रैखिक संयोजन के रूप में लिखा जा सकता है, और विशिष्ट एकपद सममित फलन इसलिए Λ<sub>''R''</sub> का आधार बनाते हैं आर-[[मॉड्यूल (गणित)]] के रूप में।
:यह सममित कार्य एकपद सममित बहुपद ''m''<sub>α</sub>(''X''<sub>1</sub>,...,''X<sub>n</sub>'') से मेल खाता है किसी भी बड़े n के लिए एकपदी X<sup>α</sup> रखने के लिए पर्याप्त है। अलग-अलग एकपद सममित फलन को [[पूर्णांक विभाजन]] द्वारा पैरामीटर किया जाता है (प्रत्येक m<sub>α</sub> अद्वितीय प्रतिनिधि एकपदी X<sup>λ</sup> है भागों के साथ λ<sub>''i''</sub> कमजोर घटते क्रम में)। चूंकि किसी भी सममित फलन में कुछ m<sub>α</sub> के एकपद सम्मलित हैं एक ही गुणांक के साथ उन सभी को सम्मलित करना चाहिए, प्रत्येक सममित फलन को एकपद सममित फलन के आर-रैखिक संयोजन के रूप में लिखा जा सकता है, और विशिष्ट एकपद सममित फलन इसलिए Λ<sub>''R''</sub> का आधार बनाते हैं आर-[[मॉड्यूल (गणित)]] के रूप में।
* 'प्राथमिक सममित कार्य' e<sub>''k''</sub>, किसी प्राकृत संख्या k के लिए; के पास ''e<sub>k</sub>'' = ''m''<sub>α</sub> जहां <math>\textstyle  
* 'प्राथमिक सममित कार्य' e<sub>''k''</sub>, किसी प्राकृत संख्या k के लिए; के पास ''e<sub>k</sub>'' = ''m''<sub>α</sub> जहां <math>\textstyle  
X^\alpha=\prod_{i=1}^kX_i</math> है। शक्ति श्रृंखला के रूप में, यह k विशिष्ट अनिश्चित के सभी विशिष्ट उत्पादों का योग है। यह सममित कार्य प्राथमिक सममित बहुपद किसी भी n ≥ k के लिए ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') से मेल खाता है ।
X^\alpha=\prod_{i=1}^kX_i</math> है। शक्ति श्रृंखला के रूप में, यह k विशिष्ट अनिश्चित के सभी विशिष्ट उत्पादों का योग है। यह सममित कार्य प्राथमिक सममित बहुपद किसी भी n ≥ k के लिए ''e<sub>k</sub>''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') से मेल खाता है ।
Line 62: Line 62:
कोई घात योग सममित फलन p<sub>0</sub> नहीं है: चूंकि परिभाषित करना संभव है (और कुछ संदर्भों में प्राकृतिक)। <math>\textstyle p_0(X_1,\ldots,X_n)=\sum_{i=1}^nX_i^0=n</math> n चरों में सममित बहुपद के रूप में, ये मान आकारिकी ρ<sub>''n''</sub> के साथ संगत नहीं हैं। भेद करनेवाला <math>\textstyle(\prod_{i<j}(X_i-X_j))^2</math> सभी n के लिए सममित बहुपद देने वाली अभिव्यक्ति का और उदाहरण है, किन्तु किसी भी सममित कार्य को परिभाषित नहीं करता है। प्रत्यावर्ती बहुपदों के भागफल के रूप में शूर बहुपदों को परिभाषित करने वाले भाव कुछ सीमा तक विवेचक के समान हैं, किन्तु बहुपद ''s''<sub>λ</sub>(''X''<sub>1</sub>,...,''X<sub>n</sub>'') अलग-अलग n के लिए संगत हो जाते हैं और इसलिए सममित कार्य को परिभाषित करते हैं।
कोई घात योग सममित फलन p<sub>0</sub> नहीं है: चूंकि परिभाषित करना संभव है (और कुछ संदर्भों में प्राकृतिक)। <math>\textstyle p_0(X_1,\ldots,X_n)=\sum_{i=1}^nX_i^0=n</math> n चरों में सममित बहुपद के रूप में, ये मान आकारिकी ρ<sub>''n''</sub> के साथ संगत नहीं हैं। भेद करनेवाला <math>\textstyle(\prod_{i<j}(X_i-X_j))^2</math> सभी n के लिए सममित बहुपद देने वाली अभिव्यक्ति का और उदाहरण है, किन्तु किसी भी सममित कार्य को परिभाषित नहीं करता है। प्रत्यावर्ती बहुपदों के भागफल के रूप में शूर बहुपदों को परिभाषित करने वाले भाव कुछ सीमा तक विवेचक के समान हैं, किन्तु बहुपद ''s''<sub>λ</sub>(''X''<sub>1</sub>,...,''X<sub>n</sub>'') अलग-अलग n के लिए संगत हो जाते हैं और इसलिए सममित कार्य को परिभाषित करते हैं।


=== सममित बहुपदों और सममित कार्यों से संबंधित सिद्धांत ===
=== सममित बहुपदों और सममित फलन से संबंधित सिद्धांत ===


किसी भी सममित फलन P के लिए, n में संबंधित सममित बहुपद किसी भी प्राकृत संख्या n के लिए अनिश्चित होते हैं, जिन्हें ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') द्वारा निर्दिष्ट किया जा सकता है। सममित कार्यों के वलय की दूसरी परिभाषा का तात्पर्य निम्नलिखित मूलभूत सिद्धांत से है।
किसी भी सममित फलन P के लिए, n में संबंधित सममित बहुपद किसी भी प्राकृत संख्या n के लिए अनिश्चित होते हैं, जिन्हें ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') द्वारा निर्दिष्ट किया जा सकता है। सममित फलन के वलय की दूसरी परिभाषा का तात्पर्य निम्नलिखित मूलभूत सिद्धांत से है।


: यदि P और Q डिग्री d के सममित कार्य हैं, तो की पहचान है <math>P=Q</math> सममित कार्यों की [[अगर और केवल अगर|यदि और केवल]] यदि किसी की पहचान है ''P''(''X''<sub>1</sub>,...,''X<sub>d</sub>'') = ''Q''(''X''<sub>1</sub>,...,''X<sub>d</sub>'') अनिश्चित में सममित बहुपदों की। इस मामले में वास्तव में ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') = ''Q''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') किसी भी संख्या n के लिए अनिश्चित हैं।
: यदि P और Q डिग्री d के सममित कार्य हैं, तो की पहचान है <math>P=Q</math> सममित फलन की [[अगर और केवल अगर|यदि और केवल]] यदि किसी की पहचान है ''P''(''X''<sub>1</sub>,...,''X<sub>d</sub>'') = ''Q''(''X''<sub>1</sub>,...,''X<sub>d</sub>'') अनिश्चित में सममित बहुपदों की। इस मामले में वास्तव में ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') = ''Q''(''X''<sub>1</sub>,...,''X<sub>n</sub>'') किसी भी संख्या n के लिए अनिश्चित हैं।


ऐसा इसलिए है क्योंकि कुछ चरों के लिए शून्य को प्रतिस्थापित करके चरों की संख्या को सदैव कम किया जा सकता है और समाकारिता φ<sub>''n''</sub> को लागू करके चरों की संख्या में वृद्धि की जा सकती है। उन समरूपताओं की परिभाषा आश्वस्त करती है कि ''φ<sub>n</sub>''(''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'')) = ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>) (और इसी प्रकार Q के लिए) जब भी n ≥ d. इस सिद्धांत के प्रभावी अनुप्रयोग के लिए न्यूटन की पहचान की व्युत्पत्ति न्यूटन की पहचान का प्रमाण देखें।
ऐसा इसलिए है क्योंकि कुछ चरों के लिए शून्य को प्रतिस्थापित करके चरों की संख्या को सदैव कम किया जा सकता है और समाकारिता φ<sub>''n''</sub> को लागू करके चरों की संख्या में वृद्धि की जा सकती है। उन समरूपताओं की परिभाषा आश्वस्त करती है कि ''φ<sub>n</sub>''(''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>'')) = ''P''(''X''<sub>1</sub>,...,''X<sub>n</sub>''<sub>+1</sub>) (और इसी प्रकार Q के लिए) जब भी n ≥ d. इस सिद्धांत के प्रभावी अनुप्रयोग के लिए न्यूटन की पहचान की व्युत्पत्ति न्यूटन की पहचान का प्रमाण देखें।


== सममित कार्यों की अंगूठी के गुण ==
== सममित फलन की रिंग के गुण ==


=== पहचान ===
=== पहचान ===
Line 76: Line 76:
सममितीय फलनों का वलय सममित बहुपदों के बीच सर्वसमिकाओं को लिखने के लिए सुविधाजनक उपकरण है, जो कि निर्धारकों की संख्या से स्वतंत्र होते हैं: Λ<sub>''R''</sub> में ऐसी कोई संख्या नहीं है, फिर भी उपरोक्त सिद्धांत द्वारा Λ<sub>''R''</sub> में कोई पहचान है स्वचालित रूप से किसी भी संख्या में अनिश्चितताओं में R पर सममित बहुपदों के छल्ले की पहचान देता है। कुछ मौलिक पहचान हैं
सममितीय फलनों का वलय सममित बहुपदों के बीच सर्वसमिकाओं को लिखने के लिए सुविधाजनक उपकरण है, जो कि निर्धारकों की संख्या से स्वतंत्र होते हैं: Λ<sub>''R''</sub> में ऐसी कोई संख्या नहीं है, फिर भी उपरोक्त सिद्धांत द्वारा Λ<sub>''R''</sub> में कोई पहचान है स्वचालित रूप से किसी भी संख्या में अनिश्चितताओं में R पर सममित बहुपदों के छल्ले की पहचान देता है। कुछ मौलिक पहचान हैं
:<math>\sum_{i=0}^k(-1)^ie_ih_{k-i}=0=\sum_{i=0}^k(-1)^ih_ie_{k-i}\quad\mbox{for all }k>0,</math>
:<math>\sum_{i=0}^k(-1)^ie_ih_{k-i}=0=\sum_{i=0}^k(-1)^ih_ie_{k-i}\quad\mbox{for all }k>0,</math>
जो प्रारंभिक और पूर्ण सजातीय सममित कार्यों के बीच समरूपता दिखाता है, इन संबंधों को पूर्ण सजातीय सममित बहुपद के अनुसार समझाया गया है।
जो प्रारंभिक और पूर्ण सजातीय सममित फलन के बीच समरूपता दिखाता है, इन संबंधों को पूर्ण सजातीय सममित बहुपद के अनुसार समझाया गया है।
:<math>ke_k=\sum_{i=1}^k(-1)^{i-1}p_ie_{k-i}\quad\mbox{for all }k\geq0,</math>
:<math>ke_k=\sum_{i=1}^k(-1)^{i-1}p_ie_{k-i}\quad\mbox{for all }k\geq0,</math>
[[न्यूटन की पहचान]], जिसमें पूर्ण सजातीय सममित कार्यों के लिए संस्करण भी है।
[[न्यूटन की पहचान]], जिसमें पूर्ण सजातीय सममित फलन के लिए संस्करण भी है।
:<math>kh_k=\sum_{i=1}^kp_ih_{k-i}\quad\mbox{for all }k\geq0.</math>
:<math>kh_k=\sum_{i=1}^kp_ih_{k-i}\quad\mbox{for all }k\geq0.</math>
=== Λ<sub>''R''</sub> के संरचनात्मक गुण ===
=== Λ<sub>''R''</sub> के संरचनात्मक गुण ===
Λ<sub>''R''</sub> के महत्वपूर्ण गुण निम्नलिखित को सम्मलित कीजिए।
Λ<sub>''R''</sub> के महत्वपूर्ण गुण निम्नलिखित को सम्मलित कीजिए।


# विभाजनों द्वारा पैरामीट्रिज्ड एकपद सममित कार्यों का सेट Λ<sub>''R''</sub> का आधार बनता है श्रेणीबद्ध आर-मॉड्यूल (गणित) के रूप में, d के विभाजन द्वारा पैरामीट्रिज्ड डिग्री डी के सजातीय होने के कारण; शूर फलन के सेट के लिए भी यही सच है (विभाजन द्वारा पैरामीट्रिज्ड)।
# विभाजनों द्वारा पैरामीट्रिज्ड एकपद सममित फलन का सेट Λ<sub>''R''</sub> का आधार बनता है श्रेणीबद्ध आर-मॉड्यूल (गणित) के रूप में, d के विभाजन द्वारा पैरामीट्रिज्ड डिग्री डी के सजातीय होने के कारण; शूर फलन के सेट के लिए भी यही सच है (विभाजन द्वारा पैरामीट्रिज्ड)।
# Λ<sub>''R''</sub> बहुपद वलय ''R''[''Y''<sub>1</sub>,''Y''<sub>2</sub>, ...] के लिए श्रेणीबद्ध R-बीजगणित के रूप में [[समरूपी]] है, अपरिमित रूप से अनेक चरों में, जहाँ Y<sub>''i''</sub> सभी i > 0 के लिए डिग्री i दी गई है, समरूपता वह है जो Y<sub>''i''</sub> भेजता है तब <sub>''i''</sub>∈ Λ<sub>''R''</sub> प्रत्येक i के लिए।
# Λ<sub>''R''</sub> बहुपद वलय ''R''[''Y''<sub>1</sub>,''Y''<sub>2</sub>, ...] के लिए श्रेणीबद्ध R-बीजगणित के रूप में [[समरूपी]] है, अपरिमित रूप से अनेक चरों में, जहाँ Y<sub>''i''</sub> सभी i > 0 के लिए डिग्री i दी गई है, समरूपता वह है जो Y<sub>''i''</sub> भेजता है तब <sub>''i''</sub>∈ Λ<sub>''R''</sub> प्रत्येक i के लिए।
# Λ<sub>''R''</sub> का इनवॉल्यूशन (गणित) [[ automorphism |automorphism]] ω है जो प्रारंभिक सममित कार्यों को बदल देता है e<sub>''i''</sub> और पूर्ण सजातीय सममित फलन h<sub>''i''</sub> सभी के लिए मैं यह प्रत्येक शक्ति योग सममित फलन p<sub>''i''</sub> भी भेजता है ''p<sub>i</sub>'' से (−1)<sup>''i''−1</sup>''p<sub>i</sub>'', और यह S<sub>λ</sub> को बदलाव करते हुए दूसरे के बीच शूर कार्यों की अनुमति देता है और S<sub>λ<sup>t</sup></sub> जहां Λ<sup>t</sup> λ का स्थानान्तरण विभाजन है।
# Λ<sub>''R''</sub> का इनवॉल्यूशन (गणित) [[ automorphism |automorphism]] ω है जो प्रारंभिक सममित फलन को बदल देता है e<sub>''i''</sub> और पूर्ण सजातीय सममित फलन h<sub>''i''</sub> सभी के लिए मैं यह प्रत्येक शक्ति योग सममित फलन p<sub>''i''</sub> भी भेजता है ''p<sub>i</sub>'' से (−1)<sup>''i''−1</sup>''p<sub>i</sub>'', और यह S<sub>λ</sub> को बदलाव करते हुए दूसरे के बीच शूर फलन की अनुमति देता है और S<sub>λ<sup>t</sup></sub> जहां Λ<sup>t</sup> λ का स्थानान्तरण विभाजन है।


संपत्ति 2 सममित बहुपदों के मौलिक प्रमेय का सार है। इसका तात्पर्य तुरंत कुछ अन्य गुणों से है:
संपत्ति 2 सममित बहुपदों के मौलिक प्रमेय का सार है। इसका तात्पर्य तुरंत कुछ अन्य गुणों से है:
* Λ<sub>''R''</sub> का उपअंगूठी n चर में R पर सममित बहुपदों की अंगूठी के लिए अधिकतम n में डिग्री के अपने तत्वों द्वारा उत्पन्न समरूप है;
* Λ<sub>''R''</sub> का उपरिंग n चर में R पर सममित बहुपदों की रिंग के लिए अधिकतम n में डिग्री के अपने तत्वों द्वारा उत्पन्न समरूप है;
* Λ<sub>''R''</sub> की हिल्बर्ट-पॉइनकेयर श्रृंखला है <math>\textstyle\prod_{i=1}^\infty\frac1{1-t^i}</math>, विभाजन (संख्या सिद्धांत) पूर्णांक विभाजन का कार्य उत्पन्न करना (यह संपत्ति 1 से भी अनुसरण करता है);
* Λ<sub>''R''</sub> की हिल्बर्ट-पॉइनकेयर श्रृंखला है <math>\textstyle\prod_{i=1}^\infty\frac1{1-t^i}</math>, विभाजन (संख्या सिद्धांत) पूर्णांक विभाजन का कार्य उत्पन्न करना (यह संपत्ति 1 से भी अनुसरण करता है);
* प्रत्येक n > 0 के लिए, Λ<sub>''R''</sub> के सजातीय भाग द्वारा गठित R-मॉड्यूल डिग्री n की, डिग्री के अपने तत्वों द्वारा उत्पन्न उपअंगूठी के साथ मॉड्यूलो एन से सख्ती से कम है, रैंक 1 का [[मुफ्त मॉड्यूल]] है, और (की छवि) e<sub>''n''</sub> इस R-मॉड्यूल का उत्पादक है;
* प्रत्येक n > 0 के लिए, Λ<sub>''R''</sub> के सजातीय भाग द्वारा गठित R-मॉड्यूल डिग्री n की, डिग्री के अपने तत्वों द्वारा उत्पन्न उपरिंग के साथ मॉड्यूलो एन से सख्ती से कम है, रैंक 1 का [[मुफ्त मॉड्यूल]] है, और (की छवि) e<sub>''n''</sub> इस R-मॉड्यूल का उत्पादक है;
* सममित कार्यों के प्रत्येक परिवार के लिए (F<sub>''i''</sub>)<sub>''i''>0</sub> जिसमें F<sub>''i''</sub> डिग्री i का सजातीय है और पिछले बिंदु (सभी i के लिए) के मुक्त आर-मॉड्यूल का उत्पादक देता है, ''R''[''Y''<sub>1</sub>,''Y''<sub>2</sub>, ...] से श्रेणीबद्ध आर-अलजेब्रस का वैकल्पिक समरूपता है ऊपर के रूप में Λ<sub>''R''</sub> Y<sub>''i''</sub> भेजता है F<sub>''i''</sub> के लिए; दूसरे शब्दों में, परिवार (f<sub>''i''</sub>)<sub>''i''>0</sub> Λ<sub>''R''</sub> के मुक्त बहुपद उत्पादक का सेट बनाता है।
* सममित फलन के प्रत्येक परिवार के लिए (F<sub>''i''</sub>)<sub>''i''>0</sub> जिसमें F<sub>''i''</sub> डिग्री i का सजातीय है और पिछले बिंदु (सभी i के लिए) के मुक्त आर-मॉड्यूल का उत्पादक देता है, ''R''[''Y''<sub>1</sub>,''Y''<sub>2</sub>, ...] से श्रेणीबद्ध आर-अलजेब्रस का वैकल्पिक समरूपता है ऊपर के रूप में Λ<sub>''R''</sub> Y<sub>''i''</sub> भेजता है F<sub>''i''</sub> के लिए; दूसरे शब्दों में, परिवार (f<sub>''i''</sub>)<sub>''i''>0</sub> Λ<sub>''R''</sub> के मुक्त बहुपद उत्पादक का सेट बनाता है।


यह अंतिम बिंदु विशेष रूप से परिवार पर लागू होता है पूर्ण सजातीय सममित कार्यों की (h<sub>''i''</sub>)<sub>''i''>0</sub> ।यदि R में क्षेत्र है (गणित)<math>\mathbb Q</math> परिमेय संख्याओं के संबंध में, यह परिवार पर भी लागू होता है (''p<sub>i</sub>'')<sub>''i''>0</sub> शक्ति योग सममित कार्यों की। यह बताता है कि इन परिवारों में से प्रत्येक के पहले n तत्व सममित बहुपदों के सेट को n चर में परिभाषित करते हैं जो सममित बहुपदों की उस अंगूठी के मुक्त बहुपद उत्पादक हैं।
यह अंतिम बिंदु विशेष रूप से परिवार पर लागू होता है पूर्ण सजातीय सममित फलन की (h<sub>''i''</sub>)<sub>''i''>0</sub> ।यदि R में क्षेत्र है (गणित)<math>\mathbb Q</math> परिमेय संख्याओं के संबंध में, यह परिवार पर भी लागू होता है (''p<sub>i</sub>'')<sub>''i''>0</sub> शक्ति योग सममित फलन की। यह बताता है कि इन परिवारों में से प्रत्येक के पहले n तत्व सममित बहुपदों के सेट को n चर में परिभाषित करते हैं जो सममित बहुपदों की उस रिंग के मुक्त बहुपद उत्पादक हैं।


तथ्य यह है कि पूर्ण सजातीय सममित कार्य Λ<sub>''R''</sub> के मुक्त बहुपद उत्पादक का सेट बनाते हैं पहले से ही स्वत:आकारिता के अस्तित्व को दर्शाता है ω प्राथमिक सममित कार्यों को पूर्ण सजातीय कार्यों में भेज रहा है, जैसा कि संपत्ति 3 में उल्लिखित है। तथ्य यह है कि ω Λ<sub>''R''</sub> का अंतर्वलन है ऊपर दिए गए संबंधों के पहले सेट द्वारा व्यक्त प्राथमिक और पूर्ण सजातीय सममित कार्यों के बीच समरूपता से अनुसरण करता है।
तथ्य यह है कि पूर्ण सजातीय सममित कार्य Λ<sub>''R''</sub> के मुक्त बहुपद उत्पादक का सेट बनाते हैं पहले से ही स्वत:आकारिता के अस्तित्व को दर्शाता है ω प्राथमिक सममित फलन को पूर्ण सजातीय फलन में भेज रहा है, जैसा कि संपत्ति 3 में उल्लिखित है। तथ्य यह है कि ω Λ<sub>''R''</sub> का अंतर्वलन है ऊपर दिए गए संबंधों के पहले सेट द्वारा व्यक्त प्राथमिक और पूर्ण सजातीय सममित फलन के बीच समरूपता से अनुसरण करता है।


सममित कार्यों की अंगूठी Λ<sub>'''Z'''</sub> पूर्णांक Z का ऍक्स्प वलय है। यह प्राकृतिक अंदाज में लैम्ब्डा-अंगूठी भी है; वास्तव में यह एक उत्पादक में सार्वभौमिक लैम्ब्डा-अंगूठी है।
सममित फलन की रिंग Λ<sub>'''Z'''</sub> पूर्णांक Z का ऍक्स्प वलय है। यह प्राकृतिक अंदाज में लैम्ब्डा-रिंग भी है; वास्तव में यह एक उत्पादक में सार्वभौमिक लैम्ब्डा-रिंग है।


=== निर्माण कार्य ===
=== निर्माण कार्य ===


Λ<sub>''R''</sub> की पहली परिभाषा के उपअंगूठी के रूप में <math>R[[X_1, X_2, ...]]</math> सममित कार्यों के कई अनुक्रमों के उत्पन्न कार्यों को सुरुचिपूर्ण ढंग से व्यक्त करने की अनुमति देता है। पहले बताए गए संबंधों के विपरीत, जो Λ<sub>''R''</sub> के लिए आंतरिक हैं, इन भावों में ''R''[[''X''<sub>1</sub>,''X''<sub>2</sub>,...;''t'']] में संक्रियाएँ सम्मलित हैं किन्तु इसके उपसमूह Λ<sub>''R''</sub>t के बाहर, इसलिए वे केवल तभी अर्थपूर्ण हैं जब सममित कार्यों को अनिश्चित X<sub>''i''</sub> में औपचारिक शक्ति श्रृंखला के रूप में देखा जाता है। हम इस व्याख्या पर जोर देने के लिए सममित कार्यों के बाद (X) लिखेंगे।
Λ<sub>''R''</sub> की पहली परिभाषा के उपरिंग के रूप में <math>R[[X_1, X_2, ...]]</math> सममित फलन के कई अनुक्रमों के उत्पन्न फलन को सुरुचिपूर्ण ढंग से व्यक्त करने की अनुमति देता है। पहले बताए गए संबंधों के विपरीत, जो Λ<sub>''R''</sub> के लिए आंतरिक हैं, इन भावों में ''R''[[''X''<sub>1</sub>,''X''<sub>2</sub>,...;''t'']] में संक्रियाएँ सम्मलित हैं किन्तु इसके उपसमूह Λ<sub>''R''</sub>t के बाहर, इसलिए वे केवल तभी अर्थपूर्ण हैं जब सममित फलन को अनिश्चित X<sub>''i''</sub> में औपचारिक शक्ति श्रृंखला के रूप में देखा जाता है। हम इस व्याख्या पर जोर देने के लिए सममित फलन के बाद (X) लिखेंगे।


प्रारंभिक सममित कार्यों के लिए उत्पादक फलन है
प्रारंभिक सममित फलन के लिए उत्पादक फलन है
:<math>E(t) = \sum_{k \geq 0} e_k(X)t^k = \prod_{i=1}^\infty (1+X_it).</math>
:<math>E(t) = \sum_{k \geq 0} e_k(X)t^k = \prod_{i=1}^\infty (1+X_it).</math>
इसी प्रकार किसी के पास पूर्ण सजातीय सममित कार्य हैं
इसी प्रकार किसी के पास पूर्ण सजातीय सममित कार्य हैं
:<math>H(t) = \sum_{k \geq 0} h_k(X)t^k = \prod_{i=1}^\infty \left(\sum_{k \geq 0} (X_it)^k\right) = \prod_{i=1}^\infty \frac1{1-X_it}.</math>
:<math>H(t) = \sum_{k \geq 0} h_k(X)t^k = \prod_{i=1}^\infty \left(\sum_{k \geq 0} (X_it)^k\right) = \prod_{i=1}^\infty \frac1{1-X_it}.</math>
स्पष्ट तथ्य यह है कि <math>E(-t)H(t) = 1 = E(t)H(-t)</math> प्रारंभिक और पूर्ण सजातीय सममित कार्यों के बीच समरूपता की व्याख्या करता है। शक्ति योग सममित कार्यों के लिए उत्पादक फलन के रूप में व्यक्त किया जा सकता है
स्पष्ट तथ्य यह है कि <math>E(-t)H(t) = 1 = E(t)H(-t)</math> प्रारंभिक और पूर्ण सजातीय सममित फलन के बीच समरूपता की व्याख्या करता है। शक्ति योग सममित फलन के लिए उत्पादक फलन के रूप में व्यक्त किया जा सकता है
:<math>P(t) = \sum_{k>0} p_k(X)t^k = \sum_{k>0}\sum_{i=1}^\infty (X_it)^k = \sum_{i=1}^\infty\frac{X_it}{1-X_it} = \frac{tE'(-t)}{E(-t)} = \frac{tH'(t)}{H(t)}</math>
:<math>P(t) = \sum_{k>0} p_k(X)t^k = \sum_{k>0}\sum_{i=1}^\infty (X_it)^k = \sum_{i=1}^\infty\frac{X_it}{1-X_it} = \frac{tE'(-t)}{E(-t)} = \frac{tH'(t)}{H(t)}</math>
((मैकडॉनल्ड, 1979) P(T) को Σ<sub>''k''>0</sub> ''p<sub>k</sub>''(''X'')''t<sup>k</sup>''<sup>−1</sup> के रूप में परिभाषित करता है और इसके व्यंजकों में यहाँ दिए गए कारकों के संबंध में कारक t का अभाव है। दो अंतिम व्यंजक, जिनमें जनक फलन E(t) और H(t) के औपचारिक अवकलज सम्मलित हैं, न्यूटन की सर्वसमिका और पूर्ण सजातीय सममित फलन के लिए उनके रूपों को दर्शाते हैं। इन अभिव्यक्तियों को कभी-कभी लिखा जाता है।
((मैकडॉनल्ड, 1979) P(T) को Σ<sub>''k''>0</sub> ''p<sub>k</sub>''(''X'')''t<sup>k</sup>''<sup>−1</sup> के रूप में परिभाषित करता है और इसके व्यंजकों में यहाँ दिए गए कारकों के संबंध में कारक t का अभाव है। दो अंतिम व्यंजक, जिनमें जनक फलन E(t) और H(t) के औपचारिक अवकलज सम्मलित हैं, न्यूटन की सर्वसमिका और पूर्ण सजातीय सममित फलन के लिए उनके रूपों को दर्शाते हैं। इन अभिव्यक्तियों को कभी-कभी लिखा जाता है।
Line 114: Line 114:


== विशेषज्ञता ==
== विशेषज्ञता ==
होने देना <math>\Lambda</math> सममित कार्यों की अंगूठी बनें और <math>R</math> इकाई तत्व के साथ क्रमविनिमेय बीजगणित है। बीजगणित समरूपता <math>\varphi:\Lambda\to R,\quad f\mapsto f(\varphi)</math> विशेषज्ञता कहा जाता है।<ref name="StanleyFomin">{{cite book|last1=Stanley|first1=Richard P.|last2=Fomin|first2=Sergey P.|title= गणनात्मक कॉम्बिनेटरिक्स|volume=2|publisher=Cambridge University Press}}</ref> उदाहरण:
होने देना <math>\Lambda</math> सममित फलन की रिंग बनें और <math>R</math> इकाई तत्व के साथ क्रमविनिमेय बीजगणित है। बीजगणित समरूपता <math>\varphi:\Lambda\to R,\quad f\mapsto f(\varphi)</math> विशेषज्ञता कहा जाता है।<ref name="StanleyFomin">{{cite book|last1=Stanley|first1=Richard P.|last2=Fomin|first2=Sergey P.|title= गणनात्मक कॉम्बिनेटरिक्स|volume=2|publisher=Cambridge University Press}}</ref> उदाहरण:
* कुछ वास्तविक संख्याएँ दी गई हैं <math>a_1,\dots,a_k</math> और <math>f(x_1,x_2,\dots,)\in \Lambda</math>, फिर प्रतिस्थापन <math>x_1=a_1,\dots,x_k=a_k</math> और <math>x_j=0,\forall j>k</math> विशेषज्ञता है।
* कुछ वास्तविक संख्याएँ दी गई हैं <math>a_1,\dots,a_k</math> और <math>f(x_1,x_2,\dots,)\in \Lambda</math>, फिर प्रतिस्थापन <math>x_1=a_1,\dots,x_k=a_k</math> और <math>x_j=0,\forall j>k</math> विशेषज्ञता है।
* होने देना <math>f\in \Lambda</math>, तब <math>\operatorname{ps}(f):=f(1,q,q^2,q^3,\dots)</math> प्रमुख विशेषज्ञता कहा जाता है।
* होने देना <math>f\in \Lambda</math>, तब <math>\operatorname{ps}(f):=f(1,q,q^2,q^3,\dots)</math> प्रमुख विशेषज्ञता कहा जाता है।

Revision as of 12:24, 16 May 2023

बीजगणित में और विशेष रूप से बीजगणितीय साहचर्य में, सममित फलन की रिंग 'n' अनिश्चित में सममित बहुपद की रिंग (गणित) की विशिष्ट सीमा है, क्योंकि 'n' अनंत तक जाती है। यह वलय सार्वभौमिक संरचना के रूप में कार्य करता है जिसमें सममित बहुपदों के बीच संबंधों को निर्धारकों की संख्या n से स्वतंत्र विधियों से व्यक्त किया जा सकता है (किन्तु इसके तत्व न तो बहुपद हैं और न ही कार्य)। अन्य बातों के अतिरिक्त, यह वलय सममित समूह के प्रतिनिधित्व सिद्धांत में महत्वपूर्ण भूमिका निभाता है।

सममित फलन की रिंग को सह-उत्पाद और द्विरेखीय रूप दिया जा सकता है जो इसे सकारात्मक स्वसम्मिलित श्रेणीबद्ध बीजगणित हॉपफ बीजगणित में बनाता है जो क्रमविनिमेय और सहसम्बन्धी दोनों है।

सममित बहुपद

सममित फलन का अध्ययन सममित बहुपदों पर आधारित है। अनिश्चितकों के कुछ परिमित समुच्चय में बहुपद वलय में, बहुपद को सममित कहा जाता है यदि यह वही रहता है जब भी किसी भी प्रकार से अनिश्चित को अनुमति दी जाती है। अधिक औपचारिक रूप से, सममित समूह Sn के रिंग स्वत:आकारिता द्वारा समूह क्रिया होती है n अनिश्चित में बहुपद की रिंग पर, जहां क्रमचय उपयोग किए गए क्रमपरिवर्तन के अनुसार प्रत्येक अनिश्चित को साथ प्रतिस्थापित करके बहुपद पर कार्य करता है। अपरिवर्तनीय (गणित) इस क्रिया के लिए समूह क्रिया के अंतर्गत अपरिवर्तित सममित बहुपदों का उपसमूह बनाता है। यदि अनिश्चित X1, ..., Xn,हैं, तो ऐसे सममित बहुपदों के उदाहरण हैं

और

कुछ और जटिल उदाहरण हैX13X2X3 + X1X23X3 + X1X2X33 + X13X2X4 + X1X23X4 + X1X2X43 + ... जहां योग कुछ चर और दो अन्य चर की तीसरी शक्ति के सभी उत्पादों को सम्मलित करता है। कई विशिष्ट प्रकार के सममित बहुपद हैं, जैसे प्राथमिक सममित बहुपद, शक्ति योग सममित बहुपद, एकपद सममित बहुपद, पूर्ण सजातीय सममित बहुपद, और शूर बहुपद

सममित फलन की रिंग

सममित बहुपदों के बीच अधिकांश संबंध अनिर्धारकों की संख्या n पर निर्भर नहीं करते हैं, अतिरिक्त इसके कि संबंध में कुछ बहुपदों को n को परिभाषित करने के लिए अधिक बड़ा होना आवश्यक हो सकता है। उदाहरण के लिए न्यूटन की तत्समक तीसरी घात योग बहुपद p3 के लिए न्यूटन की तत्समक ओर जाता है

जहां प्रारंभिक सममित बहुपदों को निरूपित करें; यह सूत्र सभी प्राकृतिक संख्याओं n के लिए मान्य है और इस पर एकमात्र उल्लेखनीय निर्भरता यह है कि ek(X1,...,Xn) = 0 जब भी n < k. कोई इसे पहचान के रूप में लिखना चाहेगा

यह n पर बिल्कुल भी निर्भर नहीं करता है और यह सममित फलन के वलय में किया जा सकता है। उस वलय में अशून्य तत्व ek होते हैं सभी पूर्णांक k ≥ 1 के लिए, और रिंग के किसी भी तत्व को तत्वों ek में बहुपद अभिव्यक्ति द्वारा दिया जा सकता है।

परिभाषाएँ

सममित फलन की रिंग को किसी भी क्रमविनिमेय रिंग R पर परिभाषित किया जा सकता है और इसे ΛR के रूप में दर्शाया जाएगा; मूल अवस्था R = 'Z' के लिए है। रिंग ΛR वास्तव में वलय के ऊपर वर्गीकृत वलय R-बीजगणित है। इसके लिए दो मुख्य निर्माण हैं; नीचे दिया गया पहला (स्टेनली, 1999) में पाया जा सकता है और दूसरा अनिवार्य रूप से (मैकडोनाल्ड, 1979) में दिया गया है।

औपचारिक शक्ति श्रृंखला की रिंग के रूप में

सबसे सरल (चूंकि कुछ सीमा तक भारी) निर्माण कई चर में औपचारिक शक्ति श्रृंखला शक्ति श्रृंखला की रिंग से प्रारंभ होता है R पर असीम रूप से (गणना करने योग्य अनंत) कई अनिश्चित; इस शक्ति श्रृंखला रिंग के तत्व शर्तों के औपचारिक अनंत योग हैं, जिनमें से प्रत्येक में R से गुणांक एकपद द्वारा गुणा किया जाता है, जहां प्रत्येक एकपद अनिश्चित रूप से कई परिमित शक्तियों का उत्पाद होता है। ΛR को परिभाषित करता है इसके उप-वलय के रूप में उन शक्ति श्रृंखला S से मिलकर बनता है जो संतुष्ट करती हैं

  1. S अनिश्चित के किसी भी क्रमपरिवर्तन के अनुसार अपरिवर्तनीय है, और
  2. S में होने वाले एकपदों के बहुपद की कोटि परिबद्ध है।

ध्यान दें कि दूसरी स्थिति के कारण, घात श्रृंखला का उपयोग यहां केवल निश्चित डिग्री के असीम रूप से कई पदों को अनुमति देने के लिए किया जाता है, अतिरिक्त सभी संभावित डिग्री के पदों के योग के लिए। इसकी अनुमति देना जरूरी है क्योंकि तत्व जिसमें उदाहरण के लिए X1 शब्द होता है Xi शब्द भी होना चाहिए सममित होने के लिए प्रत्येक i > 1 के लिए। पूरी शक्ति श्रृंखला रिंग के विपरीत, उपरिंग ΛR एकपदीयों की कुल डिग्री द्वारा वर्गीकृत किया जाता है: स्थिति 2 के कारण, ΛR का प्रत्येक तत्व ΛR के सजातीय बहुपद तत्वों का परिमित योग है (जो स्वयं समान कोटि के पदों के अनंत योग हैं)। प्रत्येक k ≥ 0 के लिए, तत्व ek∈ ΛR k विशिष्ट अनिश्चित के सभी उत्पादों के औपचारिक योग के रूप में परिभाषित किया गया है, जो डिग्री k का स्पष्ट रूप से सजातीय है।

बीजगणितीय सीमा के रूप में

ΛR का एक और निर्माण वर्णन करने में कुछ अधिक समय लगता है, किन्तु रिंग R[X1,...,Xn]Sn के साथ संबंध को बेहतर ढंग से इंगित करता है। अनिश्चित में सममित बहुपदों का प्रत्येक n के लिए विशेषण वलय समरूपता ρn है समरूप वलय R[X1,...,Xn+1]Sn+1 पर और अनिश्चित के साथ R[X1,...,Xn]Sn, अंतिम अनिश्चित X को सेट करके Xn+1से 0 परिभाषित किया गया है । चूंकि ρn गैर-तुच्छ कर्नेल (बीजगणित) है, उस कर्नेल के गैर-शून्य तत्वों में कम से कम डिग्री है (वे X के गुणक हैं X1X2...Xn+1) । इसका मतलब है कि ρn का प्रतिबंध अधिक से अधिक n डिग्री के तत्वों के लिए विशेषण रैखिक नक्शा है, और ρn(ek(X1,...,Xn+1)) = ek(X1,...,Xn) for all kn. इस प्रतिबंध के व्युत्क्रम को विशिष्ट रूप से रिंग समरूपता φn तक बढ़ाया जा सकता है R[X1,...,Xn]Sn से R[X1,...,Xn+1]Sn+1, जैसा कि उदाहरण के लिए सममित बहुपदों के मूलभूत प्रमेय से लिया गया है। छवियों के बाद से φn(ek(X1,...,Xn)) = ek(X1,...,Xn+1) , k = 1,...,n के लिए अभी भी R, समाकारिता φn पर अन्तःक्षेपण बीजगणितीय रूप से स्वतंत्र हैं और इसे रिंग के समावेश (कुछ असामान्य) के रूप में देखा जा सकता है; φn लागू करना से पहले उपस्तिथ एकपद से समरूपता द्वारा प्राप्त नए अनिश्चित वाले सभी एकपद को जोड़ने के लिए बहुपद राशि। रिंग ΛR तब इन समावेशन के अधीन इन सभी अंगूठियो का संघ (प्रत्यक्ष सीमा) है। चूंकि सभी φn सम्मलित रिंग की कुल डिग्री द्वारा ग्रेडिंग के साथ संगत हैं, ΛR वर्गीकृत रिंग की संरचना प्राप्त करता है।

यह निर्माण (मैकडोनाल्ड, 1979) में से थोड़ा अलग है। वह निर्माण केवल विशेषण आकारिकी ρn का उपयोग करता है अन्तःक्षेपण रूपवाद φn का उल्लेख किए बिना। यह ΛR के सजातीय घटकों का निर्माण करता है अलग से, एक और ρn का उपयोग करके उनके प्रत्यक्ष योग को रिंग संरचना से तैयार करता है। यह भी देखा गया है कि परिणाम को वर्गीकृत अंगूठियो की श्रेणी (गणित) में व्युत्क्रम सीमा के रूप में वर्णित किया जा सकता है। चूंकि यह विवरण कुछ सीमा तक इंजेक्शन आकारिता की सीधी सीमा के लिए विशिष्ट महत्वपूर्ण संपत्ति को अस्पष्ट करता है, अर्थात् प्रत्येक व्यक्तिगत तत्व (सममित कार्य) पहले से ही सीमा निर्माण में उपयोग की जाने वाली किसी वस्तु में eमानदारी से प्रतिनिधित्व किया जाता है, यहां रिंग R[X1,...,Xd]Sd यह d के लिए सममित फलन की डिग्री लेने के लिए पर्याप्त है, क्योंकि उस रिंग के डिग्री d में भाग को समरूप रूप से मैप किया जाता है, जो कि φn द्वारा अधिक अनिश्चित होता है। सभी के लिए n≥ d। इसका तात्पर्य है कि अलग-अलग तत्वों के बीच संबंधों का अध्ययन करने के लिए सममित बहुपदों और सममित फलन के बीच कोई मूलभूत अंतर नहीं है।

व्यक्तिगत सममित फलन को परिभाषित करना

ΛR के तत्वों के लिए नाम सममित कार्य मिथ्या नाम है: न तो निर्माण में तत्व कार्य (गणित) हैं और वास्तव में, सममित बहुपदों के विपरीत, ऐसे तत्वों से स्वतंत्र चर का कोई कार्य नहीं जोड़ा जा सकता है (उदाहरण के लिए e1 सभी असीम रूप से कई चरों का योग होगा, जो तब तक परिभाषित नहीं होता है जब तक कि चर पर प्रतिबंध नहीं लगाया जाता है)। चूँकि नाम पारंपरिक और अच्छी प्रकार से स्थापित है; यह (मैकडॉनल्ड, 1979) दोनों में पाया जा सकता है, जो कहता है (पृष्ठ 12 पर फुटनोट)

Λ के तत्व (Λn के तत्वों के विपरीत) अब बहुपद नहीं हैं: वे एकपदी के औपचारिक अनंत योग हैं। इसलिए हम सममित फलन की पुरानी शब्दावली पर वापस आ गए हैं।

(यहाँ Λn एन अनिश्चित में सममित बहुपदों की रिंग को दर्शाता है), और (स्टेनली, 1999) में भी।

सममित फलन को परिभाषित करने के लिए या तो पहले निर्माण के रूप में सीधे शक्ति श्रृंखला का संकेत देना चाहिए, या दूसरे निर्माण के साथ संगत विधियों से प्रत्येक प्राकृतिक संख्या n के लिए n अनिश्चित में सममित बहुपद देना चाहिए। उदाहरण के लिए, अनिश्चित संख्या में अभिव्यक्ति दोनों कर सकती है

प्राथमिक सममित फलन की परिभाषा के रूप में लिया जा सकता है यदि अनिश्चित की संख्या अनंत है, या किसी भी परिमित संख्या में प्राथमिक सममित बहुपद की परिभाषा के रूप में। समान सममित फलन के लिए सममित बहुपदों को समरूपता ρn के साथ संगत होना चाहिए (उनमें से कुछ को शून्य पर सेट करके अनिश्चितताओं की संख्या घटाकर प्राप्त की जाती है, जिससे शेष अनिश्चितताओं में किसी भी एकपद के गुणांक अपरिवर्तित रहें), और उनकी डिग्री बंधी रहनी चाहिए। (सममित बहुपदों के परिवार का उदाहरण जो दोनों स्थितियों में विफल रहता है ; परिवार केवल दूसरी स्थिति में विफल रहता है।) n अनिश्चित में किसी भी सममित बहुपद का उपयोग सममित बहुपदों के संगत परिवार के निर्माण के लिए किया जा सकता है, समरूपता का उपयोग करके ρi i < n अनिश्चित की संख्या कम करने के लिए, और φi i ≥ n के लिए अनिश्चितताओं की संख्या बढ़ाने के लिए (जो पहले से उपस्तिथ एकपदीयों से समरूपता द्वारा प्राप्त नए अनिश्चितकों में सभी एकपदीयों को जोड़ने के बराबर है)।

निम्नलिखित सममित फलन के मूलभूत उदाहरण हैं।

  • 'एकपद सममित फलन ' mα. मान लीजिए α = (α12,...) गैर-ऋणात्मक पूर्णांकों का अनुक्रम है, जिनमें से केवल बहुत से गैर-शून्य हैं। तब हम α: X द्वारा परिभाषित एकपद पर विचार कर सकते हैंα: Xα = X1α1X2α2X3α3.... फिर mα Xα द्वारा निर्धारित सममित कार्य है, अर्थात Xα से प्राप्त सभी एकपदीयों का योग समरूपता द्वारा। औपचारिक परिभाषा के लिए, β ~ α को परिभाषित करें जिसका अर्थ है कि अनुक्रम β अनुक्रम α और सेट का क्रमपरिवर्तन है
यह सममित कार्य एकपद सममित बहुपद mα(X1,...,Xn) से मेल खाता है किसी भी बड़े n के लिए एकपदी Xα रखने के लिए पर्याप्त है। अलग-अलग एकपद सममित फलन को पूर्णांक विभाजन द्वारा पैरामीटर किया जाता है (प्रत्येक mα अद्वितीय प्रतिनिधि एकपदी Xλ है भागों के साथ λi कमजोर घटते क्रम में)। चूंकि किसी भी सममित फलन में कुछ mα के एकपद सम्मलित हैं एक ही गुणांक के साथ उन सभी को सम्मलित करना चाहिए, प्रत्येक सममित फलन को एकपद सममित फलन के आर-रैखिक संयोजन के रूप में लिखा जा सकता है, और विशिष्ट एकपद सममित फलन इसलिए ΛR का आधार बनाते हैं आर-मॉड्यूल (गणित) के रूप में।
  • 'प्राथमिक सममित कार्य' ek, किसी प्राकृत संख्या k के लिए; के पास ek = mα जहां है। शक्ति श्रृंखला के रूप में, यह k विशिष्ट अनिश्चित के सभी विशिष्ट उत्पादों का योग है। यह सममित कार्य प्राथमिक सममित बहुपद किसी भी n ≥ k के लिए ek(X1,...,Xn) से मेल खाता है ।
  • 'शक्ति योग सममित कार्य' pk, किसी भी धनात्मक पूर्णांक k के लिए; pk = m(k) है, एकपदी X के लिए एकपदी सममित फलन1 यह सममित कार्य शक्ति योग सममित बहुपद p pk(X1,...,Xn) = X1k + ... + Xnk से मेल खाता है किसी भी n ≥ 1 के लिए।
  • 'पूर्ण सजातीय सममित कार्य' hk, किसी प्राकृत संख्या k के लिए; hk सभी एकपदी सममितीय फलन mα का योग है जहां α k का पूर्णांक विभाजन है। शक्ति श्रृंखला के रूप में, यह डिग्री k के सभी एकपदीयों का योग है, जो इसके नाम को प्रेरित करता है। यह सममित कार्य पूर्ण सजातीय सममित बहुपद hk(X1,...,Xn) से मेल खाता है किसी भी n ≥ k के लिए।
  • 'शूर फलन ' Sλ किसी भी विभाजन λ के लिए, जो शूर बहुपद sλ(X1,...,Xn) के संगत है किसी भी बड़े n के लिए एकपदी Xλ रखने के लिए पर्याप्त है।

कोई घात योग सममित फलन p0 नहीं है: चूंकि परिभाषित करना संभव है (और कुछ संदर्भों में प्राकृतिक)। n चरों में सममित बहुपद के रूप में, ये मान आकारिकी ρn के साथ संगत नहीं हैं। भेद करनेवाला सभी n के लिए सममित बहुपद देने वाली अभिव्यक्ति का और उदाहरण है, किन्तु किसी भी सममित कार्य को परिभाषित नहीं करता है। प्रत्यावर्ती बहुपदों के भागफल के रूप में शूर बहुपदों को परिभाषित करने वाले भाव कुछ सीमा तक विवेचक के समान हैं, किन्तु बहुपद sλ(X1,...,Xn) अलग-अलग n के लिए संगत हो जाते हैं और इसलिए सममित कार्य को परिभाषित करते हैं।

सममित बहुपदों और सममित फलन से संबंधित सिद्धांत

किसी भी सममित फलन P के लिए, n में संबंधित सममित बहुपद किसी भी प्राकृत संख्या n के लिए अनिश्चित होते हैं, जिन्हें P(X1,...,Xn) द्वारा निर्दिष्ट किया जा सकता है। सममित फलन के वलय की दूसरी परिभाषा का तात्पर्य निम्नलिखित मूलभूत सिद्धांत से है।

यदि P और Q डिग्री d के सममित कार्य हैं, तो की पहचान है सममित फलन की यदि और केवल यदि किसी की पहचान है P(X1,...,Xd) = Q(X1,...,Xd) अनिश्चित में सममित बहुपदों की। इस मामले में वास्तव में P(X1,...,Xn) = Q(X1,...,Xn) किसी भी संख्या n के लिए अनिश्चित हैं।

ऐसा इसलिए है क्योंकि कुछ चरों के लिए शून्य को प्रतिस्थापित करके चरों की संख्या को सदैव कम किया जा सकता है और समाकारिता φn को लागू करके चरों की संख्या में वृद्धि की जा सकती है। उन समरूपताओं की परिभाषा आश्वस्त करती है कि φn(P(X1,...,Xn)) = P(X1,...,Xn+1) (और इसी प्रकार Q के लिए) जब भी n ≥ d. इस सिद्धांत के प्रभावी अनुप्रयोग के लिए न्यूटन की पहचान की व्युत्पत्ति न्यूटन की पहचान का प्रमाण देखें।

सममित फलन की रिंग के गुण

पहचान

सममितीय फलनों का वलय सममित बहुपदों के बीच सर्वसमिकाओं को लिखने के लिए सुविधाजनक उपकरण है, जो कि निर्धारकों की संख्या से स्वतंत्र होते हैं: ΛR में ऐसी कोई संख्या नहीं है, फिर भी उपरोक्त सिद्धांत द्वारा ΛR में कोई पहचान है स्वचालित रूप से किसी भी संख्या में अनिश्चितताओं में R पर सममित बहुपदों के छल्ले की पहचान देता है। कुछ मौलिक पहचान हैं

जो प्रारंभिक और पूर्ण सजातीय सममित फलन के बीच समरूपता दिखाता है, इन संबंधों को पूर्ण सजातीय सममित बहुपद के अनुसार समझाया गया है।

न्यूटन की पहचान, जिसमें पूर्ण सजातीय सममित फलन के लिए संस्करण भी है।

ΛR के संरचनात्मक गुण

ΛR के महत्वपूर्ण गुण निम्नलिखित को सम्मलित कीजिए।

  1. विभाजनों द्वारा पैरामीट्रिज्ड एकपद सममित फलन का सेट ΛR का आधार बनता है श्रेणीबद्ध आर-मॉड्यूल (गणित) के रूप में, d के विभाजन द्वारा पैरामीट्रिज्ड डिग्री डी के सजातीय होने के कारण; शूर फलन के सेट के लिए भी यही सच है (विभाजन द्वारा पैरामीट्रिज्ड)।
  2. ΛR बहुपद वलय R[Y1,Y2, ...] के लिए श्रेणीबद्ध R-बीजगणित के रूप में समरूपी है, अपरिमित रूप से अनेक चरों में, जहाँ Yi सभी i > 0 के लिए डिग्री i दी गई है, समरूपता वह है जो Yi भेजता है तब i∈ ΛR प्रत्येक i के लिए।
  3. ΛR का इनवॉल्यूशन (गणित) automorphism ω है जो प्रारंभिक सममित फलन को बदल देता है ei और पूर्ण सजातीय सममित फलन hi सभी के लिए मैं यह प्रत्येक शक्ति योग सममित फलन pi भी भेजता है pi से (−1)i−1pi, और यह Sλ को बदलाव करते हुए दूसरे के बीच शूर फलन की अनुमति देता है और Sλt जहां Λt λ का स्थानान्तरण विभाजन है।

संपत्ति 2 सममित बहुपदों के मौलिक प्रमेय का सार है। इसका तात्पर्य तुरंत कुछ अन्य गुणों से है:

  • ΛR का उपरिंग n चर में R पर सममित बहुपदों की रिंग के लिए अधिकतम n में डिग्री के अपने तत्वों द्वारा उत्पन्न समरूप है;
  • ΛR की हिल्बर्ट-पॉइनकेयर श्रृंखला है , विभाजन (संख्या सिद्धांत) पूर्णांक विभाजन का कार्य उत्पन्न करना (यह संपत्ति 1 से भी अनुसरण करता है);
  • प्रत्येक n > 0 के लिए, ΛR के सजातीय भाग द्वारा गठित R-मॉड्यूल डिग्री n की, डिग्री के अपने तत्वों द्वारा उत्पन्न उपरिंग के साथ मॉड्यूलो एन से सख्ती से कम है, रैंक 1 का मुफ्त मॉड्यूल है, और (की छवि) en इस R-मॉड्यूल का उत्पादक है;
  • सममित फलन के प्रत्येक परिवार के लिए (Fi)i>0 जिसमें Fi डिग्री i का सजातीय है और पिछले बिंदु (सभी i के लिए) के मुक्त आर-मॉड्यूल का उत्पादक देता है, R[Y1,Y2, ...] से श्रेणीबद्ध आर-अलजेब्रस का वैकल्पिक समरूपता है ऊपर के रूप में ΛR Yi भेजता है Fi के लिए; दूसरे शब्दों में, परिवार (fi)i>0 ΛR के मुक्त बहुपद उत्पादक का सेट बनाता है।

यह अंतिम बिंदु विशेष रूप से परिवार पर लागू होता है पूर्ण सजातीय सममित फलन की (hi)i>0 ।यदि R में क्षेत्र है (गणित) परिमेय संख्याओं के संबंध में, यह परिवार पर भी लागू होता है (pi)i>0 शक्ति योग सममित फलन की। यह बताता है कि इन परिवारों में से प्रत्येक के पहले n तत्व सममित बहुपदों के सेट को n चर में परिभाषित करते हैं जो सममित बहुपदों की उस रिंग के मुक्त बहुपद उत्पादक हैं।

तथ्य यह है कि पूर्ण सजातीय सममित कार्य ΛR के मुक्त बहुपद उत्पादक का सेट बनाते हैं पहले से ही स्वत:आकारिता के अस्तित्व को दर्शाता है ω प्राथमिक सममित फलन को पूर्ण सजातीय फलन में भेज रहा है, जैसा कि संपत्ति 3 में उल्लिखित है। तथ्य यह है कि ω ΛR का अंतर्वलन है ऊपर दिए गए संबंधों के पहले सेट द्वारा व्यक्त प्राथमिक और पूर्ण सजातीय सममित फलन के बीच समरूपता से अनुसरण करता है।

सममित फलन की रिंग ΛZ पूर्णांक Z का ऍक्स्प वलय है। यह प्राकृतिक अंदाज में लैम्ब्डा-रिंग भी है; वास्तव में यह एक उत्पादक में सार्वभौमिक लैम्ब्डा-रिंग है।

निर्माण कार्य

ΛR की पहली परिभाषा के उपरिंग के रूप में सममित फलन के कई अनुक्रमों के उत्पन्न फलन को सुरुचिपूर्ण ढंग से व्यक्त करने की अनुमति देता है। पहले बताए गए संबंधों के विपरीत, जो ΛR के लिए आंतरिक हैं, इन भावों में R[[X1,X2,...;t]] में संक्रियाएँ सम्मलित हैं किन्तु इसके उपसमूह ΛRt के बाहर, इसलिए वे केवल तभी अर्थपूर्ण हैं जब सममित फलन को अनिश्चित Xi में औपचारिक शक्ति श्रृंखला के रूप में देखा जाता है। हम इस व्याख्या पर जोर देने के लिए सममित फलन के बाद (X) लिखेंगे।

प्रारंभिक सममित फलन के लिए उत्पादक फलन है

इसी प्रकार किसी के पास पूर्ण सजातीय सममित कार्य हैं

स्पष्ट तथ्य यह है कि प्रारंभिक और पूर्ण सजातीय सममित फलन के बीच समरूपता की व्याख्या करता है। शक्ति योग सममित फलन के लिए उत्पादक फलन के रूप में व्यक्त किया जा सकता है

((मैकडॉनल्ड, 1979) P(T) को Σk>0 pk(X)tk−1 के रूप में परिभाषित करता है और इसके व्यंजकों में यहाँ दिए गए कारकों के संबंध में कारक t का अभाव है। दो अंतिम व्यंजक, जिनमें जनक फलन E(t) और H(t) के औपचारिक अवकलज सम्मलित हैं, न्यूटन की सर्वसमिका और पूर्ण सजातीय सममित फलन के लिए उनके रूपों को दर्शाते हैं। इन अभिव्यक्तियों को कभी-कभी लिखा जाता है।

जिसकी मात्रा समान है, किन्तु इसके लिए आवश्यक है कि R में परिमेय संख्याएँ हों, जिससे निरंतर पद 1 के साथ घात श्रृंखला का लघुगणक (द्वारा परिभाषित किया जा सके) ।

विशेषज्ञता

होने देना सममित फलन की रिंग बनें और इकाई तत्व के साथ क्रमविनिमेय बीजगणित है। बीजगणित समरूपता विशेषज्ञता कहा जाता है।[1] उदाहरण:

  • कुछ वास्तविक संख्याएँ दी गई हैं और , फिर प्रतिस्थापन और विशेषज्ञता है।
  • होने देना , तब प्रमुख विशेषज्ञता कहा जाता है।

यह भी देखें

संदर्भ

  1. Stanley, Richard P.; Fomin, Sergey P. गणनात्मक कॉम्बिनेटरिक्स. Vol. 2. Cambridge University Press.
  • Macdonald, I. G. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 1979. viii+180 pp. ISBN 0-19-853530-9 MR553598
  • Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN 0-19-853489-2 MR1354144
  • Stanley, Richard P. Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999. ISBN 0-521-56069-1 (hardback) ISBN 0-521-78987-7 (paperback).