विस्तार कक्ष: Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
== यह कैसे कार्य करता है == | == यह कैसे कार्य करता है == | ||
सिलेंडर से निकलने वाली उच्च [[दबाव]] वाली गैस प्रारम्भ में तरंग के रूप में प्रवाहित होती है, जैसा कि तरल पदार्थों में सभी गड़बड़ी होती है। [[निकास गैस]] पाइप में स्वयं मार्ग धकेलती है जो पूर्व चक्रों से गैस द्वारा अधिकृत कर लिया गया है, उस गैस को आगे धकेलता है एवं तरंग का कारण बनता है। जब गैस का प्रवाह संवृत हो जाता है, तो तरंग निरंतर रहती है, ऊर्जा को आगामी गैस अनुप्रवाह एवं इसी प्रकार पाइप के अंत तक पहुंचाती है। यदि यह [[लहर]] [[क्रॉस सेक्शन (ज्यामिति)|क्रॉस अनुभाग (ज्यामिति)]] या [[तापमान]] में किसी भी परिवर्तन का सामना करती है तो यह स्वयं शक्ति के भाग को स्वयं यात्रा के विपरीत दिशा में प्रतिबिंबित करेगी। उदाहरण के लिए, क्षेत्र में वृद्धि का सामना करने वाली कठोर ध्वनिक लहर विपरीत दिशा में कमजोर ध्वनिक लहर को प्रतिबिंबित करेगी। क्षेत्र में कमी का सामना करने वाली कठोर ध्वनिक लहर विपरीत दिशा में कठोर ध्वनिक लहर को प्रतिबिंबित करेगी। मूल सिद्धांत को सिलेंडर हेड पोर्टिंग | सिलेंडर से निकलने वाली उच्च [[दबाव]] वाली गैस प्रारम्भ में तरंग के रूप में प्रवाहित होती है, जैसा कि तरल पदार्थों में सभी गड़बड़ी होती है। [[निकास गैस]] पाइप में स्वयं मार्ग धकेलती है जो पूर्व चक्रों से गैस द्वारा अधिकृत कर लिया गया है, उस गैस को आगे धकेलता है एवं तरंग का कारण बनता है। जब गैस का प्रवाह संवृत हो जाता है, तो तरंग निरंतर रहती है, ऊर्जा को आगामी गैस अनुप्रवाह एवं इसी प्रकार पाइप के अंत तक पहुंचाती है। यदि यह [[लहर]] [[क्रॉस सेक्शन (ज्यामिति)|क्रॉस अनुभाग (ज्यामिति)]] या [[तापमान]] में किसी भी परिवर्तन का सामना करती है तो यह स्वयं शक्ति के भाग को स्वयं यात्रा के विपरीत दिशा में प्रतिबिंबित करेगी। उदाहरण के लिए, क्षेत्र में वृद्धि का सामना करने वाली कठोर ध्वनिक लहर विपरीत दिशा में कमजोर ध्वनिक लहर को प्रतिबिंबित करेगी। क्षेत्र में कमी का सामना करने वाली कठोर ध्वनिक लहर विपरीत दिशा में कठोर ध्वनिक लहर को प्रतिबिंबित करेगी। मूल सिद्धांत को सिलेंडर हेड पोर्टिंग तरंग डायनेमिक्स में वर्णित किया गया है। विस्तार कक्ष इस घटना का उपयोग स्वयं व्यास (क्रॉस अनुभाग) एवं लंबाई को भिन्न-भिन्न करके चक्र में वांछित समय पर सिलेंडर पर वापस आने के लिए करता है। | ||
विस्तार चक्र के तीन मुख्य भाग हैं। | विस्तार चक्र के तीन मुख्य भाग हैं। | ||
Line 22: | Line 22: | ||
=== पोर्ट ब्लॉकिंग === | === पोर्ट ब्लॉकिंग === | ||
जब स्थानांतरण पूर्ण हो जाता है, तो पिस्टन संपीड़न स्ट्रोक पर होता है किन्तु निकास बंदरगाह अभी भी खुला रहता है, दो स्ट्रोक पिस्टन पोर्ट | जब स्थानांतरण पूर्ण हो जाता है, तो पिस्टन संपीड़न स्ट्रोक पर होता है किन्तु निकास बंदरगाह अभी भी खुला रहता है, दो स्ट्रोक पिस्टन पोर्ट चित्र के साथ अपरिहार्य समस्या है। पिस्टन को स्वच्छ मिश्रण को खुले निकास बंदरगाह से बाहर धकेलने से बाधित करने में सहायता करने के लिए विस्तार कक्ष से ठोस ध्वनिक तरंग (दहन द्वारा उत्पादित) संपीड़न स्ट्रोक की प्रारम्भ के समय आने के लिए समयबद्ध है। सदन के व्यास को अर्घ्य करके पोर्ट ब्लॉकिंग तरंग बनाई जाती है। इसे अभिसारी खंड (या बफल कोन) कहा जाता है। निवर्तमान ध्वनिक तरंग संकरे अभिसरण खंड से टकराती है एवं ध्वनिक दालों की ठोस श्रृंखला को सिलेंडर में वापस दर्शाती है। वे निकास बंदरगाह को अवरुद्ध करने के लिए समय पर पहुंचते हैं, तत्पश्चात संपीड़न स्ट्रोक के प्रारम्भ के समय खुले होते हैं एवं विस्तार कक्ष के शीर्षलेख में निकाले गए किसी भी स्वच्छ मिश्रण को सिलेंडर में वापस धकेलते हैं। आवश्यकताओं के आधार पर अभिसरण खंड को 16 से 25 डिग्री पर अभिसरण करने के लिए बनाया गया है। | ||
ध्वनिक तरंग के साथ संयुक्त कक्ष में दबाव में सामान्य वृद्धि होती है, जो स्टिंगर नामक | ध्वनिक तरंग के साथ संयुक्त कक्ष में दबाव में सामान्य वृद्धि होती है, जो स्टिंगर नामक अल्प ट्यूब के साथ निर्गम मार्ग को विचारपूर्वक प्रतिबंधित करने के कारण होता है, जो ब्लीडर के रूप में कार्य करता है, संपीड़न स्ट्रोक के समय कक्ष को रिक्त करने के लिए इसे प्रस्तुत करने के लिए प्रसाधित करता है। आगामी चक्र। स्टिंगर की लंबाई एवं अंदर का व्यास 0.59 से 0.63x हेडर पाइप व्यास पर आधारित होता है एवं इसकी लंबाई इसके व्यास के 12 गुना के समान होती है, जो प्राप्त किए जाने वाले परिणामों पर निर्भर करता है। उपयुक्त रूप से चित्रित किए गए निकास प्रणाली में, दबाव में कुल वृद्धि किसी भी विषय में मफलर द्वारा उत्पादित की तुलना में अत्यधिक अर्घ्य होती है। स्टिंगर का त्रुटिपूर्ण आकार निकृष्ट प्रदर्शन (अत्यधिक बड़ा या अत्यधिक अल्प) या अत्यधिक ऊष्मा का कारण बनेगा जो इंजन को हानि पहुंचाएगा। | ||
=== जटिल कारक === | === जटिल कारक === |
Revision as of 17:29, 10 May 2023
दो स्ट्रोक इंजन पर, विस्तार कक्ष या ट्यूनेड पाइप ट्यूनेड निकास प्रणाली है जिसका उपयोग इसकी वॉल्यूमेट्रिक दक्षता में सुधार करके इसकी शक्ति (भौतिकी) आउटपुट को बढ़ाने के लिए किया जाता है।
इतिहास
1938 में दो स्ट्रोक इंजनों में ईंधन को अर्घ्य करने के लिए, जर्मन इंजीनियर, लिम्बाच द्वारा विस्तार कक्षों का आविष्कार एवं सफलतापूर्वक निर्माण किया गया था। जर्मनी में पेट्रोल की कमी हो रही थी, जो उस चरण में कोयले एवं सीवेज परिवर्तन का उपयोग करके उत्पादित किया गया था। अप्रत्याशित बोनस यह था कि ट्यून्ड निकास का उपयोग करने वाले दो स्ट्रोक इंजन सामान्य साइलेंसर के साथ चलने की तुलना में कहीं अधिक शक्ति का उत्पादन करते थे।
द्वितीय विश्व युद्ध की समाप्ति के पश्चात, शीत युद्ध के समय पूर्वी जर्मन वाल्टर काडेन द्वारा अवधारणा को विकसित करने से पूर्व कुछ समय हो गया। 1961 में स्वीडिश ग्रैंड प्रिक्स में स्वीडिश ग्रैंड प्रिक्स में MZ के लिए रेसिंग करते हुए पूर्वी जर्मन मोटरसाइकिल रेसर अर्नेस्ट डेग्नर के पश्चिम में चले जाने के पश्चात वे प्रथम बार जापानी मोटरसाइकिलों पर पश्चिम में दिखाई दिए। पश्चात में उन्होंने स्वयं का ज्ञान जापान की सुज़ुकी को दे दिया।[1][2]
यह कैसे कार्य करता है
सिलेंडर से निकलने वाली उच्च दबाव वाली गैस प्रारम्भ में तरंग के रूप में प्रवाहित होती है, जैसा कि तरल पदार्थों में सभी गड़बड़ी होती है। निकास गैस पाइप में स्वयं मार्ग धकेलती है जो पूर्व चक्रों से गैस द्वारा अधिकृत कर लिया गया है, उस गैस को आगे धकेलता है एवं तरंग का कारण बनता है। जब गैस का प्रवाह संवृत हो जाता है, तो तरंग निरंतर रहती है, ऊर्जा को आगामी गैस अनुप्रवाह एवं इसी प्रकार पाइप के अंत तक पहुंचाती है। यदि यह लहर क्रॉस अनुभाग (ज्यामिति) या तापमान में किसी भी परिवर्तन का सामना करती है तो यह स्वयं शक्ति के भाग को स्वयं यात्रा के विपरीत दिशा में प्रतिबिंबित करेगी। उदाहरण के लिए, क्षेत्र में वृद्धि का सामना करने वाली कठोर ध्वनिक लहर विपरीत दिशा में कमजोर ध्वनिक लहर को प्रतिबिंबित करेगी। क्षेत्र में कमी का सामना करने वाली कठोर ध्वनिक लहर विपरीत दिशा में कठोर ध्वनिक लहर को प्रतिबिंबित करेगी। मूल सिद्धांत को सिलेंडर हेड पोर्टिंग तरंग डायनेमिक्स में वर्णित किया गया है। विस्तार कक्ष इस घटना का उपयोग स्वयं व्यास (क्रॉस अनुभाग) एवं लंबाई को भिन्न-भिन्न करके चक्र में वांछित समय पर सिलेंडर पर वापस आने के लिए करता है।
विस्तार चक्र के तीन मुख्य भाग हैं।
प्रहार करना
जब अवरोही पिस्टन प्रथम सिलेंडर की दीवार पर निकास बंदरगाह को उजागर करता है, तो इसके दबाव (विस्तार कक्ष से सहायता के बिना) के कारण निकास शक्तिशाली रूप से बाहर निकलता है, इसलिए पाइप के प्रथम भाग की लंबाई पर व्यास/क्षेत्र निरंतर या निकट होता है। 0 से 2 डिग्री के विचलन के साथ स्थिर जो तरंग ऊर्जा को संरक्षित करता है। प्रणाली के इस खंड को हेडर पाइप कहा जाता है (निकास बंदरगाह की लंबाई को माप उद्देश्यों के लिए हेडर पाइप का भाग माना जाता है)। हेडर पाइप के व्यास को स्थिर रखते हुए, तरंग में ऊर्जा को संरक्षित रखा जाता है क्योंकि चक्र में पश्चात तक विस्तार की आवश्यकता नहीं होती है। अधिकांश प्रहार प्रक्रिया के समय सिलेंडर त्यागने वाला प्रवाह ध्वनि या सुपरसोनिक होता है, एवं इसलिए कोई भी तरंग उस प्रवाह के विपरीत सिलेंडर में वापस नहीं जा सकती है।
स्थानांतरण
निकास दबाव लगभग वायुमंडलीय स्तर तक गिर जाने के पश्चात, पिस्टन स्थानांतरण बंदरगाहों को खोल देता है। इस बिंदु पर विस्तार कक्ष से ऊर्जा का उपयोग सिलेंडर में स्वच्छ मिश्रण के प्रवाह में सहायता के लिए किया जा सकता है। ऐसा करने के लिए, विस्तार कक्ष व्यास में बढ़ जाता है, जिससे बाहर जाने वाली ध्वनिक तरंग (दहन प्रक्रिया द्वारा बनाई गई) परावर्तित शून्यक (नकारात्मक दबाव) तरंग बनाती है जो सिलेंडर पर लौटती है। सदन के इस भाग को डाइवर्जेंट (या डिफ्यूज़र) अनुभाग कहा जाता है एवं यह 7 से 9 डिग्री पर विचलन होता है। यह आवश्यकताओं के आधार पर अधिक अपसारी कोन से बना हो सकता है। स्थानांतरण चक्र के समय शून्यक तरंग सिलेंडर में आती है एवं क्रैंककेस से सिलेंडर में स्वच्छ मिश्रण को तृषित में सहायता करती है, या क्रैंककेस में निकास गैसों की मद्यपान को बाधित करती है (क्रैंककेस शून्यक के कारण)।[3] चूंकि, तरंग विस्तार कक्ष के शीर्षलेख में निकास बंदरगाह से स्वच्छ मिश्रण भी खींच सकती है। पोर्ट-ब्लॉकिंग तरंग द्वारा इस प्रभाव को अर्घ्य किया जाता है।
पोर्ट ब्लॉकिंग
जब स्थानांतरण पूर्ण हो जाता है, तो पिस्टन संपीड़न स्ट्रोक पर होता है किन्तु निकास बंदरगाह अभी भी खुला रहता है, दो स्ट्रोक पिस्टन पोर्ट चित्र के साथ अपरिहार्य समस्या है। पिस्टन को स्वच्छ मिश्रण को खुले निकास बंदरगाह से बाहर धकेलने से बाधित करने में सहायता करने के लिए विस्तार कक्ष से ठोस ध्वनिक तरंग (दहन द्वारा उत्पादित) संपीड़न स्ट्रोक की प्रारम्भ के समय आने के लिए समयबद्ध है। सदन के व्यास को अर्घ्य करके पोर्ट ब्लॉकिंग तरंग बनाई जाती है। इसे अभिसारी खंड (या बफल कोन) कहा जाता है। निवर्तमान ध्वनिक तरंग संकरे अभिसरण खंड से टकराती है एवं ध्वनिक दालों की ठोस श्रृंखला को सिलेंडर में वापस दर्शाती है। वे निकास बंदरगाह को अवरुद्ध करने के लिए समय पर पहुंचते हैं, तत्पश्चात संपीड़न स्ट्रोक के प्रारम्भ के समय खुले होते हैं एवं विस्तार कक्ष के शीर्षलेख में निकाले गए किसी भी स्वच्छ मिश्रण को सिलेंडर में वापस धकेलते हैं। आवश्यकताओं के आधार पर अभिसरण खंड को 16 से 25 डिग्री पर अभिसरण करने के लिए बनाया गया है।
ध्वनिक तरंग के साथ संयुक्त कक्ष में दबाव में सामान्य वृद्धि होती है, जो स्टिंगर नामक अल्प ट्यूब के साथ निर्गम मार्ग को विचारपूर्वक प्रतिबंधित करने के कारण होता है, जो ब्लीडर के रूप में कार्य करता है, संपीड़न स्ट्रोक के समय कक्ष को रिक्त करने के लिए इसे प्रस्तुत करने के लिए प्रसाधित करता है। आगामी चक्र। स्टिंगर की लंबाई एवं अंदर का व्यास 0.59 से 0.63x हेडर पाइप व्यास पर आधारित होता है एवं इसकी लंबाई इसके व्यास के 12 गुना के समान होती है, जो प्राप्त किए जाने वाले परिणामों पर निर्भर करता है। उपयुक्त रूप से चित्रित किए गए निकास प्रणाली में, दबाव में कुल वृद्धि किसी भी विषय में मफलर द्वारा उत्पादित की तुलना में अत्यधिक अर्घ्य होती है। स्टिंगर का त्रुटिपूर्ण आकार निकृष्ट प्रदर्शन (अत्यधिक बड़ा या अत्यधिक अल्प) या अत्यधिक ऊष्मा का कारण बनेगा जो इंजन को हानि पहुंचाएगा।
जटिल कारक
व्यवहार में विस्तार कक्षों का विस्तृत संचालन उतना सीधा नहीं है जितना कि ऊपर वर्णित मूलभूत प्रक्रिया। पाइप में बैक अप यात्रा करने वाली तरंगें डायवर्जेंट अनुभाग को रिवर्स में सामना करती हैं एवं अपनी ऊर्जा के एक हिस्से को वापस दर्शाती हैं। पाइप के विभिन्न भागों में तापमान भिन्नताएं प्रतिबिंब एवं ध्वनि की स्थानीय गति में परिवर्तन का कारण बनती हैं। कभी-कभी ये द्वितीयक तरंग प्रतिबिंब अधिक शक्ति के वांछित लक्ष्य को बाधित कर सकते हैं।
यह ध्यान रखना उपयोगी है कि यद्यपि तरंगें प्रत्येक चक्र में पूरे विस्तार कक्ष को पार करती हैं, किन्तु किसी विशेष चक्र के समय सिलेंडर छोड़ने वाली वास्तविक गैसें नहीं होती हैं। गैस बहती है एवं आंतरायिक रूप से रुक जाती है एवं तरंग पाइप के अंत तक जारी रहती है। बंदरगाह छोड़ने वाली गर्म गैसें एक स्लग बनाती हैं जो हेडर पाइप भरती है एवं उस चक्र की अवधि के लिए वहां रहती है। यह हेड पाइप में एक उच्च तापमान क्षेत्र का कारण बनता है जो हमेशा सबसे हालिया एवं सबसे गर्म गैस से भरा होता है। क्योंकि यह क्षेत्र अधिक गर्म है, ध्वनि की गति एवं इस प्रकार इससे गुजरने वाली तरंगों की गति बढ़ जाती है। अगले चक्र के समय गैस के स्लग को अगले स्लग द्वारा अगले जोन पर कब्जा करने के लिए पाइप से नीचे धकेल दिया जाएगा एवं इसी तरह। थ्रॉटल की स्थिति एवं इंजन की गति के अनुसार इस स्लग की मात्रा लगातार बदलती रहती है। यह केवल तरंग ऊर्जा ही है जो एक चक्र के समय पूरे पाइप को पार करती है। किसी विशेष चक्र के समय पाइप छोड़ने वाली वास्तविक गैस दो या तीन चक्र पहले बनाई गई थी। यही कारण है कि दो स्ट्रोक इंजनों पर निकास गैस का नमूना निकास बंदरगाह में एक विशेष वाल्व के साथ किया जाता है। स्टिंगर से निकलने वाली गैस में बहुत अधिक निवासी समय होता है एवं अन्य चक्रों से गैस के साथ मिलने से विश्लेषण में त्रुटियां होती हैं।
विस्तार कक्षों में इंजन बे के भीतर अपने फिट को समायोजित करने के लिए लगभग हमेशा मोड़ एवं वक्र होते हैं। मुड़ने पर गैसें एवं तरंगें समान व्यवहार नहीं करती हैं। तरंगें परावर्तित एवं गोलाकार विकिरण द्वारा यात्रा करती हैं। मोड़ लहर रूपों के तीखेपन में नुकसान का कारण बनता है एवं इसलिए अप्रत्याशित नुकसान से बचने के लिए इसे न्यूनतम रखा जाना चाहिए।
विस्तार कक्षों को डिजाइन करने के लिए उपयोग की जाने वाली गणना केवल प्राथमिक तरंग क्रियाओं को ध्यान में रखती है। यह आमतौर पर काफी करीब होता है किन्तु इन जटिल कारकों के कारण त्रुटियां हो सकती हैं।
यह भी देखें
- कडेनसी प्रभाव
- ट्यून्ड निकास
संदर्भ
- ↑ "Suzuki Motorcycle History: History of Suzuki". Motorcycle.com. Archived from the original on 2011-03-10.
- ↑ Oxley, Mat (2010), Stealing Speed: The Biggest Spy Scandal in Motorsport History, Haynes Publishing Group, ISBN 978-1-84425-975-5
- ↑ Forrest, Michael. "कैसे एक विस्तार कक्ष काम करता है". Retrieved 2016-06-07.