ड्रैग समीकरण: Difference between revisions

From Vigyanwiki
Line 44: Line 44:
   f_b\left(\frac{F_{\rm d}}{\frac12 \rho A u^2}, \frac{u \sqrt{A}}{\nu} \right) = 0.
   f_b\left(\frac{F_{\rm d}}{\frac12 \rho A u^2}, \frac{u \sqrt{A}}{\nu} \right) = 0.
</math>
</math>
जहां <sub>b</sub>दो तर्कों का कुछ कार्य है।
जहां ''f<sub>b</sub>'' दो तर्कों का कोई कार्य है। मूल कानून को फिर केवल इन दो नंबरों को शामिल करने वाले कानून में घटा दिया जाता है।
मूल कानून को तब केवल इन दो नंबरों को शामिल करने वाले कानून में बदल दिया जाता है।


क्योंकि उपरोक्त समीकरण में एकमात्र अज्ञात ड्रैग फोर्स F है<sub>d</sub>, इसे व्यक्त करना संभव है
चूंकि उपरोक्त समीकरण में एकमात्र अज्ञात ड्रैग फोर्स ''F''<sub>d</sub> है, इसे व्यक्त करना संभव है<math display="block">\begin{align}
 
<math display="block">\begin{align}
   \frac{F_{\rm d}}{\frac12 \rho A u^2} &= f_c\left(\frac{u \sqrt{A}}{\nu} \right) \\
   \frac{F_{\rm d}}{\frac12 \rho A u^2} &= f_c\left(\frac{u \sqrt{A}}{\nu} \right) \\
   F_{\rm d} &= \tfrac12 \rho A u^2 f_c(\mathrm{Re}) \\
   F_{\rm d} &= \tfrac12 \rho A u^2 f_c(\mathrm{Re}) \\
   c_{\rm d} &= f_c(\mathrm{Re})
   c_{\rm d} &= f_c(\mathrm{Re})
\end{align}</math>
\end{align}</math>इस प्रकार बल केवल ½ ''ρ'' ''A'' ''u<sup>2</sup>'' गुना कुछ (अभी तक अज्ञात) फलन ''f<sub>c</sub>'' रेनॉल्ड्स संख्या Re - ऊपर दिए गए मूल पांच-तर्क फ़ंक्शन की तुलना में काफी सरल प्रणाली है।
इस प्रकार बल केवल ½ ρ A u है<sup>2</sup> कुछ बार (अभी तक अज्ञात) फ़ंक्शन f<sub>c</sub>रेनॉल्ड्स संख्या पुन - ऊपर दिए गए मूल पांच-तर्क फ़ंक्शन की तुलना में काफी सरल प्रणाली।
 


आयामी विश्लेषण इस प्रकार एक बहुत ही जटिल समस्या (पांच चर के एक समारोह के व्यवहार को निर्धारित करने की कोशिश कर रहा है) को बहुत आसान बना देता है: केवल एक चर, रेनॉल्ड्स संख्या के कार्य के रूप में ड्रैग का निर्धारण।
आयामी विश्लेषण इस प्रकार एक बहुत ही जटिल समस्या (पांच चर के एक समारोह के व्यवहार को निर्धारित करने की कोशिश कर रहा है) को बहुत सरल बना देता है: केवल एक चर, रेनॉल्ड्स संख्या के एक समारोह के रूप में ड्रैग का निर्धारण।


यदि द्रव एक गैस है, तो गैस के कुछ गुण ड्रैग को प्रभावित करते हैं और उन गुणों को भी ध्यान में रखा जाना चाहिए। उन गुणों को पारंपरिक रूप से गैस का पूर्ण तापमान और इसके विशिष्ट तापों का अनुपात माना जाता है। ये दो गुण किसी दिए गए तापमान पर गैस में ध्वनि की गति निर्धारित करते हैं। बकिंघम पाई प्रमेय तब एक तीसरे आयाम रहित समूह की ओर ले जाता है, ध्वनि की गति के सापेक्ष वेग का अनुपात, जिसे मच संख्या के रूप में जाना जाता है। नतीजतन जब कोई शरीर गैस के सापेक्ष गति कर रहा होता है, तो ड्रैग गुणांक मच संख्या और रेनॉल्ड्स संख्या के साथ बदलता रहता है।
यदि द्रव एक गैस है, तो गैस के कुछ गुण ड्रैग को प्रभावित करते हैं और उन गुणों को भी ध्यान में रखना चाहिए। उन गुणों को परंपरागत रूप से गैस का पूर्ण तापमान और इसकी विशिष्ट गर्मी का अनुपात माना जाता है। ये दो गुण किसी गैस में उसके दिए गए तापमान पर ध्वनि की गति निर्धारित करते हैं। बकिंघम पाई प्रमेय तब एक तीसरे आयाम रहित समूह की ओर ले जाता है, जो ध्वनि की गति के सापेक्ष वेग का अनुपात है, जिसे मच संख्या के रूप में जाना जाता है। नतीजतन, जब कोई पिंड गैस के सापेक्ष गति कर रहा होता है, तो ड्रैग गुणांक मच संख्या और रेनॉल्ड्स संख्या के साथ भिन्न होता है।


विश्लेषण अन्य जानकारी भी मुफ्त में देता है, इसलिए बोलने के लिए। विश्लेषण से पता चलता है कि, अन्य चीजें समान होने पर, ड्रैग बल द्रव के घनत्व के समानुपाती होगा। इस तरह की जानकारी अक्सर बेहद मूल्यवान साबित होती है, खासकर किसी शोध परियोजना के शुरुआती चरणों में।
विश्लेषण अन्य जानकारी भी निःशुल्क प्रदान करता है, इसलिए बोलना। विश्लेषण से पता चलता है कि अन्य चीजें समान होने पर, ड्रैग बल तरल पदार्थ के घनत्व के समानुपाती होगा। इस तरह की जानकारी अक्सर अत्यंत मूल्यवान साबित होती है, विशेष रूप से एक शोध परियोजना के प्रारंभिक चरण में हैं।


== प्रायोगिक तरीके ==
== प्रायोगिक तरीके ==
{{unreferenced section|date=January 2022}}
रेनॉल्ड्स संख्या निर्भरता को अनुभवजन्य रूप से निर्धारित करने के लिए, तेजी से बहने वाले तरल पदार्थ (जैसे पवन सुरंगों में वास्तविक आकार के हवाई जहाज) के साथ एक बड़े शरीर पर प्रयोग करने के बजाय, उच्च वेग के प्रवाह में एक छोटे मॉडल का उपयोग करके भी प्रयोग किया जा सकता है क्योंकि ये दो प्रणालियाँ समान रेनॉल्ड्स संख्या होने से [[समानता (मॉडल)]] प्रदान करती हैं। यदि समान रेनॉल्ड्स संख्या और मच संख्या केवल उच्च वेग के प्रवाह का उपयोग करके प्राप्त नहीं की जा सकती है तो अधिक घनत्व या कम चिपचिपाहट के द्रव का उपयोग करना लाभप्रद हो सकता है।
रेनॉल्ड्स संख्या निर्भरता को अनुभवजन्य रूप से निर्धारित करने के लिए, तेजी से बहने वाले तरल पदार्थ (जैसे पवन सुरंगों में वास्तविक आकार के हवाई जहाज) के साथ एक बड़े शरीर पर प्रयोग करने के बजाय, उच्च वेग के प्रवाह में एक छोटे मॉडल का उपयोग करके भी प्रयोग किया जा सकता है क्योंकि ये दो प्रणालियाँ समान रेनॉल्ड्स संख्या होने से [[समानता (मॉडल)]] प्रदान करती हैं। यदि समान रेनॉल्ड्स संख्या और मच संख्या केवल उच्च वेग के प्रवाह का उपयोग करके प्राप्त नहीं की जा सकती है तो अधिक घनत्व या कम चिपचिपाहट के द्रव का उपयोग करना लाभप्रद हो सकता है।



Revision as of 09:43, 21 May 2023

द्रव गतिकी में, ड्रैग समीकरण एक सूत्र है जिसका उपयोग पूरी तरह से संलग्न द्रव के माध्यम से आंदोलन के कारण किसी वस्तु द्वारा अनुभव किए गए ड्रैग के बल की गणना करने के लिए किया जाता है। समीकरण यह है:

जहाँ

  • ड्रैग बल है, जो कि परिभाषा के अनुसार प्रवाह वेग की दिशा में बल घटक है,
  • तरल पदार्थ का द्रव्यमान घनत्व है[1],
  • वस्तु के सापेक्ष प्रवाह वेग है,
  • संदर्भ क्षेत्र है, और
  • ड्रैग गुणांक है - वस्तु की ज्यामिति से संबंधित एक आयाम रहित गुणांक और त्वचा घर्षण और फॉर्म ड्रैग दोनों को ध्यान में रखते हुए। यदि द्रव एक तरल है, रेनॉल्ड्स नंबर पर निर्भर करता है; यदि द्रव एक गैस है, रेनॉल्ड्स संख्या और मैक संख्या दोनों पर निर्भर करता है।

समीकरण का श्रेय लॉर्ड रेले को दिया जाता है, जिन्होंने मूल रूप से A के स्थान पर L2 का उपयोग किया था (L कुछ रैखिक आयाम के साथ)।[2]

संदर्भ क्षेत्र ए को आम तौर पर गति की दिशा के लंबवत विमान पर वस्तु के ऑर्थोग्राफिक प्रक्षेपण के क्षेत्र के रूप में परिभाषित किया जाता है। सरल आकृतियों वाली गैर-खोखली वस्तुओं के लिए, जैसे कि एक गोला, यह बिल्कुल अधिकतम अनुप्रस्थ-अनुभागीय क्षेत्र के समान होता है। अन्य वस्तुओं के लिए (उदाहरण के लिए, एक रोलिंग ट्यूब या साइकिल चालक का शरीर), ए गति की दिशा में लंबवत किसी भी विमान के किसी भी क्रॉस-सेक्शन के क्षेत्र से काफी बड़ा हो सकता है। एयरफॉइल्स संदर्भ क्षेत्र के रूप में कॉर्ड लंबाई के वर्ग का उपयोग करते हैं; चूंकि एयरफॉइल कॉर्ड आमतौर पर 1 की लंबाई के साथ परिभाषित होते हैं, संदर्भ क्षेत्र भी 1 होता है। विमान विंग क्षेत्र (या रोटर-ब्लेड क्षेत्र) को संदर्भ क्षेत्र के रूप में उपयोग करता है, जो लिफ्ट की तुलना करना आसान बनाता है। एयरशिप और क्रांति के निकाय ड्रैग के वॉल्यूमेट्रिक गुणांक का उपयोग करते हैं, जिसमें संदर्भ क्षेत्र एयरशिप की मात्रा के घनमूल का वर्ग है। कभी-कभी एक ही वस्तु के लिए अलग-अलग संदर्भ क्षेत्र दिए जाते हैं, जिस स्थिति में इन अलग-अलग क्षेत्रों में से प्रत्येक के लिए एक ड्रैग गुणांक दिया जाना चाहिए।

शार्प कॉर्नर्ड ब्लफ बॉडीज के लिए, जैसे स्क्वायर सिलिंडर और प्लेट्स, जिन्हें प्रवाह दिशा में अनुप्रस्थ रखा जाता है, यह समीकरण रेनॉल्ड्स संख्या 1000 से अधिक होने पर स्थिर मान के रूप में ड्रैग गुणांक के साथ लागू होता है।[3] सुचारू निकाय के लिए, एक सिलेंडर की तरह, रेनॉल्ड्स की संख्या 107 (दस मिलियन) तक पहुंचने तक ड्रैग गुणांक महत्वपूर्ण रूप से भिन्न हो सकता है।[4]

विचार-विमर्श

आदर्श स्थिति के लिए समीकरण को आसानी से समझा जा सकता है, जहां सभी तरल पदार्थ संदर्भ क्षेत्र से टकराते हैं और एक पूर्ण विराम पर आ जाते हैं, जिससे पूरे क्षेत्र में स्थिरीकरण दबाव बन जाता है। कोई वास्तविक वस्तु इस व्यवहार के बिल्कुल अनुरूप नहीं है। किसी वास्तविक वस्तु के लिए आदर्श वस्तु के लिए ड्रैग का अनुपात है। व्यवहार में, एक खुरदरी अन-सुव्यवस्थित बॉडी (एक ब्लफ बॉडी) की लगभग 1, कम या ज्यादा होगी। सुचारु वस्तुओं में का मान बहुत कम हो सकता है। समीकरण सटीक है - यह केवल (ड्रैग गुणांक) की परिभाषा प्रदान करता है, जो रेनॉल्ड्स संख्या के साथ बदलता रहता है और प्रयोग द्वारा पाया जाता है।

प्रवाह वेग पर निर्भरता का विशेष महत्व है, जिसका अर्थ है कि प्रवाह वेग के वर्ग के साथ द्रव ड्रैग बढ़ता है। जब प्रवाह वेग दोगुना हो जाता है, उदाहरण के लिए, तरल न केवल प्रवाह वेग के दोगुने के साथ टकराता है, बल्कि द्रव का द्रव्यमान प्रति सेकंड दोगुना होता है। इसलिए, प्रति समय संवेग में परिवर्तन, यानी बल का अनुभव, चार से गुणा किया जाता है। यह ठोस-पर-ठोस गतिशील घर्षण के विपरीत है, जो आम तौर पर बहुत कम वेग पर निर्भर करता है।

गतिशील दबाव के साथ संबंध

ड्रैग फ़ोर्स (बल) को इस रूप में भी निर्दिष्ट किया जा सकता है

जहां PD क्षेत्र A पर तरल पदार्थ द्वारा लगाया गया दबाव है। यहाँ दाब PD को गतिज दाब के रूप में संदर्भित किया जाता है क्योंकि तरल की गतिज ऊर्जा सापेक्ष प्रवाह वेग u का अनुभव करती है। इसे एक समान रूप में गतिज ऊर्जा समीकरण के रूप में परिभाषित किया गया है:

व्युत्पत्ति

विमीय विश्लेषण की विधि द्वारा ड्रैग समीकरण को एक गुणक स्थिरांक से प्राप्त किया जा सकता है। यदि गतिमान द्रव किसी वस्तु से मिलता है, तो वह वस्तु पर बल लगाता है। मान लीजिए कि द्रव एक तरल है, और इसमें शामिल चर - कुछ शर्तों के तहत - ये हैं:

  • गति u,
  • द्रव घनत्व ρ,
  • द्रव की गतिज श्यानता ν,
  • शरीर का आकार, इसके गीले क्षेत्र A के संदर्भ में व्यक्त किया गया है, और
  • ड्रैग फोर्स Fd

बकिंघम π प्रमेय के एल्गोरिथ्म का उपयोग करते हुए, इन पांच चरों को दो आयाम रहित समूहों में घटाया जा सकता है:

  • ड्रैग गुणांक cd और
  • रेनॉल्ड्स संख्या Re

यह तब स्पष्ट हो जाता है जब समस्या में अन्य चर के कार्य के भाग के रूप में ड्रैग फ़ोर्स Fd व्यक्त किया जाता है:

अभिव्यक्ति के इस अजीब रूप का उपयोग किया जाता है क्योंकि यह एक-से-एक रिश्ते को नहीं मानता है। यहाँ, fa कुछ (अभी तक अज्ञात) फ़ंक्शन है जो पाँच तर्क लेता है। अब किसी भी प्रणाली की इकाइयों में दाहिना हाथ शून्य है; इसलिए केवल आयामहीन समूहों के संदर्भ में fa द्वारा वर्णित संबंध को व्यक्त करना संभव होना चाहिए।


आयामहीन समूह बनाने के लिए fa के पांच तर्कों को संयोजित करने के कई तरीके हैं, लेकिन बकिंघम π प्रमेय कहता है कि ऐसे दो समूह होंगे। सबसे उपयुक्त रेनॉल्ड्स संख्या है, जो इसके द्वारा दी गई है

और ड्रैग गुणांक, द्वारा दिया गया
इस प्रकार पाँच चरों के कार्य को केवल दो चरों के दूसरे फलन से बदला जा सकता है:
जहां fb दो तर्कों का कोई कार्य है। मूल कानून को फिर केवल इन दो नंबरों को शामिल करने वाले कानून में घटा दिया जाता है।

चूंकि उपरोक्त समीकरण में एकमात्र अज्ञात ड्रैग फोर्स Fd है, इसे व्यक्त करना संभव है

इस प्रकार बल केवल ½ ρ A u2 गुना कुछ (अभी तक अज्ञात) फलन fc रेनॉल्ड्स संख्या Re - ऊपर दिए गए मूल पांच-तर्क फ़ंक्शन की तुलना में काफी सरल प्रणाली है।


आयामी विश्लेषण इस प्रकार एक बहुत ही जटिल समस्या (पांच चर के एक समारोह के व्यवहार को निर्धारित करने की कोशिश कर रहा है) को बहुत सरल बना देता है: केवल एक चर, रेनॉल्ड्स संख्या के एक समारोह के रूप में ड्रैग का निर्धारण।

यदि द्रव एक गैस है, तो गैस के कुछ गुण ड्रैग को प्रभावित करते हैं और उन गुणों को भी ध्यान में रखना चाहिए। उन गुणों को परंपरागत रूप से गैस का पूर्ण तापमान और इसकी विशिष्ट गर्मी का अनुपात माना जाता है। ये दो गुण किसी गैस में उसके दिए गए तापमान पर ध्वनि की गति निर्धारित करते हैं। बकिंघम पाई प्रमेय तब एक तीसरे आयाम रहित समूह की ओर ले जाता है, जो ध्वनि की गति के सापेक्ष वेग का अनुपात है, जिसे मच संख्या के रूप में जाना जाता है। नतीजतन, जब कोई पिंड गैस के सापेक्ष गति कर रहा होता है, तो ड्रैग गुणांक मच संख्या और रेनॉल्ड्स संख्या के साथ भिन्न होता है।

विश्लेषण अन्य जानकारी भी निःशुल्क प्रदान करता है, इसलिए बोलना। विश्लेषण से पता चलता है कि अन्य चीजें समान होने पर, ड्रैग बल तरल पदार्थ के घनत्व के समानुपाती होगा। इस तरह की जानकारी अक्सर अत्यंत मूल्यवान साबित होती है, विशेष रूप से एक शोध परियोजना के प्रारंभिक चरण में हैं।

प्रायोगिक तरीके

रेनॉल्ड्स संख्या निर्भरता को अनुभवजन्य रूप से निर्धारित करने के लिए, तेजी से बहने वाले तरल पदार्थ (जैसे पवन सुरंगों में वास्तविक आकार के हवाई जहाज) के साथ एक बड़े शरीर पर प्रयोग करने के बजाय, उच्च वेग के प्रवाह में एक छोटे मॉडल का उपयोग करके भी प्रयोग किया जा सकता है क्योंकि ये दो प्रणालियाँ समान रेनॉल्ड्स संख्या होने से समानता (मॉडल) प्रदान करती हैं। यदि समान रेनॉल्ड्स संख्या और मच संख्या केवल उच्च वेग के प्रवाह का उपयोग करके प्राप्त नहीं की जा सकती है तो अधिक घनत्व या कम चिपचिपाहट के द्रव का उपयोग करना लाभप्रद हो सकता है।

यह भी देखें

संदर्भ

  1. Note that for the Earth's atmosphere, the air density can be found using the barometric formula. Air is 1.293 kg/m3 at 0°C and 1 atmosphere
  2. See Section 7 of Book 2 of Newton's Principia Mathematica; in particular Proposition 37.
  3. Drag Force Archived April 14, 2008, at the Wayback Machine
  4. See Batchelor (1967), p. 341.


बाहरी संबंध

  • Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press. ISBN 0-521-66396-2.
  • Huntley, H. E. (1967). Dimensional Analysis. Dover. LOC 67-17978.
  • Benson, Tom. "Falling Object with Air Resistance". US: NASA. Retrieved 2022-06-09.
  • Benson, Tom. "The drag equation". US: NASA. Retrieved 2022-06-09.