मोनोमोर्फिज्म: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:Monomorphism scenarios.svg|right|thumb|220px]][[सार बीजगणित]] या [[सार्वभौमिक बीजगणित]] के संदर्भ में, मोनोमोर्फिज्म एक [[इंजेक्शन समारोह|अंतःक्षेपक]] [[समरूपता|समाकारिता]] (इंजेक्टिव होमोमोर्फिसम) है। मोनोमोर्फिज्म {{mvar|X}} को {{mvar|Y}} को प्रायः अंकन के साथ दर्शाया जाता है <math>X\hookrightarrow Y</math>. | [[Image:Monomorphism scenarios.svg|right|thumb|220px]][[सार बीजगणित]] या [[सार्वभौमिक बीजगणित]] के संदर्भ में, मोनोमोर्फिज्म एक [[इंजेक्शन समारोह|अंतःक्षेपक]] [[समरूपता|समाकारिता]] (इंजेक्टिव होमोमोर्फिसम) है। मोनोमोर्फिज्म {{mvar|X}} को {{mvar|Y}} को प्रायः अंकन के साथ दर्शाया जाता है <math>X\hookrightarrow Y</math>. | ||
[[श्रेणी सिद्धांत]] की अधिक सामान्य सेटिंग में, | [[श्रेणी सिद्धांत]] की अधिक सामान्य सेटिंग में, मोनोमोर्फिज्म (जिसे मोनिक [[ आकारिता |आकारिता]] या मोनो भी कहा जाता है) एक[[ वाम रद्द करनेवाला ]]मॉर्फिज्म है। यानी एरो {{math|''f'' : ''X'' → ''Y''}} जैसे कि सभी वस्तुओं के लिए {{math|''Z''}} और सभी मोर्फिज्म {{math|''g''<sub>1</sub>, ''g''<sub>2</sub>: ''Z'' → ''X''}}, | ||
: <math>f \circ g_1 = f \circ g_2 \implies g_1 = g_2.</math>[[File:Monomorphism_pullback_square.png|thumb|225x225px|स्वयं के साथ एकरूपता का पुलबैक]]मोनोमोर्फिज्म इंजेक्शन कार्यों का एक सामान्य सामान्यीकरण है (जिसे एक-से-एक कार्य भी कहा जाता है); कुछ श्रेणियों में धारणाएं मेल खाती हैं, लेकिन मोनोमोर्फिज़्म अधिक सामान्य हैं, जैसा कि #उदाहरणों के लिए नीचे दिया गया है। | : <math>f \circ g_1 = f \circ g_2 \implies g_1 = g_2.</math>[[File:Monomorphism_pullback_square.png|thumb|225x225px|स्वयं के साथ एकरूपता का पुलबैक]]मोनोमोर्फिज्म इंजेक्शन कार्यों का एक सामान्य सामान्यीकरण है (जिसे एक-से-एक कार्य भी कहा जाता है); कुछ श्रेणियों में धारणाएं मेल खाती हैं, लेकिन मोनोमोर्फिज़्म अधिक सामान्य हैं, जैसा कि #उदाहरणों के लिए नीचे दिया गया है। | ||
[[आंशिक रूप से आदेशित सेट]] प्रतिच्छेदन ( इन्टरसेक्शन) की सेटिंग में [[Idempotence]] हैं: किसी भी चीज़ का प्रतिच्छेदन स्वयं ही है। मोनोमोर्फिज़्म इस संपत्ति को मनमाने ढंग से श्रेणियों में सामान्यीकृत करते हैं। [[पुलबैक (श्रेणी सिद्धांत)]] के संबंध में एक रूपवाद एक मोनोमोर्फिज्म है यदि यह उदासीन है। | [[आंशिक रूप से आदेशित सेट]] प्रतिच्छेदन ( इन्टरसेक्शन) की सेटिंग में [[Idempotence|इदम्पोटेन्स]] हैं: किसी भी चीज़ का प्रतिच्छेदन स्वयं ही है। मोनोमोर्फिज़्म इस संपत्ति को मनमाने ढंग से श्रेणियों में सामान्यीकृत करते हैं। [[पुलबैक (श्रेणी सिद्धांत)]] के संबंध में एक रूपवाद एक मोनोमोर्फिज्म है यदि यह उदासीन है। | ||
मोनोमोर्फिज्म का श्रेणीबद्ध द्वैत एक एपीमोर्फिज्म है, अर्थात, श्रेणी सी में एक मोनोमोर्फिज्म द्वैत श्रेणी सी में एक [[अधिरूपता]] ''C''<sup>op</sup> है। प्रत्येक खंड (श्रेणी सिद्धांत) एक मोनोमोर्फिज्म है, और प्रत्येक रिट्रेक्ट (श्रेणी सिद्धांत) एक एपिमोर्फिज्म है। | मोनोमोर्फिज्म का श्रेणीबद्ध द्वैत एक एपीमोर्फिज्म है, अर्थात, श्रेणी सी में एक मोनोमोर्फिज्म द्वैत श्रेणी सी में एक [[अधिरूपता]] ''C''<sup>op</sup> है। प्रत्येक खंड (श्रेणी सिद्धांत) एक मोनोमोर्फिज्म है, और प्रत्येक रिट्रेक्ट (श्रेणी सिद्धांत) एक एपिमोर्फिज्म है। | ||
== उलटापन से संबंध == | == उलटापन से संबंध == | ||
वाम-अपरिवर्तनीय | वाम-अपरिवर्तनीय मोर्फिज्म आवश्यक रूप से मोनिक हैं: यदि l f के लिए एक बायां व्युत्क्रम है (अर्थात् मोर्फिज्म है और <math>l \circ f = \operatorname{id}_{X}</math>), तो f मोनिक है, जैसा | ||
: <math>f \circ g_1 = f \circ g_2 \Rightarrow l\circ f\circ g_1 = l\circ f\circ g_2 \Rightarrow g_1 = g_2.</math> | : <math>f \circ g_1 = f \circ g_2 \Rightarrow l\circ f\circ g_1 = l\circ f\circ g_2 \Rightarrow g_1 = g_2.</math> | ||
एक वाम-अपरिवर्तनीय रूपवाद को एक खंड (श्रेणी सिद्धांत) या एक खंड कहा जाता है। | एक वाम-अपरिवर्तनीय रूपवाद को एक खंड (श्रेणी सिद्धांत) या एक खंड कहा जाता है। | ||
Line 18: | Line 18: | ||
== उदाहरण == | == उदाहरण == | ||
एक [[ठोस श्रेणी]] में प्रत्येक आकारिकी जिसका अंतर्निहित कार्य (गणित) इंजेक्शन है एक मोनोमोर्फिज्म है; दूसरे शब्दों में, यदि | एक [[ठोस श्रेणी]] में प्रत्येक आकारिकी जिसका अंतर्निहित कार्य (गणित) इंजेक्शन है एक मोनोमोर्फिज्म है; दूसरे शब्दों में, यदि मोर्फिज्म वास्तव में सेट के बीच कार्य करता है, तो कोई मोर्फिज्म जो एक-से-एक फ़ंक्शन है, निश्चित रूप से श्रेणीबद्ध अर्थ में एक मोनोमोर्फिज्म होगा। [[सेट की श्रेणी]] में बातचीत भी रखती है, इसलिए मोनोमोर्फिज़्म बिल्कुल इंजेक्शन वाले रूप हैं। एक जनरेटर पर एक [[मुक्त वस्तु]] के अस्तित्व के कारण आक्षेप भी बीजगणित की सबसे स्वाभाविक रूप से होने वाली श्रेणियों में होता है। विशेष रूप से, यह सभी समूहों की श्रेणियों, सभी रिंगों (गणित) और किसी भी [[एबेलियन श्रेणी]] में सच है। | ||
हालांकि, यह सामान्य तौर पर सच नहीं है कि अन्य श्रेणियों में सभी मोनोमोर्फिज़्म अंतःक्षेपी होने चाहिए; अर्थात्, ऐसी सेटिंग्स हैं जिनमें आकारिकी सेट के बीच कार्य करती है, लेकिन एक ऐसा कार्य हो सकता है जो इंजेक्शन नहीं है और फिर भी श्रेणीबद्ध अर्थों में एक मोनोमोर्फिज्म है। उदाहरण के लिए, [[विभाज्य समूह]] [[एबेलियन समूह]] की श्रेणी डिव में | (एबेलियन) समूह और उनके बीच समूह होमोमोर्फिम्स में मोनोमोर्फिज़्म हैं जो इंजेक्शन नहीं हैं: उदाहरण के लिए, भागफल मानचित्र पर विचार करें {{nowrap|''q'' : '''Q''' → '''Q'''/'''Z'''}}, जहाँ Q योग के अंतर्गत परिमेय संख्या है, Z पूर्णांक (जोड़ के अंतर्गत एक समूह भी माना जाता है), और Q/Z संगत [[भागफल समूह]] है। यह एक अंतःक्षेपी | हालांकि, यह सामान्य तौर पर सच नहीं है कि अन्य श्रेणियों में सभी मोनोमोर्फिज़्म अंतःक्षेपी होने चाहिए; अर्थात्, ऐसी सेटिंग्स हैं जिनमें आकारिकी सेट के बीच कार्य करती है, लेकिन एक ऐसा कार्य हो सकता है जो इंजेक्शन नहीं है और फिर भी श्रेणीबद्ध अर्थों में एक मोनोमोर्फिज्म है। उदाहरण के लिए, [[विभाज्य समूह]] [[एबेलियन समूह]] की श्रेणी डिव में | (एबेलियन) समूह और उनके बीच समूह होमोमोर्फिम्स में मोनोमोर्फिज़्म हैं जो इंजेक्शन नहीं हैं: उदाहरण के लिए, भागफल मानचित्र पर विचार करें {{nowrap|''q'' : '''Q''' → '''Q'''/'''Z'''}}, जहाँ Q योग के अंतर्गत परिमेय संख्या है, Z पूर्णांक (जोड़ के अंतर्गत एक समूह भी माना जाता है), और Q/Z संगत [[भागफल समूह]] है। यह एक अंतःक्षेपी मैप नहीं है, उदाहरण के लिए प्रत्येक पूर्णांक को 0 पर मैप किया जाता है। फिर भी, यह इस श्रेणी में एक मोनोमोर्फिज्म है। यह निहितार्थ से होता है {{nowrap|1=''q'' ∘ ''h'' = 0 ⇒ ''h'' = 0}}, जिसे अब हम सिद्ध करेंगे। अगर {{nowrap|''h'' : ''G'' → '''Q'''}}, जहाँ G कुछ विभाज्य समूह है, और {{nowrap|1=''q'' ∘ ''h'' = 0}}, तब {{nowrap|''h''(''x'') ∈ '''Z''', ∀ ''x'' ∈ ''G''}}. अब कुछ ठीक करो {{nowrap|''x'' ∈ ''G''}}. व्यापकता के नुकसान के बिना, हम यह मान सकते हैं {{nowrap|''h''(''x'') ≥ 0}} (अन्यथा, इसके बजाय -x चुनें)। फिर, दे रहा हूँ {{nowrap|1=''n'' = ''h''(''x'') + 1}}, चूँकि G एक विभाज्य समूह है, कुछ का अस्तित्व है {{nowrap|''y'' ∈ ''G''}} ऐसा है कि {{nowrap|1=''x'' = ''ny''}}, इसलिए {{nowrap|1=''h''(''x'') = ''n'' ''h''(''y'')}}. इससे और {{nowrap|1=0 ≤ ''h''(''x'') < ''h''(''x'') + 1 = ''n''}}, यह इस प्रकार है कि | ||
:<math>0 \leq \frac{h(x)}{h(x) + 1} = h(y) < 1 </math> | :<math>0 \leq \frac{h(x)}{h(x) + 1} = h(y) < 1 </math> | ||
तब से {{nowrap|''h''(''y'') ∈ '''Z'''}}, यह इस प्रकार है कि {{nowrap|1=''h''(''y'') = 0}}, और इस तरह {{nowrap|1=''h''(''x'') = 0 = ''h''(−''x''), ∀ ''x'' ∈ ''G''}}. यह कहता है {{nowrap|1=''h'' = 0}}, जैसी इच्छा थी। | तब से {{nowrap|''h''(''y'') ∈ '''Z'''}}, यह इस प्रकार है कि {{nowrap|1=''h''(''y'') = 0}}, और इस तरह {{nowrap|1=''h''(''x'') = 0 = ''h''(−''x''), ∀ ''x'' ∈ ''G''}}. यह कहता है {{nowrap|1=''h'' = 0}}, जैसी इच्छा थी। | ||
उस निहितार्थ से इस तथ्य तक जाने के लिए कि | उस निहितार्थ से इस तथ्य तक जाने के लिए कि '''Q''' एक मोनोमोर्फिज्म है, मान लीजिए {{nowrap|1=''q'' ∘ ''f'' = ''q'' ∘ ''g''}} कुछ morphisms के लिए {{nowrap|''f'', ''g'' : ''G'' → '''Q'''}}, जहाँ G कोई विभाज्य समूह है। तब {{nowrap|1=''q'' ∘ (''f'' − ''g'') = 0}}, जहाँ {{nowrap|(''f'' − ''g'') : ''x'' ↦ ''f''(''x'') − ''g''(''x'')}}. (तब से {{nowrap|1=(''f'' − ''g'')(0) = 0}}, और {{nowrap|1=(''f'' − ''g'')(''x'' + ''y'') = (''f'' − ''g'')(''x'') + (''f'' − ''g'')(''y'')}}, यह इस प्रकार है कि {{nowrap|(''f'' − ''g'') ∈ Hom(''G'', '''Q''')}}). निहितार्थ से अभी साबित हुआ, {{nowrap|1=''q'' ∘ (''f'' − ''g'') = 0 ⇒ ''f'' − ''g'' = 0 ⇔ ∀ ''x'' ∈ ''G'', ''f''(''x'') = ''g''(''x'') ⇔ ''f'' = ''g''}}. इसलिए '''Q''' एक मोनोमोर्फिज्म है, जैसा कि दावा किया गया है। | ||
== गुण == | == गुण == | ||
* एक [[ topos ]] में, प्रत्येक मोनो एक तुल्यकारक होता है, और कोई भी | * एक [[ topos ]] में, प्रत्येक मोनो एक तुल्यकारक होता है, और कोई भी मैप जो दोनों मोनिक और एपिक मोर्फिज्म है, एक आइसोमोर्फिज्म (श्रेणी सिद्धांत) है। | ||
* प्रत्येक तुल्याकारिता अद्वैत है। | * प्रत्येक तुल्याकारिता अद्वैत है। | ||
== संबंधित अवधारणाएं == | == संबंधित अवधारणाएं == | ||
नियमित मोनोमोर्फिज्म, एक्सट्रीमल मोनोमोर्फिज्म, तत्काल मोनोमोर्फिज्म, | नियमित मोनोमोर्फिज्म, एक्सट्रीमल मोनोमोर्फिज्म, तत्काल मोनोमोर्फिज्म, दृढ़ मोनोमोर्फिज्म और स्प्लिट मोनोमोर्फिज्म की उपयोगी अवधारणाएं भी हैं। | ||
* | * मोनोमोर्फिज्म को 'नियमित' कहा जाता है यदि यह समांतर मोर्फिज्म की कुछ जोड़ी का एक [[तुल्यकारक (गणित)]] है। | ||
* | * मोनोमोर्फिज्म <math>\mu</math> अतिवादी बताया है{{sfn|Borceux|1994}} यदि प्रत्येक प्रतिनिधित्व में <math>\mu=\varphi\circ\varepsilon</math>, जहाँ <math>\varepsilon</math> एक एपिमोर्फिज्म है, रूपवाद <math>\varepsilon</math> स्वचालित रूप से एक समरूपता है। | ||
* | * [[समाकृतिकता]] <math>\mu</math> प्रत्येक प्रतिनिधित्व में अगर तत्काल कहा जाता है <math>\mu=\mu'\circ\varepsilon</math>, जहाँ <math>\mu'</math> एक एकरूपता है और <math>\varepsilon</math> एक एपिमोर्फिज्म है, रूपवाद <math>\varepsilon</math> स्वचालित रूप से एक समरूपता है। | ||
* [[File:Diagram-orthogonality-2.jpg|thumb]] | * [[File:Diagram-orthogonality-2.jpg|thumb]]मोनोमोर्फिज्म <math>\mu:C\to D</math> बलवान बताया गया है{{sfn|Borceux|1994}}{{sfn|Tsalenko|Shulgeifer|1974}} यदि किसी एपिमोर्फिज्म के लिए <math>\varepsilon:A\to B</math> और कोई मोर्फिज्म <math>\alpha:A\to C</math> और <math>\beta:B\to D</math> ऐसा है कि <math>\beta\circ\varepsilon=\mu\circ\alpha</math>, एक रूपवाद उपस्थित है <math>\delta:B\to C</math> ऐसा है कि <math>\delta\circ\varepsilon=\alpha</math> और <math>\mu\circ\delta=\beta</math>. | ||
* | * मोनोमोर्फिज्म <math>\mu</math> कहा जाता है कि यदि आकारिकी उपस्थित है तो इसे विभाजित किया जाता है <math>\varepsilon</math> ऐसा है कि <math>\varepsilon\circ\mu=1</math> (इस स्थिति में <math>\varepsilon</math> के लिए बायीं ओर का प्रतिलोम कहा जाता है <math>\mu</math>). | ||
== शब्दावली == | == शब्दावली == | ||
सामोनोमोर्फिज्म और एपिमोर्फिज्म जो की सहयोगी शब्द है मूल रूप से [[निकोलस बोरबाकी]] द्वारा पेश किए गए थेl [[निकोलस बोरबाकी|बोरबाकी]] एक इंजेक्शन फलन के लिए आशुलिपि के रूप में एकरूपता का उपयोग करता है। प्रारंभिक श्रेणी के सिद्धांतकारों का मानना था कि श्रेणियों के संदर्भ में इंजेक्शन का सही सामान्यीकरण ऊपर दी गई रद्दीकरण संपत्ति थी। हालांकि यह मोनिक मैप्स के लिए बिल्कुल सही नहीं है, यह बहुत करीब है, इसलिए एपिमॉर्फिज्म के मामले के विपरीत, इससे थोड़ी परेशानी हुई है। [[सॉन्डर्स मैक लेन]] ने मोनोमोर्फिज्म कहे जाने वाले के बीच अंतर करने का प्रयास किया, जो एक ठोस श्रेणी में मैप किये गए थे जिनके सेट के अंतर्निहित मैप इंजेक्शन थे, और मोनिक मैप्स, जो शब्द के स्पष्ट अर्थों में मोनोमोर्फिज्म हैं। यह भेद कभी सामान्य प्रयोग में नहीं आया। | |||
मोनोमोर्फिज्म का दूसरा नाम [[विस्तार (मॉडल सिद्धांत)]] है, हालांकि इसके अन्य उपयोग भी हैं। | मोनोमोर्फिज्म का दूसरा नाम [[विस्तार (मॉडल सिद्धांत)|एक्सटेंशन (मॉडल सिद्धांत)]] है, हालांकि इसके अन्य उपयोग भी हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 53: | Line 53: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{reflist}} | {{reflist}} | ||
==संदर्भ== | ==संदर्भ== | ||
*{{cite book|last=Bergman|first=George|title=An Invitation to General Algebra and Universal Constructions |url=http://math.berkeley.edu/~gbergman/245/index.html |year=2015|publisher=Springer|isbn=978-3-319-11478-1}} | *{{cite book|last=Bergman|first=George|title=An Invitation to General Algebra and Universal Constructions |url=http://math.berkeley.edu/~gbergman/245/index.html |year=2015|publisher=Springer|isbn=978-3-319-11478-1}} | ||
Line 61: | Line 59: | ||
*{{cite journal|last=Van Oosten|first=Jaap|title=Basic Category Theory|journal=Brics Lecture Series|url=http://www.math.uu.nl/people/jvoosten/syllabi/catsmoeder.pdf |year=1995|publisher=BRICS, Computer Science Department, University of Aarhus|issn=1395-2048}} | *{{cite journal|last=Van Oosten|first=Jaap|title=Basic Category Theory|journal=Brics Lecture Series|url=http://www.math.uu.nl/people/jvoosten/syllabi/catsmoeder.pdf |year=1995|publisher=BRICS, Computer Science Department, University of Aarhus|issn=1395-2048}} | ||
*{{cite book|last1=Tsalenko|first1=M.S.| last2=Shulgeifer|first2=E.G.|title=Foundations of category theory|year=1974|publisher=Nauka|isbn=5-02-014427-4}} | *{{cite book|last1=Tsalenko|first1=M.S.| last2=Shulgeifer|first2=E.G.|title=Foundations of category theory|year=1974|publisher=Nauka|isbn=5-02-014427-4}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
Revision as of 20:31, 18 May 2023
सार बीजगणित या सार्वभौमिक बीजगणित के संदर्भ में, मोनोमोर्फिज्म एक अंतःक्षेपक समाकारिता (इंजेक्टिव होमोमोर्फिसम) है। मोनोमोर्फिज्म X को Y को प्रायः अंकन के साथ दर्शाया जाता है .
श्रेणी सिद्धांत की अधिक सामान्य सेटिंग में, मोनोमोर्फिज्म (जिसे मोनिक आकारिता या मोनो भी कहा जाता है) एकवाम रद्द करनेवाला मॉर्फिज्म है। यानी एरो f : X → Y जैसे कि सभी वस्तुओं के लिए Z और सभी मोर्फिज्म g1, g2: Z → X,
- मोनोमोर्फिज्म इंजेक्शन कार्यों का एक सामान्य सामान्यीकरण है (जिसे एक-से-एक कार्य भी कहा जाता है); कुछ श्रेणियों में धारणाएं मेल खाती हैं, लेकिन मोनोमोर्फिज़्म अधिक सामान्य हैं, जैसा कि #उदाहरणों के लिए नीचे दिया गया है।
आंशिक रूप से आदेशित सेट प्रतिच्छेदन ( इन्टरसेक्शन) की सेटिंग में इदम्पोटेन्स हैं: किसी भी चीज़ का प्रतिच्छेदन स्वयं ही है। मोनोमोर्फिज़्म इस संपत्ति को मनमाने ढंग से श्रेणियों में सामान्यीकृत करते हैं। पुलबैक (श्रेणी सिद्धांत) के संबंध में एक रूपवाद एक मोनोमोर्फिज्म है यदि यह उदासीन है।
मोनोमोर्फिज्म का श्रेणीबद्ध द्वैत एक एपीमोर्फिज्म है, अर्थात, श्रेणी सी में एक मोनोमोर्फिज्म द्वैत श्रेणी सी में एक अधिरूपता Cop है। प्रत्येक खंड (श्रेणी सिद्धांत) एक मोनोमोर्फिज्म है, और प्रत्येक रिट्रेक्ट (श्रेणी सिद्धांत) एक एपिमोर्फिज्म है।
उलटापन से संबंध
वाम-अपरिवर्तनीय मोर्फिज्म आवश्यक रूप से मोनिक हैं: यदि l f के लिए एक बायां व्युत्क्रम है (अर्थात् मोर्फिज्म है और ), तो f मोनिक है, जैसा
एक वाम-अपरिवर्तनीय रूपवाद को एक खंड (श्रेणी सिद्धांत) या एक खंड कहा जाता है।
हालांकि, एक मोनोमोर्फिज्म को वाम-उलटा नहीं होना चाहिए। उदाहरण के लिए, सभी समूह (गणित) के श्रेणी समूह में और उनमें से समूह समरूपता, यदि एच जी का एक उपसमूह है तो समावेशन f : H → G हमेशा एक एकरूपता है; लेकिन एफ के पास श्रेणी में एक उलटा उलटा है अगर और केवल अगर एच में जी में एक पूरक (समूह सिद्धांत) है।
एक रूपवाद f : X → Y मोनिक है अगर और केवल अगर प्रेरित मानचित्र f∗ : Hom(Z, X) → Hom(Z, Y), द्वारा परिभाषित f∗(h) = f ∘ h सभी रूपों के लिए h : Z → X, सभी वस्तुओं Z के लिए अंतःक्षेपी है।
उदाहरण
एक ठोस श्रेणी में प्रत्येक आकारिकी जिसका अंतर्निहित कार्य (गणित) इंजेक्शन है एक मोनोमोर्फिज्म है; दूसरे शब्दों में, यदि मोर्फिज्म वास्तव में सेट के बीच कार्य करता है, तो कोई मोर्फिज्म जो एक-से-एक फ़ंक्शन है, निश्चित रूप से श्रेणीबद्ध अर्थ में एक मोनोमोर्फिज्म होगा। सेट की श्रेणी में बातचीत भी रखती है, इसलिए मोनोमोर्फिज़्म बिल्कुल इंजेक्शन वाले रूप हैं। एक जनरेटर पर एक मुक्त वस्तु के अस्तित्व के कारण आक्षेप भी बीजगणित की सबसे स्वाभाविक रूप से होने वाली श्रेणियों में होता है। विशेष रूप से, यह सभी समूहों की श्रेणियों, सभी रिंगों (गणित) और किसी भी एबेलियन श्रेणी में सच है।
हालांकि, यह सामान्य तौर पर सच नहीं है कि अन्य श्रेणियों में सभी मोनोमोर्फिज़्म अंतःक्षेपी होने चाहिए; अर्थात्, ऐसी सेटिंग्स हैं जिनमें आकारिकी सेट के बीच कार्य करती है, लेकिन एक ऐसा कार्य हो सकता है जो इंजेक्शन नहीं है और फिर भी श्रेणीबद्ध अर्थों में एक मोनोमोर्फिज्म है। उदाहरण के लिए, विभाज्य समूह एबेलियन समूह की श्रेणी डिव में | (एबेलियन) समूह और उनके बीच समूह होमोमोर्फिम्स में मोनोमोर्फिज़्म हैं जो इंजेक्शन नहीं हैं: उदाहरण के लिए, भागफल मानचित्र पर विचार करें q : Q → Q/Z, जहाँ Q योग के अंतर्गत परिमेय संख्या है, Z पूर्णांक (जोड़ के अंतर्गत एक समूह भी माना जाता है), और Q/Z संगत भागफल समूह है। यह एक अंतःक्षेपी मैप नहीं है, उदाहरण के लिए प्रत्येक पूर्णांक को 0 पर मैप किया जाता है। फिर भी, यह इस श्रेणी में एक मोनोमोर्फिज्म है। यह निहितार्थ से होता है q ∘ h = 0 ⇒ h = 0, जिसे अब हम सिद्ध करेंगे। अगर h : G → Q, जहाँ G कुछ विभाज्य समूह है, और q ∘ h = 0, तब h(x) ∈ Z, ∀ x ∈ G. अब कुछ ठीक करो x ∈ G. व्यापकता के नुकसान के बिना, हम यह मान सकते हैं h(x) ≥ 0 (अन्यथा, इसके बजाय -x चुनें)। फिर, दे रहा हूँ n = h(x) + 1, चूँकि G एक विभाज्य समूह है, कुछ का अस्तित्व है y ∈ G ऐसा है कि x = ny, इसलिए h(x) = n h(y). इससे और 0 ≤ h(x) < h(x) + 1 = n, यह इस प्रकार है कि
तब से h(y) ∈ Z, यह इस प्रकार है कि h(y) = 0, और इस तरह h(x) = 0 = h(−x), ∀ x ∈ G. यह कहता है h = 0, जैसी इच्छा थी।
उस निहितार्थ से इस तथ्य तक जाने के लिए कि Q एक मोनोमोर्फिज्म है, मान लीजिए q ∘ f = q ∘ g कुछ morphisms के लिए f, g : G → Q, जहाँ G कोई विभाज्य समूह है। तब q ∘ (f − g) = 0, जहाँ (f − g) : x ↦ f(x) − g(x). (तब से (f − g)(0) = 0, और (f − g)(x + y) = (f − g)(x) + (f − g)(y), यह इस प्रकार है कि (f − g) ∈ Hom(G, Q)). निहितार्थ से अभी साबित हुआ, q ∘ (f − g) = 0 ⇒ f − g = 0 ⇔ ∀ x ∈ G, f(x) = g(x) ⇔ f = g. इसलिए Q एक मोनोमोर्फिज्म है, जैसा कि दावा किया गया है।
गुण
- एक topos में, प्रत्येक मोनो एक तुल्यकारक होता है, और कोई भी मैप जो दोनों मोनिक और एपिक मोर्फिज्म है, एक आइसोमोर्फिज्म (श्रेणी सिद्धांत) है।
- प्रत्येक तुल्याकारिता अद्वैत है।
संबंधित अवधारणाएं
नियमित मोनोमोर्फिज्म, एक्सट्रीमल मोनोमोर्फिज्म, तत्काल मोनोमोर्फिज्म, दृढ़ मोनोमोर्फिज्म और स्प्लिट मोनोमोर्फिज्म की उपयोगी अवधारणाएं भी हैं।
- मोनोमोर्फिज्म को 'नियमित' कहा जाता है यदि यह समांतर मोर्फिज्म की कुछ जोड़ी का एक तुल्यकारक (गणित) है।
- मोनोमोर्फिज्म अतिवादी बताया है[1] यदि प्रत्येक प्रतिनिधित्व में , जहाँ एक एपिमोर्फिज्म है, रूपवाद स्वचालित रूप से एक समरूपता है।
- समाकृतिकता प्रत्येक प्रतिनिधित्व में अगर तत्काल कहा जाता है , जहाँ एक एकरूपता है और एक एपिमोर्फिज्म है, रूपवाद स्वचालित रूप से एक समरूपता है।
- मोनोमोर्फिज्म बलवान बताया गया है[1][2] यदि किसी एपिमोर्फिज्म के लिए और कोई मोर्फिज्म और ऐसा है कि , एक रूपवाद उपस्थित है ऐसा है कि और .
- मोनोमोर्फिज्म कहा जाता है कि यदि आकारिकी उपस्थित है तो इसे विभाजित किया जाता है ऐसा है कि (इस स्थिति में के लिए बायीं ओर का प्रतिलोम कहा जाता है ).
शब्दावली
सामोनोमोर्फिज्म और एपिमोर्फिज्म जो की सहयोगी शब्द है मूल रूप से निकोलस बोरबाकी द्वारा पेश किए गए थेl बोरबाकी एक इंजेक्शन फलन के लिए आशुलिपि के रूप में एकरूपता का उपयोग करता है। प्रारंभिक श्रेणी के सिद्धांतकारों का मानना था कि श्रेणियों के संदर्भ में इंजेक्शन का सही सामान्यीकरण ऊपर दी गई रद्दीकरण संपत्ति थी। हालांकि यह मोनिक मैप्स के लिए बिल्कुल सही नहीं है, यह बहुत करीब है, इसलिए एपिमॉर्फिज्म के मामले के विपरीत, इससे थोड़ी परेशानी हुई है। सॉन्डर्स मैक लेन ने मोनोमोर्फिज्म कहे जाने वाले के बीच अंतर करने का प्रयास किया, जो एक ठोस श्रेणी में मैप किये गए थे जिनके सेट के अंतर्निहित मैप इंजेक्शन थे, और मोनिक मैप्स, जो शब्द के स्पष्ट अर्थों में मोनोमोर्फिज्म हैं। यह भेद कभी सामान्य प्रयोग में नहीं आया।
मोनोमोर्फिज्म का दूसरा नाम एक्सटेंशन (मॉडल सिद्धांत) है, हालांकि इसके अन्य उपयोग भी हैं।
यह भी देखें
टिप्पणियाँ
संदर्भ
- Bergman, George (2015). An Invitation to General Algebra and Universal Constructions. Springer. ISBN 978-3-319-11478-1.
- Borceux, Francis (1994). Handbook of Categorical Algebra. Volume 1: Basic Category Theory. Cambridge University Press. ISBN 978-0521061193.
- "Monomorphism", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Van Oosten, Jaap (1995). "Basic Category Theory" (PDF). Brics Lecture Series. BRICS, Computer Science Department, University of Aarhus. ISSN 1395-2048.
- Tsalenko, M.S.; Shulgeifer, E.G. (1974). Foundations of category theory. Nauka. ISBN 5-02-014427-4.
बाहरी संबंध
- monomorphism at the nLab
- Strong monomorphism at the nLab