गोले का वृत्त: Difference between revisions

From Vigyanwiki
No edit summary
m (Abhishek moved page एक गोले का घेरा to गोले का वृत्त without leaving a redirect)
(No difference)

Revision as of 15:53, 23 May 2023

File:Small circle.svg
एक गोले का छोटा घेरा।
, जहाँ C गोले का केंद्र है, A छोटे वृत्त का केंद्र है, और B छोटे वृत्त की सीमा में एक बिंदु है। इसलिए, गोले की त्रिज्या और छोटे वृत्त के तल से C तक की दूरी को जानते हुए, पाइथागोरस प्रमेय का उपयोग करके छोटे वृत्त की त्रिज्या निर्धारित की जा सकती है।

एक गोले का एक वृत्त एक वृत्त है जो एक गोले पर स्थित होता है। ऐसा वृत्त एक गोले और एक तल (ज्यामिति) या दो गोलों के प्रतिच्छेदन के रूप में बनाया जा सकता है। एक गोले के वृत्त यूक्लिडियन स्थान में सामान्यीकृत वृत्तों के गोलाकार ज्यामिति के अनुरूप हैं। एक गोले पर एक वृत्त जिसका तल गोले के केंद्र से होकर गुजरता है उसे एक यूक्लिडियन रेखा (ज्यामिति) के अनुरूप "ग्रेट घेरा" कहा जाता है अन्यथा यह एक छोटा वृत्त है जो यूक्लिडियन वृत्त के अनुरूप है। गोले के वृत्तों की त्रिज्या गोले की त्रिज्या से कम या उसके समान होती है समानता के साथ जब वृत्त एक बड़ा वृत्त होता है।

एक गोले के एक वृत्त को किसी दिए गए केंद्र बिंदु से समान दूरी पर या निरंतर वक्रता के गोलाकार वक्र के रूप में गोले पर बिंदुओं के स्थान के रूप में भी चित्रित किया जा सकता है।

पृथ्वी पर

ग्लोब पर भौगोलिक समन्वय प्रणाली में, अक्षांश के समानांतर छोटे वृत्त होते हैं भूमध्य रेखा एकमात्र महान वृत्त होती है। इसके विपरीत देशांतर के सभी याम्योत्तर दूसरे गोलार्द्ध में उनके विपरीत याम्योत्तर के साथ मिलकर बड़े वृत्त बनाते हैं।

संबंधित शब्दावली

गोले का व्यास जो वृत्त के केंद्र से होकर गुजरता है, उसका अक्ष कहलाता है और इस व्यास के अंत बिंदु इसके ध्रुव कहलाते हैं। गोले के एक वृत्त को दिए गए ध्रुव से दी गई कोणीय दूरी पर बिंदुओं के समुच्चय के रूप में भी परिभाषित किया जा सकता है।

समतल -क्षेत्र प्रतिच्छेदन

जब एक गोले और एक समतल का प्रतिच्छेदन खाली या एक बिंदु नहीं होता है तो यह एक वृत्त होता है। इस प्रकार इसे देखा जा सकता है:

मान लीजिए कि S केंद्र O के साथ एक गोला है, P एक समतल है जो S को प्रतिच्छेद है। OE को P पर लंब बनाएं और P को E पर मिलें मान लें कि A और B प्रतिच्छेदन पर दो अलग-अलग बिंदु हैं। फिर AOE और BOE एक उभयनिष्ठ भुजा OE वाले समकोण त्रिभुज हैं, और कर्ण AO और BO समान हैं। इसलिए, शेष भुजाएँ AE और BE समान हैं। यह सिद्ध करता है कि प्रतिच्छेदन के सभी बिंदु समतल P में बिंदु E से समान दूरी पर हैं, दूसरे शब्दों में प्रतिच्छेदन के सभी बिंदु केंद्र E के साथ एक वृत्त C पर स्थित हैं।[1] यह सिद्ध करता है कि P और S का प्रतिच्छेदन C में निहित है। ध्यान दें कि OE वृत्त की धुरी है।

अब वृत्त C के एक बिंदु D पर विचार करें। चूँकि C, P में स्थित है, इसलिए D भी है। दूसरी ओर त्रिभुज AOE और DOE समकोण त्रिभुज हैं, जिनकी एक उभयनिष्ठ भुजा OE है, और पैर EA और ED समान हैं। इसलिए, कर्ण AO और DO समान हैं, और S की त्रिज्या के समान हैं, जिससे D, S में स्थित हो। यह सिद्ध करता है कि C, P और S के प्रतिच्छेदन में निहित है।

एक उपप्रमेय के रूप में एक गोले पर ठीक एक वृत्त होता है जिसे तीन दिए गए बिंदुओं के माध्यम से खींचा जा सकता है।[2]

प्रमाण को यह दिखाने के लिए बढ़ाया जा सकता है कि एक वृत्त पर सभी बिंदु उसके एक ध्रुव से एक सामान्य कोणीय दूरी हैं।[3]

शंक्वाकार वर्गों की भी तुलना करें जो ओवल बना सकते हैं।

गोला-गोला प्रतिच्छेदन

यह दिखाने के लिए कि दो क्षेत्रों का एक गैर-तुच्छ प्रतिच्छेदन एक चक्र है, मान लें (बिना व्यापकता के हानि के) कि एक क्षेत्र (त्रिज्या के साथ) ) मूल पर केंद्रित है। इस गोले पर अंक संतुष्ट करते हैं

व्यापकता में कमी के बिना मान लें कि दूसरा गोला त्रिज्या के साथ, सकारात्मक x-अक्ष पर एक बिंदु पर केंद्रित है, जो मूल से दूरी पर है। इसके अंक संतुष्ट करते हैं

गोलों का प्रतिच्छेदन बिंदुओं का समुच्चय है जो दोनों समीकरणों को संतुष्ट करता है। समीकरणों को घटाना देता है

इकलौते स्थिति में , गोले संकेंद्रित हैं। दो संभावनाएँ हैं: यदि , गोले संपाती हैं, और प्रतिच्छेदन संपूर्ण गोला है; यदि गोले असम्बद्ध हैं और प्रतिच्छेदन खाली है। जब a अशून्य होता है तो प्रतिच्छेदन इस x-निर्देशांक के साथ एक ऊर्ध्वाधर तल में स्थित होता है जो दोनों क्षेत्रों को काट सकता है दोनों क्षेत्रों के लिए स्पर्शरेखा हो सकता है या दोनों क्षेत्रों के लिए बाहरी हो सकता है। परिणाम गोलाकार-समतल प्रतिच्छेदन के लिए पिछले प्रमाण से आता है।

यह भी देखें

संदर्भ

  1. Proof follows Hobbs, Prop. 304
  2. Hobbs, Prop. 308
  3. Hobbs, Prop. 310
  • Hobbs, C.A. (1921). Solid Geometry. G.H. Kent. pp. 397 ff.


अग्रिम पठन