कोणीय दूरी (कोणीय अलगाव, स्पष्ट दूरी या स्पष्ट अलगाव के रूप में भी संदर्भित किया जाता है) दो दृष्टि रेखाओं के मध्य का कोण है, या पर्यवेक्षक से देखे गए दो बिंदुओं के मध्य का कोण है।
कोणीय दूरी गणित (विशेष रूप से ज्यामिति और त्रिकोणमिति) और सभी प्राकृतिक विज्ञानों (जैसे खगोल विज्ञान और भूभौतिकी) में दिखाई देती है। यांत्रिकी में, घूर्णन वस्तुओं के साथ कोणीय वेग, कोणीय त्वरण, कोणीय गति, जड़ता और टॉर्क के क्षण भी उपस्थित रहते है।
प्रयोग
कोणीय दूरी (या पृथक्करण) शब्द तकनीकी रूप से स्वयं कोण का पर्यायवाची है, किन्तु इसका अर्थ वस्तुओं के मध्य रैखिक दूरी (उदाहरण के लिए, पृथ्वी से देखे गए कुछ तारे) का विचार देना है।
नाप
चूँकि कोणीय दूरी (या पृथक्करण) वैचारिक रूप से कोण के समान है, इसे समान इकाइयों में मापा जाता है, जैसे कि डिग्री (कोण) या रेडियन , गोनियोमीटर या ऑप्टिकल उपकरणों को विशेष रूप से उचित प्रकार से परिभाषित दिशाओं में संकेत करने और संबंधित कोणों (जैसे दूरबीन) को रिकॉर्ड करने के लिए डिज़ाइन किया गया है।
समीकरण
सामान्य मामला
कोणीय पृथक्करण
बिंदु A और B के मध्य जैसा कि O से देखा गया है|
वृत की सतह पर स्थित दो बिंदुओं के कोणीय पृथक्करण का वर्णन करने वाले समीकरण को प्राप्त करने के लिए, जैसा कि वृत के केंद्र से देखा जाता है, हम पृथ्वी से देखे गए दो खगोलीय पिंडों और के उदाहरण का उपयोग करते हैं। वस्तुएं और उनके आकाशीय समन्वय प्रणाली द्वारा परिभाषित किया गया है, अर्थात् उनका राइट असेंशन (आरए), और डेक्लिनेशन है| माना, पृथ्वी पर प्रेक्षक को प्रदर्शित करता है, जिसे आकाशीय वृत के केंद्र में स्थित माना जाता है। वैक्टर और का डॉट उत्पाद के समान है,
जो के समानुपाती है|
फ्रेम में, दो एकात्मक वैक्टर में विघटित होते हैं-
इसलिए,
तब,
छोटी कोणीय दूरी सन्निकटन
उपरोक्त व्यंजक वृत पर A और B की किसी भी स्थिति के लिए मान्य है। खगोल विज्ञान में, अधिकांशतः ऐसा होता है कि मानी जाने वाली वस्तुएँ वास्तव में आकाश के निकट होती हैं| दूरबीन के क्षेत्र में तारे, बाइनरी तारे, सौर मंडल के विशाल ग्रहों के उपग्रह, आदि। रेडियन, जिसका अर्थ और है, हम उपरोक्त अभिव्यक्ति को विकसित कर सकते हैं और इसे सरल बना सकते हैं। लघु-कोण सन्निकटन में, दूसरे क्रम में, उपरोक्त व्यंजक
- बन जाता है|
अर्थात
इस प्रकार
- .
मान लें कि और , दूसरे क्रम के विकास पर यह में बदल जाता है जिससे
- प्राप्त होता है|
छोटी कोणीय दूरी: प्लानर सन्निकटन
आकाश पर कोणीय दूरी का तलीय सन्निकटन
यदि हम डिटेक्टर इमेजिंग को छोटे आकाश क्षेत्र (रेडियन से कम आयाम) पर विचार करते हैं -अक्ष ऊपर की ओर संकेत करते हुए, दाहिने उदगम के मध्याह्न रेखा के समानांतर , और यह -अक्ष गिरावट के समानांतर के साथ , कोणीय पृथक्करण को इस प्रकार लिखा जा सकता है|
जहाँ, और है|
ध्यान दें कि -अक्ष गिरावट के समान है, जबकि -अक्ष द्वारा संशोधित सही उदगम है, क्योंकि त्रिज्या के वृत का खंड गिरावट पर (अक्षांश) है|
यह भी देखें
संदर्भ