स्थैतिककल्प प्रक्रम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Thermodynamics|cTopic=[[ऊष्मागतिकी प्रणाली|प्रणाली]]}}
{{Thermodynamics|cTopic=[[ऊष्मागतिकी प्रणाली|प्रणाली]]}}


[[ऊष्मप्रवैगिकी|ऊष्मागतिकी]] में,अर्ध-स्थैतिक प्रक्रिया (जिसे अर्ध-संतुलन प्रक्रिया के रूप में भी जाना जाता है, लैटिन से 'अर्ध', जिसका अर्थ है 'जैसे'<ref>Lewis, C.T., Short, C. (1879). ''A Latin Dictionary'', Clarendon Press, Oxford, page 1507.</ref>), [[थर्मोडायनामिक प्रक्रिया|ऊष्मागतिकी प्रक्रिया]] है जो सिस्टम के आंतरिक भौतिक (लेकिन आवश्यक रूप से रासायनिक नहीं) [[थर्मोडायनामिक संतुलन|ऊष्मागतिकी संतुलन]] में बने रहने के लिए धीरे-धीरे पर्याप्त होती है। इसका एक उदाहरण हाइड्रोजन और ऑक्सीजन गैस के मिश्रण का अर्ध-स्थैतिक विस्तार है, जहां प्रणाली का [[आयतन]] इतनी धीमी गति से बदलता है कि प्रक्रिया के दौरान के प्रत्येक क्षण पर पूरे तंत्र में [[दबाव]] एक समान रहता है।<ref>{{Cite book|title = थर्मल भौतिकी का एक परिचय|last = Schroeder|first = Daniel|publisher = Addison Wesley Longman|year = 2000|isbn = 0-201-38027-7|location = United States|pages = 20–21}}</ref> इस तरह की आदर्श प्रक्रिया भौतिक संतुलन राज्यों का उत्तराधिकार है, जो अनंत मंद गति की विशेषता है।<ref>Rajput, R.K. (2010). ''A Textbook of Engineering Thermodynamics'', 4th edition, Laxmi Publications (P) Ltd, New Delhi, pages 21, 45, 58.</ref>
[[ऊष्मप्रवैगिकी|ऊष्मागतिकी]] में,अर्ध-स्थैतिक प्रक्रिया (जिसे अर्ध-संतुलन प्रक्रिया के रूप में भी जाना जाता है, लैटिन 'अर्ध' से, जिसका अर्थ है 'जैसे'<ref>Lewis, C.T., Short, C. (1879). ''A Latin Dictionary'', Clarendon Press, Oxford, page 1507.</ref>), [[थर्मोडायनामिक प्रक्रिया|ऊष्मागतिकी प्रक्रिया]] है जो प्रणाली के आंतरिक भौतिक (लेकिन आवश्यक रूप से रासायनिक नहीं) [[थर्मोडायनामिक संतुलन|ऊष्मागतिकी संतुलन]] में बने रहने के लिए धीरे-धीरे पर्याप्त होती है। इसका एक उदाहरण हाइड्रोजन और ऑक्सीजन गैस के मिश्रण का अर्ध-स्थैतिक विस्तार है, जहां प्रणाली का [[आयतन]] इतनी धीमी गति से बदलता है कि प्रक्रिया के दौरान के प्रत्येक क्षण पर पूरे तंत्र में [[दबाव]] एक समान रहता है।<ref>{{Cite book|title = थर्मल भौतिकी का एक परिचय|last = Schroeder|first = Daniel|publisher = Addison Wesley Longman|year = 2000|isbn = 0-201-38027-7|location = United States|pages = 20–21}}</ref> इस तरह की आदर्श प्रक्रिया भौतिक संतुलन राज्यों का उत्तराधिकार है, जो अनंत धीमी गति की विशेषता है।<ref>Rajput, R.K. (2010). ''A Textbook of Engineering Thermodynamics'', 4th edition, Laxmi Publications (P) Ltd, New Delhi, pages 21, 45, 58.</ref>


केवल एक अर्ध-स्थैतिक ऊष्मागतिकी प्रक्रिया में हम पूरी प्रक्रिया के दौरान हर पल सिस्टम की [[गहन मात्रा]] (जैसे दबाव, [[तापमान]], [[विशिष्ट आयतन]], [[विशिष्ट एन्ट्रापी]]) को सटीक रूप से परिभाषित कर सकते हैं; अन्यथा, चूंकि कोई आंतरिक संतुलन स्थापित नहीं होता है, सिस्टम के विभिन्न भागों में इन मात्राओं के अलग-अलग मूल्य होंगे, इसलिए प्रति मात्रा का एक मान पूरे सिस्टम का प्रतिनिधित्व करने के लिए पर्याप्त नहीं हो सकता है। दूसरे शब्दों में, जब [[मौलिक थर्मोडायनामिक संबंध|मौलिक ऊष्मागतिकी संबंध]] में पी या टी होता है, तो इसका मतलब अर्ध-स्थैतिक प्रक्रिया है।
केवल एक अर्ध-स्थैतिक ऊष्मागतिकी प्रक्रिया में हम पूरी प्रक्रिया के दौरान हर पल प्रणाली की [[गहन मात्रा]] (जैसे दबाव, [[तापमान]], [[विशिष्ट आयतन]], [[विशिष्ट एन्ट्रापी]]) को सटीक रूप से परिभाषित कर सकते हैं, अन्यथा, चूंकि कोई आंतरिक संतुलन स्थापित नहीं होता है, प्रणाली के विभिन्न भागों में इन मात्राओं के अलग-अलग मूल्य होंगे, इसलिए प्रति मात्रा का मान पूरे प्रणाली का प्रतिनिधित्व करने के लिए पर्याप्त नहीं हो सकता है। दूसरे शब्दों में, जब किसी[[मौलिक थर्मोडायनामिक संबंध|अवस्था फलन में परिवर्तन]] के समीकरण में पी या टी होता है, तो इसका तात्पर्य अर्ध-स्थैतिक प्रक्रिया से है।


== प्रतिवर्ती प्रक्रिया से संबंध ==
== प्रतिवर्ती प्रक्रिया से संबंध ==


जबकि सभी [[प्रतिवर्ती प्रक्रिया (थर्मोडायनामिक्स)|प्रतिवर्ती प्रक्रिया (ऊष्मागतिकी्स)]] अर्ध-स्थैतिक हैं, अधिकांश लेखकों को प्रणाली और परिवेश के बीच संतुलन बनाए रखने और अपव्यय से बचने के लिए सामान्य अर्ध-स्थैतिक प्रक्रिया की आवश्यकता नहीं होती है,<ref name="deVoe 2020"> H. DeVoe (2020).https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/03%3A_The_First_Law/3.02%3A_Spontaneous_Reversible_and_Irreversible_Processes</ref> जो एक प्रतिवर्ती प्रक्रिया की परिभाषित विशेषताएं हैं। उदाहरण के लिए, घर्षण के अधीन एक पिस्टन द्वारा एक प्रणाली का अर्ध-स्थैतिक संपीड़न अपरिवर्तनीय है; हालांकि प्रणाली हमेशा आंतरिक तापीय संतुलन में होती है, घर्षण विघटनकारी एन्ट्रॉपी की पीढ़ी को सुनिश्चित करता है, जो प्रतिवर्तीता की परिभाषा के खिलाफ जाता है। कोई भी इंजीनियर अपव्यय एंट्रॉपी पीढ़ी की गणना करते समय घर्षण को शामिल करना याद रखेगा।
जबकि सभी [[प्रतिवर्ती प्रक्रिया (थर्मोडायनामिक्स)|प्रतिवर्ती प्रक्रियाएं (ऊष्मागतिकी्स)]] अर्ध-स्थैतिक हैं, अधिकांश लेखकों को प्रणाली और परिवेश के बीच संतुलन बनाए रखने और अपव्यय से बचने के लिए सामान्य अर्ध-स्थैतिक प्रक्रिया की आवश्यकता नहीं होती है,<ref name="deVoe 2020"> H. DeVoe (2020).https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/03%3A_The_First_Law/3.02%3A_Spontaneous_Reversible_and_Irreversible_Processes</ref> जो प्रतिवर्ती प्रक्रिया की विशेषताओं को परिभाषित कर रहे हैं। उदाहरण के लिए, घर्षण के अधीन पिस्टन द्वारा प्रणाली का अर्ध-स्थैतिक संपीड़न अपरिवर्तनीय है, हालांकि प्रणाली हमेशा आंतरिक तापीय संतुलन में होती है, घर्षण विघटनकारी एन्ट्रॉपी की पीढ़ी को सुनिश्चित करता है, जो प्रतिवर्तीता की परिभाषा के खिलाफ जाता है। कोई भी इंजीनियर अपव्यय एंट्रॉपी पीढ़ी की गणना करते समय घर्षण को शामिल करना याद रखेगा।


एक अर्ध-स्थैतिक प्रक्रिया का एक उदाहरण जो प्रतिवर्ती के रूप में आदर्श नहीं है, दो पिंडों के बीच दो अलग-अलग तापमानों पर धीमी गर्मी हस्तांतरण है, जहां दो पिंडों के बीच खराब प्रवाहकीय विभाजन द्वारा ताप अंतरण दर को नियंत्रित किया जाता है। इस मामले में, कोई फर्क नहीं पड़ता कि प्रक्रिया कितनी धीरे-धीरे होती है, दो पिंडों से मिलकर बनने वाली समग्र प्रणाली की स्थिति संतुलन से बहुत दूर है, क्योंकि इस समग्र प्रणाली के लिए थर्मल संतुलन के लिए आवश्यक है कि दोनों पिंड एक ही तापमान पर हों। फिर भी, प्रत्येक पिंड के लिए एन्ट्रापी परिवर्तन की गणना उत्क्रमणीय ताप अंतरण के लिए क्लॉसियस समानता का उपयोग करके की जा सकती है।
'''अर्ध'''-स्थैतिक प्रक्रिया का एक उदाहरण जो प्रतिवर्ती के रूप में आदर्श नहीं है, दो पिंडों के बीच दो अलग-अलग तापमानों पर धीमी गर्मी हस्तांतरण है, जहां दो पिंडों के बीच खराब प्रवाहकीय विभाजन द्वारा ताप अंतरण दर को नियंत्रित किया जाता है। इस मामले में, कोई फर्क नहीं पड़ता कि प्रक्रिया कितनी धीरे-धीरे होती है, दो पिंडों से मिलकर बनने वाली समग्र प्रणाली की स्थिति संतुलन से बहुत दूर है, क्योंकि इस समग्र प्रणाली के लिए थर्मल संतुलन के लिए आवश्यक है कि दोनों पिंड एक ही तापमान पर हों। फिर भी, प्रत्येक पिंड के लिए एन्ट्रापी परिवर्तन की गणना उत्क्रमणीय ताप अंतरण के लिए क्लॉसियस समानता का उपयोग करके की जा सकती है।


== पीवी-विभिन्न अर्ध-स्थैतिक प्रक्रियाओं में कार्य ==
== पीवी-विभिन्न अर्ध-स्थैतिक प्रक्रियाओं में कार्य ==

Revision as of 13:59, 24 May 2023

ऊष्मागतिकी में,अर्ध-स्थैतिक प्रक्रिया (जिसे अर्ध-संतुलन प्रक्रिया के रूप में भी जाना जाता है, लैटिन 'अर्ध' से, जिसका अर्थ है 'जैसे'[1]), ऊष्मागतिकी प्रक्रिया है जो प्रणाली के आंतरिक भौतिक (लेकिन आवश्यक रूप से रासायनिक नहीं) ऊष्मागतिकी संतुलन में बने रहने के लिए धीरे-धीरे पर्याप्त होती है। इसका एक उदाहरण हाइड्रोजन और ऑक्सीजन गैस के मिश्रण का अर्ध-स्थैतिक विस्तार है, जहां प्रणाली का आयतन इतनी धीमी गति से बदलता है कि प्रक्रिया के दौरान के प्रत्येक क्षण पर पूरे तंत्र में दबाव एक समान रहता है।[2] इस तरह की आदर्श प्रक्रिया भौतिक संतुलन राज्यों का उत्तराधिकार है, जो अनंत धीमी गति की विशेषता है।[3]

केवल एक अर्ध-स्थैतिक ऊष्मागतिकी प्रक्रिया में हम पूरी प्रक्रिया के दौरान हर पल प्रणाली की गहन मात्रा (जैसे दबाव, तापमान, विशिष्ट आयतन, विशिष्ट एन्ट्रापी) को सटीक रूप से परिभाषित कर सकते हैं, अन्यथा, चूंकि कोई आंतरिक संतुलन स्थापित नहीं होता है, प्रणाली के विभिन्न भागों में इन मात्राओं के अलग-अलग मूल्य होंगे, इसलिए प्रति मात्रा का मान पूरे प्रणाली का प्रतिनिधित्व करने के लिए पर्याप्त नहीं हो सकता है। दूसरे शब्दों में, जब किसीअवस्था फलन में परिवर्तन के समीकरण में पी या टी होता है, तो इसका तात्पर्य अर्ध-स्थैतिक प्रक्रिया से है।

प्रतिवर्ती प्रक्रिया से संबंध

जबकि सभी प्रतिवर्ती प्रक्रियाएं (ऊष्मागतिकी्स) अर्ध-स्थैतिक हैं, अधिकांश लेखकों को प्रणाली और परिवेश के बीच संतुलन बनाए रखने और अपव्यय से बचने के लिए सामान्य अर्ध-स्थैतिक प्रक्रिया की आवश्यकता नहीं होती है,[4] जो प्रतिवर्ती प्रक्रिया की विशेषताओं को परिभाषित कर रहे हैं। उदाहरण के लिए, घर्षण के अधीन पिस्टन द्वारा प्रणाली का अर्ध-स्थैतिक संपीड़न अपरिवर्तनीय है, हालांकि प्रणाली हमेशा आंतरिक तापीय संतुलन में होती है, घर्षण विघटनकारी एन्ट्रॉपी की पीढ़ी को सुनिश्चित करता है, जो प्रतिवर्तीता की परिभाषा के खिलाफ जाता है। कोई भी इंजीनियर अपव्यय एंट्रॉपी पीढ़ी की गणना करते समय घर्षण को शामिल करना याद रखेगा।

अर्ध-स्थैतिक प्रक्रिया का एक उदाहरण जो प्रतिवर्ती के रूप में आदर्श नहीं है, दो पिंडों के बीच दो अलग-अलग तापमानों पर धीमी गर्मी हस्तांतरण है, जहां दो पिंडों के बीच खराब प्रवाहकीय विभाजन द्वारा ताप अंतरण दर को नियंत्रित किया जाता है। इस मामले में, कोई फर्क नहीं पड़ता कि प्रक्रिया कितनी धीरे-धीरे होती है, दो पिंडों से मिलकर बनने वाली समग्र प्रणाली की स्थिति संतुलन से बहुत दूर है, क्योंकि इस समग्र प्रणाली के लिए थर्मल संतुलन के लिए आवश्यक है कि दोनों पिंड एक ही तापमान पर हों। फिर भी, प्रत्येक पिंड के लिए एन्ट्रापी परिवर्तन की गणना उत्क्रमणीय ताप अंतरण के लिए क्लॉसियस समानता का उपयोग करके की जा सकती है।

पीवी-विभिन्न अर्ध-स्थैतिक प्रक्रियाओं में कार्य

  1. लगातार दबाव: आइसोबैरिक प्रक्रियाएं,
  2. लगातार आयतन: आइसोकोरिक प्रक्रियाएँ,
  3. लगातार तापमान: इज़ोटेर्मल प्रक्रियाएं,
    जहाँ P (दबाव) V (आयतन) के साथ बदलता रहता है , इसलिए
  4. पॉलीट्रोपिक प्रक्रियाएं,


यह भी देखें

संदर्भ

  1. Lewis, C.T., Short, C. (1879). A Latin Dictionary, Clarendon Press, Oxford, page 1507.
  2. Schroeder, Daniel (2000). थर्मल भौतिकी का एक परिचय. United States: Addison Wesley Longman. pp. 20–21. ISBN 0-201-38027-7.
  3. Rajput, R.K. (2010). A Textbook of Engineering Thermodynamics, 4th edition, Laxmi Publications (P) Ltd, New Delhi, pages 21, 45, 58.
  4. H. DeVoe (2020).https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoes_Thermodynamics_and_Chemistry/03%3A_The_First_Law/3.02%3A_Spontaneous_Reversible_and_Irreversible_Processes