क्लिफर्ड टोरस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Geometrical object in four-dimensional space}}
{{short description|Geometrical object in four-dimensional space}}[[File:Clifford-torus.gif|thumb|right|256px|एक क्लिफर्ड टोरस का [[ त्रिविम प्रक्षेपण |त्रिविम प्रक्षेपण]] SO(4) #4D रोटेशन की ज्यामिति का प्रदर्शन कर रहा है]]
{{Multiple issues|
[[File:TorusAsSquare.svg|thumb|टोपोलॉजिकल रूप से एक [[आयत]] एक टोरस का [[मौलिक बहुभुज]] है, जिसमें विपरीत किनारों को एक साथ सिल दिया जाता है।]][[ज्यामितीय टोपोलॉजी]] में, क्लिफर्ड टोरस सबसे सरल और सबसे सममित टोरस है # दो [[यूनिट सर्कल]] ''एस'' के कार्टेशियन उत्पाद का फ्लैट टोरस एम्बेडिंग{{supsub|1|''a''}} और एस{{supsub|1|''b''}} (इसी अर्थ में कि एक सिलेंडर की सतह सपाट है)। इसका नाम [[विलियम किंग्डन क्लिफोर्ड]] के नाम पर रखा गया है। R में रहता है, आर के विपरीत। यह देखने के लिए कि क्यों आर आवश्यक है, ध्यान दें कि यदि S{{supsub|1|''a''}} और एस{{supsub|1|''b''}} प्रत्येक अपने स्वयं के स्वतंत्र एम्बेडिंग स्थान R में मौजूद है{{supsub|2|''a''}} और आर{{supsub|2|''b''}}, परिणामी उत्पाद स्थान R होगा R के बजाय ऐतिहासिक रूप से लोकप्रिय दृष्टिकोण है कि दो सर्किलों का कार्टेशियन उत्पाद एक आर है इसके विपरीत टॉरस को दूसरे सर्कल के लिए एक रोटेशन ऑपरेटर के अत्यधिक असममित अनुप्रयोग की आवश्यकता होती है, क्योंकि पहले सर्कल के x और y का उपभोग करने के बाद उस सर्कल के पास केवल एक स्वतंत्र अक्ष z उपलब्ध होगा।
{{More citations needed|date=November 2019}}
{{more footnotes|date=November 2019}}
}}


[[File:Clifford-torus.gif|thumb|right|256px|एक क्लिफर्ड टोरस का [[ त्रिविम प्रक्षेपण ]] SO(4) #4D रोटेशन की ज्यामिति का प्रदर्शन कर रहा है]]
दूसरे तरीके से कहा, 'आर' में एम्बेडेड एक [[ टोरस्र्स |टोरस्र्स]] आर में एम्बेडेड अधिकतम सममित क्लिफोर्ड टोरस का एक असममित कम-आयाम प्रक्षेपण है। संबंध एक घन के किनारों को कागज की शीट पर प्रक्षेपित करने के समान है। ऐसा प्रक्षेपण एक निम्न-आयामी छवि बनाता है जो घन किनारों की कनेक्टिविटी को सटीक रूप से कैप्चर करता है, लेकिन घन के तीन पूर्ण सममित और विनिमेय अक्षों में से एक के मनमाने ढंग से चयन और हटाने की भी आवश्यकता होती है।
[[File:TorusAsSquare.svg|thumb|टोपोलॉजिकल रूप से एक [[आयत]] एक टोरस का [[मौलिक बहुभुज]] है, जिसमें विपरीत किनारों को एक साथ सिल दिया जाता है।]][[ज्यामितीय टोपोलॉजी]] में, क्लिफर्ड टोरस सबसे सरल और सबसे सममित टोरस है # दो [[यूनिट सर्कल]] ''एस'' के कार्टेशियन उत्पाद का फ्लैट टोरस एम्बेडिंग{{supsub|1|''a''}} और एस{{supsub|1|''b''}} (इसी अर्थ में कि एक सिलेंडर की सतह सपाट है)। इसका नाम [[विलियम किंग्डन क्लिफोर्ड]] के नाम पर रखा गया है। R में रहता है, आर के विपरीत। यह देखने के लिए कि क्यों आर आवश्यक है, ध्यान दें कि यदि S{{supsub|1|''a''}} और एस{{supsub|1|''b''}} प्रत्येक अपने स्वयं के स्वतंत्र एम्बेडिंग स्थान R में मौजूद है{{supsub|2|''a''}} और आर{{supsub|2|''b''}}, परिणामी उत्पाद स्थान R होगा R के बजाय ऐतिहासिक रूप से लोकप्रिय दृष्टिकोण है कि दो सर्किलों का कार्टेशियन उत्पाद एक आर है इसके विपरीत  टॉरस को दूसरे सर्कल के लिए एक रोटेशन ऑपरेटर के अत्यधिक असममित अनुप्रयोग की आवश्यकता होती है, क्योंकि पहले सर्कल के x और y का उपभोग करने के बाद उस सर्कल के पास केवल एक स्वतंत्र अक्ष z उपलब्ध होगा।
 
दूसरे तरीके से कहा, 'आर' में एम्बेडेड एक [[ टोरस्र्स ]] आर में एम्बेडेड अधिकतम सममित क्लिफोर्ड टोरस का एक असममित कम-आयाम प्रक्षेपण है। संबंध एक घन के किनारों को कागज की शीट पर प्रक्षेपित करने के समान है। ऐसा प्रक्षेपण एक निम्न-आयामी छवि बनाता है जो घन किनारों की कनेक्टिविटी को सटीक रूप से कैप्चर करता है, लेकिन घन के तीन पूर्ण सममित और विनिमेय अक्षों में से एक के मनमाने ढंग से चयन और हटाने की भी आवश्यकता होती है।


अगर एस{{supsub|1|''a''}} और एस{{supsub|1|''b''}} प्रत्येक की त्रिज्या है <math>\textstyle\sqrt{1/2}</math>, उनका क्लिफर्ड टोरस उत्पाद यूनिट [[3-क्षेत्र]] एस के भीतर पूरी तरह से फिट होगा, जो कि R का 3-आयामी सबमेनिफोल्ड है गणितीय रूप से सुविधाजनक होने पर, क्लिफोर्ड टोरस को [[जटिल समन्वय स्थान]] सी के अंदर रहने के रूप में देखा जा सकता है क्योंकि सी स्थैतिक रूप से R के समतुल्य है।
अगर एस{{supsub|1|''a''}} और एस{{supsub|1|''b''}} प्रत्येक की त्रिज्या है <math>\textstyle\sqrt{1/2}</math>, उनका क्लिफर्ड टोरस उत्पाद यूनिट [[3-क्षेत्र]] एस के भीतर पूरी तरह से फिट होगा, जो कि R का 3-आयामी सबमेनिफोल्ड है गणितीय रूप से सुविधाजनक होने पर, क्लिफोर्ड टोरस को [[जटिल समन्वय स्थान]] सी के अंदर रहने के रूप में देखा जा सकता है क्योंकि सी स्थैतिक रूप से R के समतुल्य है।


क्लिफर्ड टोरस एक वर्ग टोरस का एक उदाहरण है, क्योंकि यह [[आइसोमेट्री]] टू ए स्क्वायर (ज्यामिति) है जिसमें विपरीत पक्षों की पहचान की गई है। इसे आगे यूक्लिडियन 2-टोरस के रूप में जाना जाता है (2 इसका सामयिक आयाम है); इस पर खींची गई आकृतियाँ [[यूक्लिडियन ज्यामिति]] का पालन करती हैं{{clarify|date=November 2019|reason=see [[Torus#Flat torus]]}} जैसे कि यह सपाट थे, जबकि एक सामान्य [[डोनट]] के आकार के टोरस की सतह बाहरी रिम पर सकारात्मक रूप से घुमावदार होती है और आंतरिक रूप से नकारात्मक रूप से घुमावदार होती है। यद्यपि त्रि-आयामी यूक्लिडियन अंतरिक्ष में एक टोरस के मानक एम्बेडिंग की तुलना में एक अलग ज्यामिति होने के बावजूद, वर्ग टोरस को [[नैश एम्बेडिंग प्रमेय]] द्वारा त्रि-आयामी अंतरिक्ष में भी एम्बेड किया जा सकता है; एक संभावित एम्बेडिंग सतह के साथ दो लंबवत दिशाओं में चल रहे तरंगों के [[ भग्न ]] सेट द्वारा मानक टोरस को संशोधित करती है।<ref>{{citation
क्लिफर्ड टोरस एक वर्ग टोरस का एक उदाहरण है, क्योंकि यह [[आइसोमेट्री]] टू ए स्क्वायर (ज्यामिति) है जिसमें विपरीत पक्षों की पहचान की गई है। इसे आगे यूक्लिडियन 2-टोरस के रूप में जाना जाता है (2 इसका सामयिक आयाम है); इस पर खींची गई आकृतियाँ [[यूक्लिडियन ज्यामिति]] का पालन करती हैं जैसे कि यह सपाट थे, जबकि एक सामान्य [[डोनट]] के आकार के टोरस की सतह बाहरी रिम पर सकारात्मक रूप से घुमावदार होती है और आंतरिक रूप से नकारात्मक रूप से घुमावदार होती है। यद्यपि त्रि-आयामी यूक्लिडियन अंतरिक्ष में एक टोरस के मानक एम्बेडिंग की तुलना में एक अलग ज्यामिति होने के बावजूद, वर्ग टोरस को [[नैश एम्बेडिंग प्रमेय]] द्वारा त्रि-आयामी अंतरिक्ष में भी एम्बेड किया जा सकता है; एक संभावित एम्बेडिंग सतह के साथ दो लंबवत दिशाओं में चल रहे तरंगों के [[ भग्न |भग्न]] सेट द्वारा मानक टोरस को संशोधित करती है।<ref>{{citation
  | last1 = Borrelli | first1 = V.
  | last1 = Borrelli | first1 = V.
  | last2 = Jabrane | first2 = S.
  | last2 = Jabrane | first2 = S.

Revision as of 12:56, 25 May 2023

एक क्लिफर्ड टोरस का त्रिविम प्रक्षेपण SO(4) #4D रोटेशन की ज्यामिति का प्रदर्शन कर रहा है
टोपोलॉजिकल रूप से एक आयत एक टोरस का मौलिक बहुभुज है, जिसमें विपरीत किनारों को एक साथ सिल दिया जाता है।

ज्यामितीय टोपोलॉजी में, क्लिफर्ड टोरस सबसे सरल और सबसे सममित टोरस है # दो यूनिट सर्कल एस के कार्टेशियन उत्पाद का फ्लैट टोरस एम्बेडिंग1
a
और एस1
b
(इसी अर्थ में कि एक सिलेंडर की सतह सपाट है)। इसका नाम विलियम किंग्डन क्लिफोर्ड के नाम पर रखा गया है। R में रहता है, आर के विपरीत। यह देखने के लिए कि क्यों आर आवश्यक है, ध्यान दें कि यदि S1
a
और एस1
b
प्रत्येक अपने स्वयं के स्वतंत्र एम्बेडिंग स्थान R में मौजूद है2
a
और आर2
b
, परिणामी उत्पाद स्थान R होगा R के बजाय ऐतिहासिक रूप से लोकप्रिय दृष्टिकोण है कि दो सर्किलों का कार्टेशियन उत्पाद एक आर है इसके विपरीत टॉरस को दूसरे सर्कल के लिए एक रोटेशन ऑपरेटर के अत्यधिक असममित अनुप्रयोग की आवश्यकता होती है, क्योंकि पहले सर्कल के x और y का उपभोग करने के बाद उस सर्कल के पास केवल एक स्वतंत्र अक्ष z उपलब्ध होगा।

दूसरे तरीके से कहा, 'आर' में एम्बेडेड एक टोरस्र्स आर में एम्बेडेड अधिकतम सममित क्लिफोर्ड टोरस का एक असममित कम-आयाम प्रक्षेपण है। संबंध एक घन के किनारों को कागज की शीट पर प्रक्षेपित करने के समान है। ऐसा प्रक्षेपण एक निम्न-आयामी छवि बनाता है जो घन किनारों की कनेक्टिविटी को सटीक रूप से कैप्चर करता है, लेकिन घन के तीन पूर्ण सममित और विनिमेय अक्षों में से एक के मनमाने ढंग से चयन और हटाने की भी आवश्यकता होती है।

अगर एस1
a
और एस1
b
प्रत्येक की त्रिज्या है , उनका क्लिफर्ड टोरस उत्पाद यूनिट 3-क्षेत्र एस के भीतर पूरी तरह से फिट होगा, जो कि R का 3-आयामी सबमेनिफोल्ड है गणितीय रूप से सुविधाजनक होने पर, क्लिफोर्ड टोरस को जटिल समन्वय स्थान सी के अंदर रहने के रूप में देखा जा सकता है क्योंकि सी स्थैतिक रूप से R के समतुल्य है।

क्लिफर्ड टोरस एक वर्ग टोरस का एक उदाहरण है, क्योंकि यह आइसोमेट्री टू ए स्क्वायर (ज्यामिति) है जिसमें विपरीत पक्षों की पहचान की गई है। इसे आगे यूक्लिडियन 2-टोरस के रूप में जाना जाता है (2 इसका सामयिक आयाम है); इस पर खींची गई आकृतियाँ यूक्लिडियन ज्यामिति का पालन करती हैं जैसे कि यह सपाट थे, जबकि एक सामान्य डोनट के आकार के टोरस की सतह बाहरी रिम पर सकारात्मक रूप से घुमावदार होती है और आंतरिक रूप से नकारात्मक रूप से घुमावदार होती है। यद्यपि त्रि-आयामी यूक्लिडियन अंतरिक्ष में एक टोरस के मानक एम्बेडिंग की तुलना में एक अलग ज्यामिति होने के बावजूद, वर्ग टोरस को नैश एम्बेडिंग प्रमेय द्वारा त्रि-आयामी अंतरिक्ष में भी एम्बेड किया जा सकता है; एक संभावित एम्बेडिंग सतह के साथ दो लंबवत दिशाओं में चल रहे तरंगों के भग्न सेट द्वारा मानक टोरस को संशोधित करती है।[1]


औपचारिक परिभाषा

यूनिट सर्कल एस आर में को कोण निर्देशांक द्वारा पैरामिट्रीकृत किया जा सकता है:

आर की एक और प्रति में, यूनिट सर्कल की दूसरी कॉपी लें

फिर क्लिफर्ड टोरस है

चूंकि एस की प्रत्येक प्रति1 R का एक अंतःस्थापित सबमेनिफोल्ड है2, क्लिफोर्ड टोरस एक अंतःस्थापित टोरस है R × R2 = आर

अगर आर निर्देशांक द्वारा दिया गया है (x1, और1, एक्स2, और2), तो क्लिफर्ड टोरस द्वारा दिया जाता है

इससे पता चलता है कि आर में4 क्लिफर्ड टोरस यूनिट 3-स्फीयर एस का सबमेनिफोल्ड है3</उप>।

यह सत्यापित करना आसान है कि क्लिफोर्ड टोरस एस में एक न्यूनतम सतह है।

सम्मिश्र संख्याओं का प्रयोग करके वैकल्पिक व्युत्पत्ति

क्लिफर्ड टोरस को सी में एम्बेडिंग टोरस के रूप में माना जाना भी आम है2</उप>। C की दो प्रतियों में, हमारे पास निम्नलिखित इकाई वृत्त हैं (अभी भी एक कोण समन्वय द्वारा पैरामीट्रिज्ड हैं):

और

अब क्लिफर्ड टोरस के रूप में प्रकट होता है

पहले की तरह, यह एक एम्बेडेड सबमनीफोल्ड है, इकाई क्षेत्र एस में3 सी में2</उप>।

यदि सी2 निर्देशांकों द्वारा दिया गया है (z1, साथ2), तो क्लिफर्ड टोरस द्वारा दिया जाता है

क्लिफर्ड टोरस में जैसा कि ऊपर परिभाषित किया गया है, क्लिफर्ड टोरस के किसी भी बिंदु की सी की उत्पत्ति के लिए दूरी2 है

सी की उत्पत्ति से 1 की दूरी पर सभी बिंदुओं का सेट2 इकाई 3-गोला है, और इसलिए क्लिफोर्ड टोरस इस 3-गोले के अंदर बैठता है। वास्तव में, क्लिफर्ड टोरस इस 3-गोले को दो सर्वांगसम ठोस टोरस में विभाजित करता है (देखें हीगार्ड विभाजन[2]).

चूँकि ओर्थोगोनल group|O(4) R पर कार्य करता है4 ऑर्थोगोनल परिवर्तनों द्वारा, हम कठोर घुमावों के माध्यम से ऊपर परिभाषित मानक क्लिफोर्ड टोरस को अन्य समतुल्य तोरी में स्थानांतरित कर सकते हैं। ये सभी क्लिफर्ड टोरी कहलाते हैं। छह-आयामी समूह O(4) 3-गोले के अंदर बैठे ऐसे सभी क्लिफर्ड टोरी के स्थान पर सकर्मक रूप से कार्य करता है। हालाँकि, इस क्रिया में एक द्वि-आयामी स्टेबलाइज़र है (समूह क्रिया (गणित) देखें) क्योंकि एक टोरस के मेरिडियनल और अनुदैर्ध्य दिशाओं में रोटेशन टोरस को संरक्षित करता है (जैसा कि इसे एक अलग टोरस में ले जाने के विपरीत)। इसलिए, वास्तव में क्लिफर्ड टोरी का चार आयामी स्थान है।[2]वास्तव में, यूनिट 3-गोले में क्लिफोर्ड टोरी के बीच एक-से-एक पत्राचार होता है और ध्रुवीय महान मंडलियों के जोड़े (यानी, बड़े सर्कल जो अधिकतम रूप से अलग होते हैं)। क्लिफर्ड टोरस को देखते हुए, संबंधित ध्रुवीय महान वृत्त दो पूरक क्षेत्रों में से प्रत्येक के मूल वृत्त हैं। इसके विपरीत, ध्रुवीय महान वृत्तों की किसी भी जोड़ी को देखते हुए, संबंधित क्लिफोर्ड टोरस 3-गोले के बिंदुओं का स्थान है जो दो वृत्तों से समान दूरी पर हैं।

क्लिफोर्ड टोरी की अधिक सामान्य परिभाषा

यूनिट 3-गोले एस में फ्लैट टोरी3 जो कि एक 2-प्लेन 'R' में त्रिज्या r वाले वृत्तों का गुणनफल है2 और त्रिज्या 1 − r2 दूसरे 2-प्लेन R में2 को कभी-कभी क्लिफर्ड टोरी भी कहा जाता है।

उन्हीं वृत्तों के बारे में सोचा जा सकता है कि उनकी त्रिज्याएँ cos(θ) और sin(θ) हैं जो श्रेणी में कुछ कोण θ के लिए हैं 0 ≤ θπ/2 (जहां हम पतित मामलों को शामिल करते हैं θ = 0 और θ = π/2).

संघ के लिए 0 ≤ θπ/2 इन सब के तोरी रूप

(जहाँ S(r) समतल 'R' में वृत्त को दर्शाता है2 केंद्र होने से परिभाषित किया गया (0, 0) और त्रिज्या r) 3-गोला S है3</उप>। (ध्यान दें कि हमें दो पतित मामलों को शामिल करना चाहिए θ = 0 और θ = π/2, जिनमें से प्रत्येक S के एक बड़े वृत्त से मेल खाता है3, और जो मिलकर ध्रुवीय महान वृत्तों की एक जोड़ी बनाते हैं।)

यह टोरस टीθ क्षेत्रफल में आसानी से देखा जा सकता है

इसलिए केवल टोरस टीπ/4 2 का अधिकतम संभव क्षेत्र हैπ2</उप>। यह टोरस टीπ/4 टोरस टी हैθ इसे आमतौर पर क्लिफर्ड टोरस कहा जाता है - और यह केवल टी में से एक हैθ यह एस में एक न्यूनतम सतह है3</उप>।

फिर भी उच्च आयामों में क्लिफोर्ड टोरी की अधिक सामान्य परिभाषा

कोई इकाई क्षेत्र एस2n−1 एक सम-आयामी यूक्लिडियन अंतरिक्ष में R2n = Cn जटिल निर्देशांक के रूप में निम्नानुसार व्यक्त किया जा सकता है:

फिर, किसी भी गैर-ऋणात्मक संख्या के लिए r1, ..., आरn ऐसा है कि आर12 + ... + आरn2 = 1, हम एक सामान्यीकृत क्लिफोर्ड टोरस को इस प्रकार परिभाषित कर सकते हैं:

ये सामान्यीकृत क्लिफर्ड टोरी सभी एक दूसरे से अलग हैं। हम एक बार फिर यह निष्कर्ष निकाल सकते हैं कि इनमें से हर एक का मिलन तोरी टीr1, ..., आरn इकाई (2n - 1)-क्षेत्र S है2n−1 (जहां हमें फिर से पतित मामलों को शामिल करना चाहिए जहां कम से कम एक त्रिज्या rk = 0).

गुण

  • क्लिफर्ड टोरस समतल है; क्रांति के मानक टोरस के विपरीत, इसे बिना खींचे समतल किया जा सकता है।
  • क्लिफर्ड टोरस 3-गोले को दो सर्वांगसम ठोस टोरी में विभाजित करता है। (एक स्टीरियोग्राफिक प्रोजेक्शन में, क्लिफोर्ड टोरस क्रांति के एक मानक टोरस के रूप में प्रकट होता है। तथ्य यह है कि यह 3-गोले को समान रूप से विभाजित करता है, इसका मतलब है कि प्रक्षेपित टोरस का इंटीरियर बाहरी के बराबर है, जिसे आसानी से देखा नहीं जा सकता है)।

गणित में उपयोग

सहानुभूतिपूर्ण ज्यामिति में, क्लिफर्ड टोरस सी के एक एम्बेडेड Lagrangian सबमनीफोल्ड का उदाहरण देता है।2 मानक सहानुभूतिपूर्ण संरचना के साथ। (बेशक, सी में एम्बेडेड सर्किलों का कोई भी उत्पाद सी के लैग्रैजियन टोरस देता है2, इसलिए यह आवश्यक नहीं है कि ये क्लिफोर्ड टोरी हों।)

हिसियांग-लॉसन के अनुमान में कहा गया है कि मीट्रिक टेन्सर के साथ 3-गोले में प्रत्येक न्यूनतम सतह टोरस # गोले पर गोल मीट्रिक एक क्लिफर्ड टोरस होना चाहिए। यह अनुमान 2012 में साइमन ब्रेंडल द्वारा सिद्ध किया गया था।

क्लिफर्ड टोरी और अनुरूप परिवर्तन के तहत उनकी छवियां विलमोर ऊर्जा के वैश्विक न्यूनतमकर्ता हैं।

यह भी देखें

संदर्भ

  1. Borrelli, V.; Jabrane, S.; Lazarus, F.; Thibert, B. (April 2012), "Flat tori in three-dimensional space and convex integration", Proceedings of the National Academy of Sciences, 109 (19): 7218–7223, doi:10.1073/pnas.1118478109, PMC 3358891, PMID 22523238.
  2. 2.0 2.1 Norbs, P (September 2005). "The 12th problem" (PDF). The Australian Mathematical Society Gazette. 32 (4): 244–246.