हॉफ फिब्रेशन

अवकलन सांस्थिति के गणितीय क्षेत्र में, हॉपफ फ़िब्रेशन (जिसे हॉपफ बंडल या हॉपफ प्रतिचित्र के रूप में भी जाना जाता है) वृत्तों और एक साधारण गोले के संदर्भ में एक 3-गोले (चार-आयामी समष्टि में एक अति गोला) का वर्णन करता है।
1931 में हेंज हॉपफ द्वारा खोजा गया, यह फाइबर बंडल का एक प्रबल प्रारंभिक उदाहरण है। तकनीकी रूप से, होपफ ने 3-गोले से 2-गोले तक एक अनेक-से-एक सतत फलन (या "मानचित्र") पाया, जैसे कि 2-गोले के प्रत्येक विशिष्ट बिंदु को 3-गोले के एक अलग विशेष वृत्त से प्रतिचित्रित किया जाता है। (हॉपफ 1931)।
इस फाइबर बंडल संरचना को दर्शाया गया है
जिसका अर्थ है कि फाइबर समष्टि S1 (एक वृत्त) कुल समष्टि S3 (3-गोले) में अंतःस्थापित है, और p: S3 → S2 (हॉपफ का मानचित्र) S3 को आधार समष्टि S2 (साधारण 2-गोले) पर प्रक्षिप्त करता है। हॉपफ फ़िब्रेशन, किसी भी फ़ाइबर बंडल के जैसा, यह महत्वपूर्ण गुण रखता है कि यह स्थानीय रूप से एक गुणन समष्टि है। हालाँकि, यह एक साधारण फाइबर बंडल नहीं है, यानी, S3 विश्व स्तर पर S2 और S1 का गुणनफल नहीं है |
इसके कई तात्पर्य हैं उदाहरण के लिए इस बंडल की स्थिति से पता चलता है कि गोले के उच्च होमोटॉपी समूह सामान्य रूप से लघु नहीं हैं| यह वृत्त समूह के साथ फाइबर की पहचान करके, एक प्रमुख बंडल का मूल उदाहरण भी प्रदान करता है।
हॉपफ फिब्रेशन का स्टीरियोग्राफ़िक प्रक्षेपण R3 पर एक विशिष्ट संरचना उत्पन्न करता है जिसमें z-अक्ष के अलावा सभी 3-विमीय समष्टि, विलाआरसीयू वृत्तों को शृंखलन करने से बने नेस्टेड टोरी से भरे हुए हैं। यहाँ प्रत्येक फाइबर समष्टि में एक वृत्त की ओर प्रक्षेपित होता है (जिनमें से एक एक रेखा है, जिसे "अनंत के माध्यम से वृत्त" के रूप में माना जाता है)। प्रत्येक टोरस 2-गोले के अक्षांश के एक वृत्त के व्युत्क्रम प्रतिबिंब के स्टीरियोग्राफ़िक प्रक्षेपण है। (सांस्थितिकी, एक टोरस दो वृत्तों का गुणनफल है।) ये टोरी दाईं ओर के प्रतिबिम्बों में चित्रित हैं। जब R3 को एक गेंद की सीमा तक संपीड़ित किया जाता है, तो कुछ ज्यामितीय संरचना लुप्त हो जाती है, हालांकि सांस्थितिकी संरचना पूर्ण बनी रहती है (सांस्थिति और ज्यामिति देखें)। लूप (पाश) वृत्तों के समरूप हैं, हालाँकि वे ज्यामितीय वृत्त नहीं हैं।
हॉफ फिब्रेशन के कई सामान्यीकरण हैं | इकाई गोलक सम्मिश्र निर्देशक समष्टि Cn+1 फाइबरों में स्वाभाविक रूप से सम्मिश्र प्रक्षेप्य समष्टि CPn पर फाइबरों के रूप में वृत्तों के साथ होते हैं, और इन फाइबरों के वास्तविक, चतुर्धातुक और ऑक्टोनियोनिक संस्करण भी होते हैं। [1] विशेष रूप से हॉपफ, हॉपफ फ़िब्रेशन चार फाइबर बंडलों के एक समूह से संबंधित है जिसमें कुल समष्टि, आधार समष्टि और फाइबर समष्टि सभी गोले हैं,
एडम्स प्रमेय के अनुसार ऐसे फ़िब्रेशन केवल इन आयामों में ही हो सकते हैं।
ट्विस्टर सिद्धांत में हॉफ फिब्रेशन महत्वपूर्ण है।[clarification needed]
परिभाषा और निर्माण
किसी भी प्राकृतिक संख्या n के लिए, एक n-विमीय गोले या n-गोले, को -विमीय समष्टि में बिंदुओं के समुच्चय के रूप में परिभाषित किया जा सकता है जो एक केंद्रीय बिंदु से एक निश्चित दूरी पर हैं। ठोसता के लिए, केंद्रीय बिंदु को मूल बिंदु माना जा सकता है, और इस मूल बिंदु से गोले के बिंदुओं की दूरी को एक इकाई लंबाई माना जा सकता है। इस कन्वेंशन के साथ, n-गोला, , में x12 + x22 + ⋯+ xn + 12 = 1 के साथ बिंदुओं से बना है।
उदाहरण के लिए, 3-गोले में R4 में x12 + x22 + x32 + x42 = 1 के साथ बिंदु (x1, x2, x3, x4) सम्मिलित हैं।
2-गोले पर 3-गोले के हॉपफ फ़िब्रेशन p: S3 → S2 को कई तरीकों से परिभाषित किया जा सकता है।
प्रत्यक्ष निर्माण
R4 को C2 से और R3 को C × R से पहचाने (जहाँ C सम्मिश्र संख्याओं को दर्शाता है) लिखकर:
और
- .
इस प्रकार S3 को C2 में सभी (z0, z1) के उपसमुच्चय के साथ पहचाना जाता है, जैसे कि |z0|2 + |z1|2 = 1 और S2 को C×R में सभी (z, x) के उपसमुच्चय के साथ पहचाना जाता है, जैसे कि |z|2 + x2 = 1 | (यहां, एक सम्मिश्र संख्या z = x + iy के लिए, |z|2 = z z∗ = x2 + y2, जहां स्टार (तारा) सम्मिश्र संयुग्म को दर्शाता है।)
पहला घटक एक सम्मिश्र संख्या है, जबकि दूसरा घटक वास्तविक है। 3-गोले के किसी भी बिंदु में यह गुण होना चाहिए कि |z0|2 + |z1|2 = 1| यदि ऐसा है, तो p(z0, z1) C × R में इकाई 2-गोले पर स्थित है, जैसा कि p के सम्मिश्र और वास्तविक घटकों का वर्ग करके दिखाया जा सकता है
इसके अतिरिक्त, यदि 3-गोले मानचित्र पर दो बिंदु 2-गोले पर एक ही बिंदु पर हैं, अर्थात, यदि p(z0, z1) = p(w0, w1), तो (w0, w1) को |λ|2 = 1 के साथ कुछ सम्मिश्र संख्या λ के लिए (λ z0, λ z1) के बराबर होना चाहिए। इसका विलोम भी सत्य है; 3-गोलों पर कोई भी दो बिंदु जो एक सामान्य सम्मिश्र घटक λ से भिन्न होते हैं, 2-गोलों पर एक ही बिंदु पर मानचित्र बनाते हैं। ये निष्कर्ष अनुकरण करते हैं, क्योंकि सम्मिश्र घटक λ अपने सम्मिश्र संयुग्म λ∗ के साथ p के दोनों भागों में रद्द हो जाता है: सम्मिश्र 2z0z1∗ घटक में और वास्तविक घटक में |z0|2 − |z1|2 |
चूंकि सम्मिश्र संख्याओं का समुच्चय λ | के साथ है λ | 2 = 1 और जटिल तल में इकाई वृत्त बनाता है यह इस प्रकार है कि S 2 में प्रत्येक बिंदु m के लिए व्युत्क्रम छवि p −1 ( m ) एक वृत्त है अर्थात p −1 m ≅ S 1 इस प्रकार 3 -गोले को इन गोलाकार तंतुओं के असंयुक्त संघ के रूप में साकार किया जाता है।
हॉपफ मानचित्र का उपयोग करते हुए 3 - गोले का प्रत्यक्ष पैरामीट्रिजेशन इस प्रकार है[2]
या यूक्लिडियन R4 में
जहां η 0 से π /2 की सीमा पर चलता है ξ 1 0 और 2 π की सीमा पर चलता है तथा ξ 2 0 और 4 π के बीच कोई भी मान ले सकता है और η का प्रत्येक मान 0 और π /2 को छोड़कर जो वृत्त निर्दिष्ट करता है वह 3 -गोले में एक अलग सपाट टोरस निर्दिष्ट करता है तथा ξ 1 या ξ 2 में से एक राउंड ट्रिप निर्दिष्ट करता है जो आपको टोरस के दोनों अंगों का एक पूरा घेरा बनाने का कारण बनाता है।
2 - गोले में उपरोक्त पैरामीट्रिजेशन का प्रतिचित्रण और ξ 2 द्वारा पैरामीरिज्ड गोले पर बिंदुओं का साथ इस प्रकार है
जटिल प्रक्षेपी रेखा का उपयोग करके ज्यामितीय व्याख्या
जटिल CP1 प्रक्षेप्य रेखा का उपयोग करके फाइब्रेशन की एक ज्यामितीय व्याख्या प्राप्त की जा सकती है जिसे C2 के सभी जटिल आयामी उप-स्थानों के समुच्चय के रूप में परिभाषित किया गया है समान रूप से CP 1 समतुल्य संबंध द्वारा C2 \{0} का भागफल है जो किसी भी गैर-शून्य सम्मिश्र संख्या λ के लिए ( z 0 , z 1 ) को ( λ z 0 , λ z 1 ) से पहचानता है C2 में किसी भी जटिल रेखा पर इकाई मानदंड का एक चक्र होता है और इसलिए इकाई मानदंड के बिंदुओं पर भागफल मानचित्र का प्रतिबंध CP 1 पर S 3 का कंपन होता है।
CP1 2-गोले से भिन्न है वास्तव में इसे रीमैन क्षेत्र C∞ = C ∪ {∞} से पहचाना जा सकता है जो कि C का एक बिन्दु संघनन है ऊपर p के लिए दिया गया सूत्र प्रक्षेप्य रेखा और 3-आयामी समष्टि में साधारण 2 -गोले के बीच एक स्पष्ट भिन्नता को परिभाषित करता है और वैकल्पिक रूप से बिंदु ( z 0 , z 1 ) को रीमैन क्षेत्र में z 0 C ∞ z 1 / के अनुपात में प्रतिचित्रित किया जा सकता है ।
फाइबर बंडल संरचना
बंडल प्रक्षेपण P के साथ हॉपफ फ़िब्रेशन एक फाइबर बंडल को परिभाषित करता है और जिसका अर्थ यह है कि इसकी एक स्थानीय उत्पाद संरचना है जो कि प्रत्येक बिंदु 2-गोले का मेल है तथा U जिसकी उलटी छवि में 3-गोले के उत्पाद समष्टिके साथ पहचाना जा सकता है वह U और एक वृत्त: p−1(U) ≅ U × S1 है इस तरह के कंपन को स्थानीय रूप से तुच्छ कहा जाता है।
हॉपफ फ़िब्रेशन के लिए S2 से एक बिंदु एम और एस 3 से संबंधित सर्कल पी -1 को हटाने के लिए पर्याप्त है और इस प्रकार कोई U = S 2 \{ m } ले सकता है और S 2 में किसी भी बिंदु का मेल इस रूप में होता है।
घूर्णन का उपयोग करते हुए ज्यामितीय व्याख्या
हॉपफ फ़िब्रेशन की एक और ज्यामितीय व्याख्या 3 -आयामी समष्टि में 2 -गोले के घूर्णन पर विचार करके प्राप्त की जा सकती है और घूर्णन समूह SO(3) में एक दोहरा आवरण है जो कि स्पिन समूह 3 - गोले से भिन्न है तथा स्पिन समूह घूर्णन द्वारा S2 पर सकर्मक रूप से कार्य करता है और एक बिंदु स्थिरक वृत्त समूह के लिए समरूप है तथा इसके तत्व घूर्णन के कोण हैं जो दिए गए बिंदु को अपरिवर्तित करते हैं और सभी उस बिंदु को गोले के केंद्र से जोड़ने वाली धुरी को साझा करते हैं जबकि यह आसानी से अनुसरण करता है और 3 -गोला 2 - गोले के ऊपर एक प्रमुख वृत्त बंडल है और यह हॉपफ फ़िब्रेशन है।
इसे और अधिक स्पष्ट करने के लिए दो दृष्टिकोण हैं समूह स्पिन(3) को या तो इकाई चतुर्भुज के समूह SP(1) के साथ या विशेष एकात्मक समूह SU(2) के साथ पहचाना जा सकता है।
पहले दृष्टिकोण में, R4 में एक वेक्टर ( x 1 , x 2 , x 3 , x 4 ) को चतुर्भुज q ∈ H लिखकर व्याख्या की जाती है
फिर 3-गोले की पहचान छंदों इकाई मानदंड के चतुर्भुज उन q ∈ H से की जाती है जिनके लिए | क्यू | 2 = 1 जहाँ | क्यू | 2 = qq जो उपरोक्तानुसार q के लिए x 1 2 + x 2 2 + x 3 2 + x 4 2 के बराबर है
दूसरी ओर R 3 में एक वेक्टर ( y 1 , y 2 , y 3 ) की व्याख्या शुद्ध चतुर्भुज के रूप में की जा सकती है-
फिर जैसा कि केली से सर्वविदित है मानचित्रण
में घूर्णन है R3: वास्तव में यह स्पष्ट रूप से एक आइसोमेट्री है, चूंकि |q p q∗|2 = q p q∗ q p∗ q∗ = q p p∗ q∗ = |p|2, और यह जांचना मुश्किल नहीं है कि यह अभिविन्यास को सुरक्षित रखता है।
वास्तव में, यह वर्सर्स के समूह को रोटेशन के समूह के साथ पहचानता है R3, इस तथ्य को स्पष्ट करें कि vers q और −q एक ही घुमाव निर्धारित करें। जैसा कि ऊपर उल्लेख किया गया है, घुमाव सकर्मक रूप से कार्य करते हैं S2, और छंदों का सेट q जो दिए गए सही छंद को ठीक करता है p रूप है q = u + v p, कहाँ u और v के साथ वास्तविक संख्याएँ हैं u2 + v2 = 1. यह एक वृत्त उपसमूह है। संक्षिप्तता के लिए, कोई ले सकता है p = k, और फिर हॉफ फिब्रेशन को एक छंद भेजने वाले मानचित्र के रूप में परिभाषित किया जा सकता है ω to ω k ω∗. सभी चतुष्कोण ωq, कहाँ q ठीक करने वाले छंदों में से एक है k, उसी चीज़ पर मैप करें (जो कि दोनों में से एक है 180° घूर्णन घूर्णन k उसी समष्टिपर ω करता है)।
इस कंपन को देखने का एक और तरीका यह है कि प्रत्येक छंद ω द्वारा फैलाए गए विमान को स्थानांतरित करता है {1, k} द्वारा फैलाए गए एक नए विमान के लिए {ω, ωk}. कोई चतुष्कोण ωq, कहाँ q ठीक करने वाले छंदों में से एक है k, का समान प्रभाव होगा। हम इन सभी को एक फाइबर में डालते हैं, और फाइबर को एक-से-एक में मैप किया जा सकता है 2-क्षेत्रफल 180° घुमाव जो की सीमा है ωkω*.
यह दृष्टिकोण चतुर्धातुक की पहचान करके प्रत्यक्ष निर्माण से संबंधित है q = x1 + i x2 + j x3 + k x4 साथ 2×2 आव्यूह:
यह छंदों के समूह की पहचान करता है SU(2), और तिरछा-हर्मिटियन के साथ काल्पनिक चतुष्कोण 2×2 मेट्रिसेस (आइसोमॉर्फिक टू C × R).
स्पष्ट सूत्र
एक इकाई चतुर्धातुक द्वारा प्रेरित घूर्णन q = w + i x + j y + k z ऑर्थोगोनल मैट्रिक्स द्वारा स्पष्ट रूप से दिया गया है
यहाँ हम बंडल प्रोजेक्शन के लिए एक स्पष्ट वास्तविक सूत्र पाते हैं, यह देखते हुए कि निश्चित इकाई वेक्टर के साथ z एक्सिस, (0,0,1), अन्य इकाई सदिश में घुमाता है,
जो एक सतत कार्य है (w, x, y, z). यानी की छवि q पर बिंदु है 2-क्षेत्र जहां यह इकाई वेक्टर को साथ भेजता है z एक्सिस। दिए गए बिंदु पर फाइबर S2 उन सभी यूनिट चतुष्कोणों से मिलकर बनता है जो यूनिट वेक्टर को वहां भेजते हैं।
हम किसी बिंदु पर फाइबर के लिए एक स्पष्ट सूत्र भी लिख सकते हैं (a, b, c) में S2. इकाई चतुष्कोणों का गुणन घुमावों की संरचना का निर्माण करता है, और
द्वारा घूर्णन है 2θ चारों ओर z एक्सिस। जैसा θ भिन्न होता है, यह एक बड़े वृत्त को मिटा देता है S3, हमारा प्रोटोटाइपिक फाइबर। जब तक आधार बिंदु, (a, b, c), एंटीपोड नहीं है, (0, 0, −1), चतुर्धातुक
भेज देंगे (0, 0, 1) को (a, b, c). इस प्रकार का फाइबर (a, b, c) रूप के चतुष्कोणों द्वारा दिया गया है q(a, b, c)qθ, जो हैं S3 अंक
चूंकि गुणा करके q(a,b,c) चतुष्कोणीय समष्टिके रोटेशन के रूप में कार्य करता है, फाइबर केवल एक टोपोलॉजिकल सर्कल नहीं है, यह एक ज्यामितीय सर्कल है।
अंतिम फाइबर, के लिए (0, 0, −1) परिभाषित करके दिया जा सकता है q(0,0,−1) बराबर करने के लिए i, उत्पादन कर रहा है
जो बंडल पूरा करता है। लेकिन ध्यान दें कि यह एक-से-एक मैपिंग के बीच S3 और S2×S1 इस वृत्त पर निरंतर नहीं है, इस तथ्य को दर्शाता है कि S3 स्थलाकृतिक रूप से समतुल्य नहीं है S2×S1.
इस प्रकार, हॉफ फिब्रेशन की कल्पना करने का एक सरल तरीका इस प्रकार है। पर कोई बिंदु 3-क्षेत्र चतुष्कोण के बराबर है, जो बदले में तीन आयामों में कार्टेशियन समन्वय प्रणाली के एक विशेष घुमाव के बराबर है। सभी संभावित चतुष्कोणों का सेट सभी संभावित घुमावों के सेट का उत्पादन करता है, जो इस तरह के एक समन्वय फ्रेम के एक इकाई वेक्टर की नोक को स्थानांतरित करता है (कहते हैं, z वेक्टर) एक इकाई पर सभी संभावित बिंदुओं के लिए 2-वृत्त। हालाँकि, की नोक को ठीक करना z वेक्टर रोटेशन को पूरी तरह से निर्दिष्ट नहीं करता है; के बारे में एक और घुमाव संभव है z-एक्सिस। इस प्रकार 3-sphere पर मैप किया गया है 2-क्षेत्र, साथ ही एक घूर्णन।
यूलर कोण θ, φ, और ψ का उपयोग करके रोटेशन का प्रतिनिधित्व किया जा सकता है। हॉफ मैपिंग रोटेशन को θ और φ द्वारा दिए गए 2-गोले पर बिंदु पर मैप करता है, और संबंधित सर्कल ψ द्वारा पैरामीट्रिज्ड है। ध्यान दें कि जब θ = π यूलर कोण φ और ψ व्यक्तिगत रूप से अच्छी तरह से परिभाषित नहीं होते हैं, तो हमारे पास (θ, φ के 3-टोरस के बीच एक-से-एक मैपिंग (या एक-से-दो मैपिंग) नहीं है , ψ) और एस3</उप>।
द्रव यांत्रिकी
यदि हॉफ फ़िब्रेशन को 3 आयामी समष्टि में एक सदिश क्षेत्र के रूप में माना जाता है, तो द्रव गतिकी के नेवियर-स्टोक्स समीकरणों (संपीड़ित, गैर-चिपचिपा) का एक समाधान होता है जिसमें हॉफ़ फ़िब्रेशन के प्रक्षेपण के हलकों के साथ द्रव प्रवाहित होता है। 3 आयामी समष्टि में। समीकरणों को संतुष्ट करने के लिए प्रत्येक बिंदु पर वेग, घनत्व और दबाव का आकार चुना जा सकता है। केंद्र से दूर जाने पर ये सभी मात्राएँ शून्य हो जाती हैं। यदि आंतरिक रिंग की दूरी है, तो वेग, दबाव और घनत्व क्षेत्र निम्न द्वारा दिए गए हैं:
मनमाने स्थिरांक के लिए A और B. magnetohydrodynamics के सॉलिटन समाधान के रूप में फ़ील्ड के समान पैटर्न पाए जाते हैं:[3]
सामान्यीकरण
हॉपफ निर्माण, एक फाइबर बंडल पी के रूप में देखा गया: एस3 → सी.पी1, कई सामान्यीकरणों को स्वीकार करता है, जिन्हें अक्सर हॉफ फ़िब्रेशन के रूप में भी जाना जाता है। सबसे पहले, कोई प्रोजेक्टिव लाइन को एन-डायमेंशनल प्रक्षेपण समष्टि से बदल सकता है। दूसरा, जटिल संख्याओं को किसी भी (वास्तविक) विभाजन बीजगणित द्वारा प्रतिस्थापित किया जा सकता है, जिसमें (n = 1 के लिए) ऑक्टोनियन शामिल हैं।
रियल हॉफ फाइब्रेशंस
हॉफ फिब्रेशन का एक वास्तविक संस्करण सर्कल एस के संबंध में प्राप्त किया जाता है1 R के उपसमुच्चय के रूप में2 सामान्य तरीके से और द्वारा एंटीपोडल बिंदुओं की पहचान करना। यह एक फाइबर बंडल एस देता है1 → आरपी1 फाइबर एस के साथ वास्तविक प्रक्षेपी रेखा पर0 = {1, -1}। जैसे सी.पी1 एक गोले, RP के लिए भिन्न है1 एक वृत्त के लिए भिन्न है।
अधिक आम तौर पर, एन-क्षेत्र एसn वास्तविक प्रक्षेपी समष्टि'RP' पर फाइबरn फाइबर एस के साथ0</उप>।
कॉम्प्लेक्स हॉफ फाइब्रेशंस
हॉफ रचना वृत्त बंडल p : S देती है2n+1 → 'सीपी'n जटिल प्रक्षेपी समष्टिपर। यह वास्तव में 'सीपी' पर टॉटोलॉजिकल लाइन बंडल का प्रतिबंध हैn 'C' में इकाई क्षेत्र के लिएएन+1.
क्वाटरनियोनिक हॉफ फाइब्रेशंस
इसी तरह, कोई एस को मान सकता है4n+3 'H' के रूप मेंn+1 (quaternionic n-space) और यूनिट क्वाटरनियन (= S3) क्वाटरनियोनिक प्रोजेक्टिव स्पेस एचपी प्राप्त करने के लिए गुणनएन. विशेष रूप से, चूंकि एस4 = एच.पी1, एक बंडल S है7 → एस4 फाइबर एस के साथ3</उप>।
ऑक्टियोनिक हॉफ फाइब्रेशंस
ऑक्टोनियंस के साथ एक समान निर्माण एक बंडल एस उत्पन्न करता है15 → एस8 फाइबर एस के साथ7</उप>। लेकिन गोला एस31 S पर फाइबर नहीं करता है16 फाइबर एस के साथ15. कोई एस को मान सकता है8 ऑक्टोनिक प्रोजेक्टिव लाइन ओपी के रूप में1</उप>। हालांकि कोई केली विमान ओपी को भी परिभाषित कर सकता है2, गोला S23 ओपी पर फाइबर नहीं करता है2</उप> फाइबर के साथ एस7</उप>।[4][5]
गोले के बीच कंपन
कभी-कभी हॉप फ़िब्रेशन शब्द ऊपर प्राप्त क्षेत्रों के बीच फ़िब्रेशन तक ही सीमित होता है, जो हैं
- एस1 → एस1 फाइबर एस के साथ0</उप>
- एस3 → एस2 फाइबर एस के साथ1</उप>
- एस7 → एस4 फाइबर एस के साथ3</उप>
- एस15 → एस8 फाइबर एस के साथ7</उप>
हॉफ इनवेरिएंट#प्रॉपर्टीज| के परिणामस्वरूप एडम्स की प्रमेय, कुल स्थान, आधार समष्टिऔर फाइबर के रूप में गोले के साथ फाइबर बंडल केवल इन आयामों में हो सकते हैं। समान गुणों वाले फाइबर बंडल, लेकिन हॉफ फ़िब्रेशन से अलग, जॉन मिल्नोर द्वारा विदेशी क्षेत्रों के निर्माण के लिए उपयोग किया गया था।
ज्यामिति और अनुप्रयोग
हॉफ फिब्रेशन के कई निहितार्थ हैं और कुछ विशुद्ध रूप से आकर्षक तथा अधिक गहरे हैं। उदाहरण के लिए त्रिविम प्रक्षेपण S3 → R3 में एक उल्लेखनीय संरचना उत्पन्न करता है जो बदले में बंडल (ल्योंस 2003) की सांस्थिति को प्रकाशित करता है। और त्रिविम प्रक्षेपण मंडलियों को संरक्षित करता है तथा हॉप फाइबर को आर में ज्यामितीय रूप से सही मंडलियों में मैप करता है3 जो जगह भरते हैं। यहां एक अपवाद है: आर में एक सीधी रेखा के लिए प्रोजेक्शन पॉइंट मैप्स वाला हॉफ सर्कल3 — अनंत के माध्यम से एक चक्र।
एस पर अक्षांश के एक चक्र पर तंतु2 S में एक टोरस बनाता है3 (टोपोलॉजिकल रूप से, एक टोरस दो सर्किलों का उत्पाद है) और ये प्रोजेक्ट आर में नेस्टेड टोरस के लिए हैं3 जो स्पेस भी भरता है। प्रक्षेपण बिंदु के माध्यम से सर्कल के अपवाद के साथ और इसके एंटीपोडल बिंदु के माध्यम से सर्कल के अपवाद के साथ, अलग-अलग तंतुओं को इन टोरी पर विल्लारसेऊ हलकों को जोड़ने के लिए मैप किया जाता है: पूर्व मानचित्र एक सीधी रेखा के लिए, बाद में एक इकाई सर्कल के लंबवत, और पर केंद्रित , यह रेखा, जिसे एक पतित टोरस के रूप में देखा जा सकता है, जिसकी मामूली त्रिज्या शून्य हो गई है। प्रत्येक अन्य फाइबर छवि रेखा को भी घेरती है, और इसलिए, समरूपता द्वारा, प्रत्येक वृत्त को प्रत्येक वृत्त के माध्यम से जोड़ा जाता है, दोनों 'आर' में3 और एस में3</उप>। दो ऐसे लिंकिंग सर्किल आर में एक हॉफ लिंक बनाते हैं3</उप>
हॉफ ने साबित किया कि हॉफ मैप में हॉफ इनवेरिएंट 1 है, और इसलिए यह अशक्त होमोटोपिक नहीं है। वास्तव में यह समरूपता समूह π उत्पन्न करता है3(एस2) और इसका क्रम अनंत है।
क्वांटम यांत्रिकी में, रीमैन क्षेत्र को बलोच क्षेत्र के रूप में जाना जाता है, और हॉफ फ़िब्रेशन क्वांटम मैकेनिकल दो-स्तरीय प्रणाली या qubit की सामयिक संरचना का वर्णन करता है। इसी तरह, उलझी हुई दो-स्तरीय प्रणालियों की एक जोड़ी की टोपोलॉजी हॉफ फिब्रेशन द्वारा दी गई है
(Mosseri & Dandoloff 2001). इसके अलावा, हॉफ फिब्रेशन चुंबकीय मोनोपोल के फाइबर बंडल संरचना के बराबर है।[6] हॉफ फिब्रेशन ने रोबोटिक्स में भी आवेदन पाया, जहां इसका उपयोग मोशन प्लानिंग में संभाव्य रोडमैप एल्गोरिदम के लिए रोटेशन ग्रुप SO(3)|SO(3) पर एकसमान नमूने उत्पन्न करने के लिए किया गया था।[7] इसने quadcopter के स्वचालन में भी आवेदन पाया।[8][9]
टिप्पणियाँ
- ↑ quaternionic Hopf Fibration, ncatlab.org. https://ncatlab.org/nlab/show/quaternionic+Hopf+fibration
- ↑ Smith, Benjamin. "बेंजामिन एच. स्मिथ के हॉफ फिब्रेशन नोट्स" (PDF). Archived from the original (PDF) on September 14, 2016.
- ↑ Kamchatnov, A. M. (1982), Topological solitons in magnetohydrodynamics (PDF)
- ↑ Besse, Arthur (1978). मैनिफोल्ड्स जिनके सभी जियोडेसिक्स बंद हैं. Springer-Verlag. ISBN 978-3-540-08158-6. (§0.26 on page 6)
- ↑ sci.math.research 1993 thread "Spheres fibred by spheres"
- ↑ Friedman, John L. (June 2015). "फाइबर बंडलों पर ऐतिहासिक नोट". Physics Today. 68 (6): 11. Bibcode:2015PhT....68f..11F. doi:10.1063/PT.3.2799.
- ↑ Yershova, Anna; Jain, Swati; LaValle, Steven M.; Mitchell, Julie C. (2010). "Generating Uniform Incremental Grids on SO (3) Using the Hopf Fibration". The International Journal of Robotics Research (in English). 29 (7): 801–812. doi:10.1177/0278364909352700. ISSN 0278-3649. PMC 2896220. PMID 20607113.
- ↑ Watterson, Michael; Kumar, Vijay (2020). Amato, Nancy M.; Hager, Greg; Thomas, Shawna; Torres-Torriti, Miguel (eds.). "Control of Quadrotors Using the Hopf Fibration on SO(3)". Robotics Research. Springer Proceedings in Advanced Robotics (in English). Cham: Springer International Publishing. 10: 199–215. doi:10.1007/978-3-030-28619-4_20. ISBN 978-3-030-28619-4. S2CID 195852176.
- ↑ Jia, Jindou; Guo, Kexin; Yu, Xiang; Zhao, Weihua; Guo, Lei (2022). "Accurate High-Maneuvering Trajectory Tracking for Quadrotors: A Drag Utilization Method". IEEE Robotics and Automation Letters. 7 (3): 6966–6973. doi:10.1109/LRA.2022.3176449. ISSN 2377-3766. S2CID 249550496.
संदर्भ
- Cayley, Arthur (1845), "On certain results relating to quaternions", Philosophical Magazine, 26 (171): 141–145, doi:10.1080/14786444508562684; reprinted as article 20 in Cayley, Arthur (1889), The collected mathematical papers of Arthur Cayley, I, vol. (1841–1853), Cambridge University Press, pp. 123–126
- Hopf, Heinz (1931), "Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche", Mathematische Annalen, Berlin: Springer, 104 (1): 637–665, doi:10.1007/BF01457962, ISSN 0025-5831, S2CID 123533891
- Hopf, Heinz (1935), "Über die Abbildungen von Sphären auf Sphären niedrigerer Dimension", Fundamenta Mathematicae, Warsaw: Polish Acad. Sci., 25: 427–440, doi:10.4064/fm-25-1-427-440, ISSN 0016-2736
- Lyons, David W. (April 2003), "An Elementary Introduction to the Hopf Fibration" (PDF), Mathematics Magazine, 76 (2): 87–98, arXiv:2212.01642, doi:10.2307/3219300, ISSN 0025-570X, JSTOR 3219300
- Mosseri, R.; Dandoloff, R. (2001), "Geometry of entangled states, Bloch spheres and Hopf fibrations", Journal of Physics A: Mathematical and Theoretical, 34 (47): 10243–10252, arXiv:quant-ph/0108137, Bibcode:2001JPhA...3410243M, doi:10.1088/0305-4470/34/47/324, S2CID 119462869.
- Steenrod, Norman (1951), The Topology of Fibre Bundles, PMS 14, Princeton University Press (published 1999), ISBN 978-0-691-00548-5
- Urbantke, H.K. (2003), "The Hopf fibration-seven times in physics", Journal of Geometry and Physics, 46 (2): 125–150, Bibcode:2003JGP....46..125U, doi:10.1016/S0393-0440(02)00121-3
- Zamboj, Michal (8 Jan 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". Journal of Computational Design and Engineering. 8 (3): 836–854. arXiv:2003.09236v2. doi:10.1093/jcde/qwab018.
- Banchoff, Thomas (1988). "Geometry of the Hopf Mapping and Pinkall's Tori of Given Conformal Type". In Tangora, Martin (ed.). Computers in Algebra. New York and Basel: Marcel Dekker. pp. 57–62.
बाहरी संबंध
- "Hopf fibration", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Rowland, Todd. "हॉफ फिब्रेशन". MathWorld.
- Dimensions Math Chapters 7 and 8 illustrate the Hopf fibration with animated computer graphics.
- An Elementary Introduction to the Hopf Fibration by David W. Lyons (PDF)
- YouTube animation showing dynamic mapping of points on the 2-sphere to circles in the 3-sphere, by Professor Niles Johnson.
- YouTube animation of the construction of the 120-cell By Gian Marco Todesco shows the Hopf fibration of the 120-cell.
- Video of one 30-cell ring of the 600-cell from http://page.math.tu-berlin.de/~gunn/.
- Interactive visualization of the mapping of points on the 2-sphere to circles in the 3-sphere