क्लिफर्ड टोरस: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
ज्यामितीय टोपोलॉजी में, क्लिफर्ड टोरस दो हलकों S{{supsub|1|''a''}} और S{{supsub|1|''b''}} के कार्टेशियन उत्पाद का सबसे सरल और सबसे सममित | ज्यामितीय टोपोलॉजी में, क्लिफर्ड टोरस दो हलकों S{{supsub|1|''a''}} और S{{supsub|1|''b''}} के कार्टेशियन उत्पाद का सबसे सरल और सबसे सममित समतल एम्बेडिंग है (उसी अर्थ में कि एक सिलेंडर की सतह "फ्लैट" है)। इसका नाम विलियम किंग्डन क्लिफोर्ड के नाम पर रखा गया है। यह '''R'''<sup>4</sup> में रहता है, '''R'''<sup>3</sup> के विपरीत यह देखने के लिए कि '''R'''<sup>4</sup> क्यों आवश्यक है ध्यान दें कि यदि S{{supsub|1|''a''}} और S{{supsub|1|''b''}} प्रत्येक अपने स्वयं के स्वतंत्र एम्बेडिंग स्थान R{{supsub|2|''a''}} और R{{supsub|2|''b''}} में उपस्थित हैं तो परिणामी उत्पाद स्थान '''R'''<sup>3</sup> के अतिरिक्त '''R'''<sup>4</sup> होगा। ऐतिहासिक रूप से लोकप्रिय विचार है कि दो वृत्तो के कार्टेशियन उत्पाद एक '''R'''<sup>3</sup> टोरस है इसके विपरीत दूसरे वृत्त में घूर्णन ऑपरेटर के अत्यधिक असममित अनुप्रयोग की आवश्यकता होती है, क्योंकि उस वृत्त में केवल एक स्वतंत्र अक्ष ''z'' उपलब्ध होगा जब पहले वृत्त x और y का उपभोग करता है | ||
दूसरे विधि से कहा गया है, '''R'''<sup>3</sup> में एम्बेडेड एक टोरस '''R'''<sup>4</sup> में एम्बेडेड अधिकतम सममित क्लिफोर्ड टोरस का एक असममित कम-आयाम प्रक्षेपण है। संबंध एक घन के किनारों को कागज की शीट पर प्रक्षेपित करने के समान है। ऐसा प्रक्षेपण एक निम्न-आयामी छवि बनाता है जो घन किनारों की कनेक्टिविटी को स्पष्ट रूप से कैप्चर करता है, लेकिन घन के तीन पूर्ण सममित और विनिमेय अक्षों में से एक के इच्छानुसार से चयन और हटाने की भी आवश्यकता होती है। | दूसरे विधि से कहा गया है, '''R'''<sup>3</sup> में एम्बेडेड एक टोरस '''R'''<sup>4</sup> में एम्बेडेड अधिकतम सममित क्लिफोर्ड टोरस का एक असममित कम-आयाम प्रक्षेपण है। संबंध एक घन के किनारों को कागज की शीट पर प्रक्षेपित करने के समान है। ऐसा प्रक्षेपण एक निम्न-आयामी छवि बनाता है जो घन किनारों की कनेक्टिविटी को स्पष्ट रूप से कैप्चर करता है, लेकिन घन के तीन पूर्ण सममित और विनिमेय अक्षों में से एक के इच्छानुसार से चयन और हटाने की भी आवश्यकता होती है। | ||
Line 32: | Line 32: | ||
: <math>\frac{1}{\sqrt{2}}S^1 \times \frac{1}{\sqrt{2}} S^1 = \left\{ \frac{1}{\sqrt{2}} ( \cos\theta, \sin\theta, \cos\varphi, \sin\varphi ) \mid 0 \leq \theta < 2\pi, 0 \leq \varphi < 2\pi \right\}.</math> | : <math>\frac{1}{\sqrt{2}}S^1 \times \frac{1}{\sqrt{2}} S^1 = \left\{ \frac{1}{\sqrt{2}} ( \cos\theta, \sin\theta, \cos\varphi, \sin\varphi ) \mid 0 \leq \theta < 2\pi, 0 \leq \varphi < 2\pi \right\}.</math> | ||
चूँकि ''S''<sup>1</sup> | चूँकि ''S''<sup>1</sup> की प्रत्येक प्रति '''R'''<sup>2</sup> की एक एम्बेडेड [[सबमेनिफोल्ड]] है क्लिफर्ड टोरस {{nowrap|'''R''' × '''R'''<sup>2</sup>}} = '''R'''<sup>4</sup> में एक एम्बेडेड टोरस है। | ||
यदि '''R'''<sup>4</sup> निर्देशांक (''x''<sub>1</sub>, ''y''<sub>1</sub>, ''x''<sub>2</sub>, ''y''<sub>2</sub>) | यदि '''R'''<sup>4</sup> निर्देशांक (''x''<sub>1</sub>, ''y''<sub>1</sub>, ''x''<sub>2</sub>, ''y''<sub>2</sub>) द्वारा दिया जाता है, तो क्लिफोर्ड टोरस द्वारा दिया जाता है | ||
: <math>x_1^2 + y_1^2 = \frac{1}{2} = x_2^2 + y_2^2.</math> | : <math>x_1^2 + y_1^2 = \frac{1}{2} = x_2^2 + y_2^2.</math> | ||
Line 43: | Line 43: | ||
=== सम्मिश्र संख्याओं का प्रयोग करके वैकल्पिक व्युत्पत्ति === | === सम्मिश्र संख्याओं का प्रयोग करके वैकल्पिक व्युत्पत्ति === | ||
''' | क्लिफर्ड टोरस को '''C'''<sup>2</sup> में एक एम्बेडेड टोरस के रूप में माना जाना भी समान है। '''C''' की दो प्रतियों में हमारे पास निम्नलिखित इकाई वृत्त हैं (अभी भी एक कोण समन्वय द्वारा पैरामीट्रिज्ड हैं): | ||
: <math>S^1 = \left\{ e^{i\theta} \mid 0 \leq \theta < 2\pi \right\}</math> | : <math>S^1 = \left\{ e^{i\theta} \mid 0 \leq \theta < 2\pi \right\}</math> | ||
और | और | ||
Line 49: | Line 49: | ||
अब क्लिफर्ड टोरस के रूप में प्रकट होता है | अब क्लिफर्ड टोरस के रूप में प्रकट होता है | ||
: <math>\frac{1}{\sqrt{2}}S^1 \times \frac{1}{\sqrt{2}}S^1 = \left\{ \frac{1}{\sqrt{2}} \left( e^{i\theta}, e^{i\varphi} \right) \, | \, 0 \leq \theta < 2\pi, 0 \leq \varphi < 2\pi \right\}.</math> | : <math>\frac{1}{\sqrt{2}}S^1 \times \frac{1}{\sqrt{2}}S^1 = \left\{ \frac{1}{\sqrt{2}} \left( e^{i\theta}, e^{i\varphi} \right) \, | \, 0 \leq \theta < 2\pi, 0 \leq \varphi < 2\pi \right\}.</math> | ||
पहले की तरह | पहले की तरह यह '''C'''<sup>2</sup> में ईकाई स्फेयर ''S''<sup>3</sup> में एक एम्बेडेड सबमेनिफोल्ड है। | ||
यदि | यदि '''C'''<sup>2</sup> निर्देशांक (z1, z2) द्वारा दिया जाता है, तो क्लिफर्ड टोरस द्वारा दिया जाता है | ||
: <math>\left| z_1 \right|^2 = \frac{1}{2} = \left| z_2 \right|^2.</math> | : <math>\left| z_1 \right|^2 = \frac{1}{2} = \left| z_2 \right|^2.</math> | ||
क्लिफर्ड टोरस में जैसा कि ऊपर परिभाषित किया गया है | क्लिफर्ड टोरस में जैसा कि ऊपर परिभाषित किया गया है क्लिफर्ड टोरस के किसी भी बिंदु की '''C'''<sup>2</sup> की उत्पत्ति के लिए दूरी है | ||
: <math>\sqrt{ \frac{1}{2}\left| e^{i\theta} \right|^2 + \frac{1}{2}\left| e^{i\varphi} \right|^2} = 1.</math> | : <math>\sqrt{ \frac{1}{2}\left| e^{i\theta} \right|^2 + \frac{1}{2}\left| e^{i\varphi} \right|^2} = 1.</math> | ||
'''C'''<sup>2</sup> की उत्पत्ति से 1 की दूरी पर सभी बिंदुओं का सेट इकाई 3-गोला है, और इसलिए क्लिफोर्ड टोरस इस 3-गोले के अंदर बैठता है। वास्तव में क्लिफर्ड टोरस इस 3-गोले को दो सर्वांगसम ठोस टोरी में विभाजित करता है (देखें [[हीगार्ड विभाजन]]<ref name="Norbs"> | |||
{{cite journal | {{cite journal | ||
| last = Norbs | | last = Norbs | ||
Line 71: | Line 71: | ||
}}</ref>). | }}</ref>). | ||
चूंकि O(4) [[ऑर्थोगोनल परिवर्तन]] द्वारा '''R'''<sup>4</sup> पर कार्य करता है हम ऊपर परिभाषित "मानक" क्लिफोर्ड टोरस को कठोर घुमावों के माध्यम से अन्य समकक्ष तोरी में स्थानांतरित कर सकते हैं। इन सभी को "क्लिफर्ड टोरी" कहा जाता है। छह-आयामी समूह O(4) 3-गोले के अंदर बैठे ऐसे सभी क्लिफर्ड टोरी के स्थान पर सकर्मक रूप से कार्य करता है। चूँकि इस क्रिया में एक द्वि-आयामी स्टेबलाइज़र (([[समूह क्रिया (गणित)]] देखें) है क्योंकि एक टोरस के मध्याह्न और अनुदैर्ध्य दिशाओं में घूर्णन टोरस को संरक्षित करता है (इसे एक अलग टोरस में ले जाने के विपरीत) इसलिए वास्तव में क्लिफर्ड टोरी का एक चार आयामी स्थान है। वास्तव में ईकाई 3-गोले में क्लिफोर्ड टोरी के बीच एक-से-एक पत्राचार होता है और ध्रुवीय महान मंडलियों के जोड़े (अर्थात, बड़े व्रत जो अधिकतम रूप से अलग होते हैं)। क्लिफर्ड टोरस को देखते हुए, संबंधित ध्रुवीय महान वृत्त दो पूरक क्षेत्रों में से प्रत्येक के मूल वृत्त हैं।<ref name="Norbs" /> इसके विपरीत ध्रुवीय महान वृत्तों की किसी भी जोड़ी को देखते हुए संबंधित क्लिफोर्ड टोरस 3-गोले के बिंदुओं का स्थान है जो दो वृत्तों से समान दूरी पर हैं। | |||
== क्लिफोर्ड टोरी की अधिक सामान्य परिभाषा == | == क्लिफोर्ड टोरी की अधिक सामान्य परिभाषा == | ||
ईकाई 3-गोले | ईकाई 3-गोले ''S''<sup>3</sup> में समतल टोरी जो एक 2-समतल '''R'''<sup>2</sup> में त्रिज्या r के व्रत का उत्पाद है और त्रिज्या {{nowrap|{{radic|1 − ''r''<sup>2</sup>}}}} दूसरे 2-समतल '''R'''<sup>2</sup> में कभी-कभी "क्लिफर्ड टोरी" भी कहा जाता है। | ||
उन्हीं वृत्तों के बारे में सोचा जा सकता है कि उनकी त्रिज्याएँ cos(θ) और sin(θ) हैं | उन्हीं वृत्तों के बारे में सोचा जा सकता है कि उनकी त्रिज्याएँ हैं जो cos(θ) और sin(θ) हैं, कुछ कोण θ के लिए {{nowrap|0 ≤ ''θ'' ≤ {{pi}}/2}} (जहाँ हम पतित स्थिति सम्मिलित करते हैं {{nowrap|1=''θ'' = 0}} और {{nowrap|1=''θ'' = {{pi}}/2}}). | ||
{{nowrap|0 ≤ ''θ'' ≤ {{pi}}/2}} के लिए संघ इन सभी प्रकार की तोरी | |||
:<math>T_\theta = S(\cos\theta)\times S(\sin\theta)</math> | :<math>T_\theta = S(\cos\theta)\times S(\sin\theta)</math> | ||
(जहाँ S(r | (जहाँ ''S''(''r'') केंद्र {{nowrap|(0, 0)}} और त्रिज्या r द्वारा परिभाषित समतल '''R'''<sup>2</sup> में वृत्त को दर्शाता है) 3-गोला ''S''<sup>3</sup> है। (ध्यान दें कि हमें दो पतित स्थिति θ = 0 और θ = π/2 को सम्मिलित करना चाहिए जिनमें से प्रत्येक ''S''<sup>3</sup> के एक बड़े वृत्त से मेल खाता है, और जो एक साथ ध्रुवीय महान वृत्तों की एक जोड़ी बनाते हैं।) | ||
इस टोरस ''T<sub>θ</sub>'' का क्षेत्रफल आसानी से देखा जा सकता है | |||
:<math> \operatorname{area}(T_\theta) = 4\pi^2\cos\theta\sin\theta = 2\pi^2\sin2\theta,</math> | :<math> \operatorname{area}(T_\theta) = 4\pi^2\cos\theta\sin\theta = 2\pi^2\sin2\theta,</math> | ||
इसलिए केवल टोरस | इसलिए केवल टोरस ''T''<sub>π/4</sub> का अधिकतम संभव क्षेत्र 2π<sup>2</sup> है। यह टोरस ''T''<sub>π/4</sub> टोरस ''T<sub>θ</sub>'' है जिसे सामान्यतः "क्लिफर्ड टोरस" कहा जाता है - और यह केवल ''T<sub>θ</sub>'' में से एक है जो ''S''<sup>3</sup> में एक न्यूनतम सतह है। | ||
== फिर भी उच्च आयामों में क्लिफोर्ड टोरी की अधिक सामान्य परिभाषा == | == फिर भी उच्च आयामों में क्लिफोर्ड टोरी की अधिक सामान्य परिभाषा == | ||
सम-विम यूक्लिडियन स्थान '''R'''<sup>2''n''</sup> = '''C'''<sup>''n''</sup> में कोई भी इकाई क्षेत्र S<sup>2''n''−1</sup> जटिल निर्देशांक के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है: | |||
:<math>S^{2n-1} = \left\{(z_1, \ldots, z_n) \in \mathbf{C}^n : |z_1|^2 + \cdots + |z_n|^2 = 1\right\}.</math> | :<math>S^{2n-1} = \left\{(z_1, \ldots, z_n) \in \mathbf{C}^n : |z_1|^2 + \cdots + |z_n|^2 = 1\right\}.</math> | ||
फिर, किसी भी गैर-ऋणात्मक संख्या | फिर, किसी भी गैर-ऋणात्मक संख्या ''r''<sub>1</sub>, ..., ''r<sub>n</sub>'' के लिए ''r''<sub>1</sub><sup>2</sup> + ... + ''r<sub>n</sub>''<sup>2</sup> = 1 हम एक सामान्यीकृत क्लिफोर्ड टोरस को निम्नानुसार परिभाषित कर सकते हैं: | ||
:<math>T_{r_1,\ldots,r_n} = \left\{(z_1, \ldots, z_n) \in \mathbf{C}^n : |z_k| = r_k,~1 \leqslant k \leqslant n\right\}.</math> | :<math>T_{r_1,\ldots,r_n} = \left\{(z_1, \ldots, z_n) \in \mathbf{C}^n : |z_k| = r_k,~1 \leqslant k \leqslant n\right\}.</math> | ||
ये सामान्यीकृत | ये सामान्यीकृत क्लिफोर्ड टोरी सभी एक दूसरे से अलग हैं। हम एक बार फिर से यह निष्कर्ष निकाल सकते हैं कि इनमें से प्रत्येक का संघ T<sub>''r''1, ..., ''rn''</sub> इकाई (2''n'' − 1)-गोले ''S''<sup>2''n''−1</sup> है (जहां हमें फिर से पतित स्थिति को सम्मिलित करना चाहिए जहां कम से कम एक त्रिज्या r<sub>''k''</sub> = 0). | ||
== गुण == | == गुण == | ||
* क्लिफर्ड टोरस समतल है; क्रांति के मानक टोरस के विपरीत | * क्लिफर्ड टोरस समतल है; क्रांति के मानक टोरस के विपरीत इसे बिना खींचे समतल किया जा सकता है। | ||
* क्लिफर्ड टोरस 3-गोले को दो सर्वांगसम ठोस टोरी में विभाजित करता है। (एक स्टीरियोग्राफिक प्रोजेक्शन में | * क्लिफर्ड टोरस 3-गोले को दो सर्वांगसम ठोस टोरी में विभाजित करता है। (एक स्टीरियोग्राफिक प्रोजेक्शन में क्लिफोर्ड टोरस क्रांति के एक मानक टोरस के रूप में प्रकट होता है। तथ्य यह है कि यह 3-गोले को समान रूप से विभाजित करता है इसका अर्थ है कि प्रक्षेपित टोरस का इंटीरियर बाहरी के समान है जिसे आसानी से देखा नहीं जा सकता है)। | ||
== गणित में उपयोग == | == गणित में उपयोग == | ||
[[सहानुभूतिपूर्ण ज्यामिति]] में | [[सहानुभूतिपूर्ण ज्यामिति]] में क्लिफोर्ड टोरस मानक सहानुभूतिपूर्ण संरचना के साथ '''C'''<sup>2</sup> के एक एम्बेडेड [[Lagrangian सबमनीफोल्ड|लाग्रंगियन सबमनीफोल्ड]] का उदाहरण देता है। (अवश्य ही! '''C''' में एम्बेडेड वृत्तो का कोई भी उत्पाद '''C'''<sup>2</sup> का लैग्रैन्जियन टोरस देता है, इसलिए इन्हें क्लिफोर्ड टोरी नहीं होना चाहिए।) | ||
हिसियांग-लॉसन के अनुमान में कहा गया है कि मीट्रिक टेन्सर के साथ 3-गोले में प्रत्येक [[न्यूनतम सतह]] टोरस | हिसियांग-लॉसन के अनुमान में कहा गया है कि मीट्रिक टेन्सर के साथ 3-गोले में प्रत्येक [[न्यूनतम सतह]] टोरस या गोले पर गोल मीट्रिक एक क्लिफर्ड टोरस होना चाहिए। यह अनुमान 2012 में [[साइमन ब्रेंडल]] द्वारा सिद्ध किया गया था। | ||
क्लिफर्ड टोरी और अनुरूप परिवर्तन के तहत उनकी छवियां [[विलमोर ऊर्जा]] के वैश्विक न्यूनतमकर्ता हैं। | क्लिफर्ड टोरी और अनुरूप परिवर्तन के तहत उनकी छवियां [[विलमोर ऊर्जा]] के वैश्विक न्यूनतमकर्ता हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[डुओसिलेंडर]] | * [[डुओसिलेंडर]] | ||
Line 123: | Line 122: | ||
[[Category:Articles with invalid date parameter in template]] | [[Category:Articles with invalid date parameter in template]] | ||
[[Category:Created On 19/05/2023]] | [[Category:Created On 19/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with broken file links]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors|Short description/doc]] | [[Category:Pages with script errors|Short description/doc]] | ||
[[Category:Short description with empty Wikidata description]] | [[Category:Short description with empty Wikidata description]] |
Latest revision as of 16:04, 29 May 2023
ज्यामितीय टोपोलॉजी में, क्लिफर्ड टोरस दो हलकों S1
a और S1
b के कार्टेशियन उत्पाद का सबसे सरल और सबसे सममित समतल एम्बेडिंग है (उसी अर्थ में कि एक सिलेंडर की सतह "फ्लैट" है)। इसका नाम विलियम किंग्डन क्लिफोर्ड के नाम पर रखा गया है। यह R4 में रहता है, R3 के विपरीत यह देखने के लिए कि R4 क्यों आवश्यक है ध्यान दें कि यदि S1
a और S1
b प्रत्येक अपने स्वयं के स्वतंत्र एम्बेडिंग स्थान R2
a और R2
b में उपस्थित हैं तो परिणामी उत्पाद स्थान R3 के अतिरिक्त R4 होगा। ऐतिहासिक रूप से लोकप्रिय विचार है कि दो वृत्तो के कार्टेशियन उत्पाद एक R3 टोरस है इसके विपरीत दूसरे वृत्त में घूर्णन ऑपरेटर के अत्यधिक असममित अनुप्रयोग की आवश्यकता होती है, क्योंकि उस वृत्त में केवल एक स्वतंत्र अक्ष z उपलब्ध होगा जब पहले वृत्त x और y का उपभोग करता है
दूसरे विधि से कहा गया है, R3 में एम्बेडेड एक टोरस R4 में एम्बेडेड अधिकतम सममित क्लिफोर्ड टोरस का एक असममित कम-आयाम प्रक्षेपण है। संबंध एक घन के किनारों को कागज की शीट पर प्रक्षेपित करने के समान है। ऐसा प्रक्षेपण एक निम्न-आयामी छवि बनाता है जो घन किनारों की कनेक्टिविटी को स्पष्ट रूप से कैप्चर करता है, लेकिन घन के तीन पूर्ण सममित और विनिमेय अक्षों में से एक के इच्छानुसार से चयन और हटाने की भी आवश्यकता होती है।
यदि S1
a और S1
b में से प्रत्येक का सीमा है, तो उनका क्लिफर्ड टोरस उत्पाद 3-क्षेत्र S3 इकाई के अंदर पूरी तरह से फिट होगा जो कि R4 का 3-आयामी उपप्रजाति है। गणितीय रूप से सुविधाजनक होने पर क्लिफोर्ड टोरस को जटिल समन्वय स्थान C2 के अंदर रहने के रूप में देखा जा सकता है, क्योंकि C2 स्थलीय रूप से R4 के समान है।
क्लिफर्ड टोरस एक वर्ग टोरस का एक उदाहरण है, क्योंकि यह पहचान किए गए विपरीत पक्षों वाले वर्ग के लिए सममितीय है। इसे आगे यूक्लिडियन 2-टोरस के रूप में जाना जाता है ("2" इसका सामयिक आयाम है); इस पर खींचे गए आंकड़े यूक्लिडियन ज्यामिति का पालन करते हैं जैसे कि यह समतल थे जबकि एक सामान्य "डोनट" के आकार के टोरस की सतह बाहरी रिम पर सकारात्मक रूप से घुमावदार होती है और आंतरिक रूप से नकारात्मक रूप से घुमावदार होती है। यद्यपि त्रि-आयामी यूक्लिडियन अंतरिक्ष में एक टोरस के मानक एम्बेडिंग की तुलना में एक अलग ज्यामिति होने के अतिरिक्त वर्ग टोरस को नैश एम्बेडिंग प्रमेय द्वारा त्रि-आयामी अंतरिक्ष में भी एम्बेड किया जा सकता है; एक संभावित एम्बेडिंग सतह के साथ दो लंबवत दिशाओं में चल रहे तरंगों के फ्रैक्टल सेट द्वारा मानक टोरस को संशोधित करती है।[1]
औपचारिक परिभाषा
ईकाई वृत्त S1 , R2 में को कोण निर्देशांक द्वारा पैरामिट्रीकृत किया जा सकता है:
R2 की दूसरी कॉपी में ईकाई वृत्त की दूसरी कॉपी लें
फिर क्लिफर्ड टोरस है
चूँकि S1 की प्रत्येक प्रति R2 की एक एम्बेडेड सबमेनिफोल्ड है क्लिफर्ड टोरस R × R2 = R4 में एक एम्बेडेड टोरस है।
यदि R4 निर्देशांक (x1, y1, x2, y2) द्वारा दिया जाता है, तो क्लिफोर्ड टोरस द्वारा दिया जाता है
इससे पता चलता है कि R4 में क्लिफर्ड टोरस ईकाई 3-स्फियर S3 का एक सबमेनिफोल्ड है।
यह सत्यापित करना आसान है कि क्लिफर्ड टोरस S3 में एक न्यूनतम सतह है।
सम्मिश्र संख्याओं का प्रयोग करके वैकल्पिक व्युत्पत्ति
क्लिफर्ड टोरस को C2 में एक एम्बेडेड टोरस के रूप में माना जाना भी समान है। C की दो प्रतियों में हमारे पास निम्नलिखित इकाई वृत्त हैं (अभी भी एक कोण समन्वय द्वारा पैरामीट्रिज्ड हैं):
और
अब क्लिफर्ड टोरस के रूप में प्रकट होता है
पहले की तरह यह C2 में ईकाई स्फेयर S3 में एक एम्बेडेड सबमेनिफोल्ड है।
यदि C2 निर्देशांक (z1, z2) द्वारा दिया जाता है, तो क्लिफर्ड टोरस द्वारा दिया जाता है
क्लिफर्ड टोरस में जैसा कि ऊपर परिभाषित किया गया है क्लिफर्ड टोरस के किसी भी बिंदु की C2 की उत्पत्ति के लिए दूरी है
C2 की उत्पत्ति से 1 की दूरी पर सभी बिंदुओं का सेट इकाई 3-गोला है, और इसलिए क्लिफोर्ड टोरस इस 3-गोले के अंदर बैठता है। वास्तव में क्लिफर्ड टोरस इस 3-गोले को दो सर्वांगसम ठोस टोरी में विभाजित करता है (देखें हीगार्ड विभाजन[2]).
चूंकि O(4) ऑर्थोगोनल परिवर्तन द्वारा R4 पर कार्य करता है हम ऊपर परिभाषित "मानक" क्लिफोर्ड टोरस को कठोर घुमावों के माध्यम से अन्य समकक्ष तोरी में स्थानांतरित कर सकते हैं। इन सभी को "क्लिफर्ड टोरी" कहा जाता है। छह-आयामी समूह O(4) 3-गोले के अंदर बैठे ऐसे सभी क्लिफर्ड टोरी के स्थान पर सकर्मक रूप से कार्य करता है। चूँकि इस क्रिया में एक द्वि-आयामी स्टेबलाइज़र ((समूह क्रिया (गणित) देखें) है क्योंकि एक टोरस के मध्याह्न और अनुदैर्ध्य दिशाओं में घूर्णन टोरस को संरक्षित करता है (इसे एक अलग टोरस में ले जाने के विपरीत) इसलिए वास्तव में क्लिफर्ड टोरी का एक चार आयामी स्थान है। वास्तव में ईकाई 3-गोले में क्लिफोर्ड टोरी के बीच एक-से-एक पत्राचार होता है और ध्रुवीय महान मंडलियों के जोड़े (अर्थात, बड़े व्रत जो अधिकतम रूप से अलग होते हैं)। क्लिफर्ड टोरस को देखते हुए, संबंधित ध्रुवीय महान वृत्त दो पूरक क्षेत्रों में से प्रत्येक के मूल वृत्त हैं।[2] इसके विपरीत ध्रुवीय महान वृत्तों की किसी भी जोड़ी को देखते हुए संबंधित क्लिफोर्ड टोरस 3-गोले के बिंदुओं का स्थान है जो दो वृत्तों से समान दूरी पर हैं।
क्लिफोर्ड टोरी की अधिक सामान्य परिभाषा
ईकाई 3-गोले S3 में समतल टोरी जो एक 2-समतल R2 में त्रिज्या r के व्रत का उत्पाद है और त्रिज्या √1 − r2 दूसरे 2-समतल R2 में कभी-कभी "क्लिफर्ड टोरी" भी कहा जाता है।
उन्हीं वृत्तों के बारे में सोचा जा सकता है कि उनकी त्रिज्याएँ हैं जो cos(θ) और sin(θ) हैं, कुछ कोण θ के लिए 0 ≤ θ ≤ π/2 (जहाँ हम पतित स्थिति सम्मिलित करते हैं θ = 0 और θ = π/2).
0 ≤ θ ≤ π/2 के लिए संघ इन सभी प्रकार की तोरी
(जहाँ S(r) केंद्र (0, 0) और त्रिज्या r द्वारा परिभाषित समतल R2 में वृत्त को दर्शाता है) 3-गोला S3 है। (ध्यान दें कि हमें दो पतित स्थिति θ = 0 और θ = π/2 को सम्मिलित करना चाहिए जिनमें से प्रत्येक S3 के एक बड़े वृत्त से मेल खाता है, और जो एक साथ ध्रुवीय महान वृत्तों की एक जोड़ी बनाते हैं।)
इस टोरस Tθ का क्षेत्रफल आसानी से देखा जा सकता है
इसलिए केवल टोरस Tπ/4 का अधिकतम संभव क्षेत्र 2π2 है। यह टोरस Tπ/4 टोरस Tθ है जिसे सामान्यतः "क्लिफर्ड टोरस" कहा जाता है - और यह केवल Tθ में से एक है जो S3 में एक न्यूनतम सतह है।
फिर भी उच्च आयामों में क्लिफोर्ड टोरी की अधिक सामान्य परिभाषा
सम-विम यूक्लिडियन स्थान R2n = Cn में कोई भी इकाई क्षेत्र S2n−1 जटिल निर्देशांक के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है:
फिर, किसी भी गैर-ऋणात्मक संख्या r1, ..., rn के लिए r12 + ... + rn2 = 1 हम एक सामान्यीकृत क्लिफोर्ड टोरस को निम्नानुसार परिभाषित कर सकते हैं:
ये सामान्यीकृत क्लिफोर्ड टोरी सभी एक दूसरे से अलग हैं। हम एक बार फिर से यह निष्कर्ष निकाल सकते हैं कि इनमें से प्रत्येक का संघ Tr1, ..., rn इकाई (2n − 1)-गोले S2n−1 है (जहां हमें फिर से पतित स्थिति को सम्मिलित करना चाहिए जहां कम से कम एक त्रिज्या rk = 0).
गुण
- क्लिफर्ड टोरस समतल है; क्रांति के मानक टोरस के विपरीत इसे बिना खींचे समतल किया जा सकता है।
- क्लिफर्ड टोरस 3-गोले को दो सर्वांगसम ठोस टोरी में विभाजित करता है। (एक स्टीरियोग्राफिक प्रोजेक्शन में क्लिफोर्ड टोरस क्रांति के एक मानक टोरस के रूप में प्रकट होता है। तथ्य यह है कि यह 3-गोले को समान रूप से विभाजित करता है इसका अर्थ है कि प्रक्षेपित टोरस का इंटीरियर बाहरी के समान है जिसे आसानी से देखा नहीं जा सकता है)।
गणित में उपयोग
सहानुभूतिपूर्ण ज्यामिति में क्लिफोर्ड टोरस मानक सहानुभूतिपूर्ण संरचना के साथ C2 के एक एम्बेडेड लाग्रंगियन सबमनीफोल्ड का उदाहरण देता है। (अवश्य ही! C में एम्बेडेड वृत्तो का कोई भी उत्पाद C2 का लैग्रैन्जियन टोरस देता है, इसलिए इन्हें क्लिफोर्ड टोरी नहीं होना चाहिए।)
हिसियांग-लॉसन के अनुमान में कहा गया है कि मीट्रिक टेन्सर के साथ 3-गोले में प्रत्येक न्यूनतम सतह टोरस या गोले पर गोल मीट्रिक एक क्लिफर्ड टोरस होना चाहिए। यह अनुमान 2012 में साइमन ब्रेंडल द्वारा सिद्ध किया गया था।
क्लिफर्ड टोरी और अनुरूप परिवर्तन के तहत उनकी छवियां विलमोर ऊर्जा के वैश्विक न्यूनतमकर्ता हैं।
यह भी देखें
- डुओसिलेंडर
- हॉफ फिब्रेशन
- क्लिफर्ड समानांतर और क्लिफर्ड सतह
- विलियम किंगडम क्लिफोर्ड
संदर्भ
- ↑ Borrelli, V.; Jabrane, S.; Lazarus, F.; Thibert, B. (April 2012), "Flat tori in three-dimensional space and convex integration", Proceedings of the National Academy of Sciences, 109 (19): 7218–7223, doi:10.1073/pnas.1118478109, PMC 3358891, PMID 22523238.
- ↑ 2.0 2.1 Norbs, P (September 2005). "The 12th problem" (PDF). The Australian Mathematical Society Gazette. 32 (4): 244–246.