सहसंबंध (प्रोजेक्टिव ज्यामिति): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{about|प्रक्षेपी ज्यामिति में कॉररेजन||कॉररेजन(बहुविकल्पी)}} | {{about|प्रक्षेपी ज्यामिति में कॉररेजन||कॉररेजन(बहुविकल्पी)}} | ||
[[प्रक्षेपी ज्यामिति|प्रोजेक्टिव ज्यामिति]] में, कॉररेजन ''डी'' आयामी [[ प्रक्षेपण स्थान | प्रोजेक्टिव स्थान]] का रूपांतरण होता है, जो प्रोजेक्टिव स्थान को मैप करता है और आयाम K के प्रोजेक्टिव उपस्थान को आयाम ''d'' − ''k'' − 1 के उपस्थान के रूप में मैप करता है। समावेशन को उलटना सेट सिद्धांत और घटना को संरक्षित करना है और इस प्रकार ज्यामिति कॉररेजन | [[प्रक्षेपी ज्यामिति|प्रोजेक्टिव ज्यामिति]] में, कॉररेजन ''डी'' आयामी [[ प्रक्षेपण स्थान |प्रोजेक्टिव स्थान]] का रूपांतरण होता है, जो प्रोजेक्टिव स्थान को मैप करता है और आयाम K के प्रोजेक्टिव उपस्थान को आयाम ''d'' − ''k'' − 1 के उपस्थान के रूप में मैप करता है। समावेशन को उलटना सेट सिद्धांत और घटना को संरक्षित करना है और इस प्रकार ज्यामिति कॉररेजन को पारस्परिकता या पारस्परिक रूपांतरण भी कहा जाता है। | ||
== दो आयामों में == | == दो आयामों में == | ||
वास्तविक प्रोजेक्टिव तल में, बिंदु और रेखाएँ एक दूसरे के लिए [[द्वैत (प्रक्षेपी ज्यामिति)|द्वैत (प्रोजेक्टिव ज्यामिति)]] के रूप में हैं। जैसा कॉक्सेटर द्वारा व्यक्त किया गया है, | वास्तविक प्रोजेक्टिव तल में, बिंदु और रेखाएँ एक दूसरे के लिए [[द्वैत (प्रक्षेपी ज्यामिति)|द्वैत (प्रोजेक्टिव ज्यामिति)]] के रूप में हैं। जैसा कॉक्सेटर द्वारा व्यक्त किया गया है, | ||
: कॉररेजन | : कॉररेजन एक बिंदु से रेखा और एक रेखा से बिंदु रूपांतरण है, जो द्वैत के सिद्धांत के अनुसार घटनाओं के संबंध को संरक्षित करता है। इस प्रकार यह [[प्रक्षेप्य सीमा]] को [[पेंसिल (गणित)]] में, पेंसिल को रेंज में परिवर्तित कर देती है और इस प्रकार चतुष्कोणों को चतुर्भुज के रूप में इसी तरह बदल देता है।<ref>[[H. S. M. Coxeter]] (1974) ''Projective Geometry'', second edition, page 57, [[University of Toronto Press]] {{ISBN|0-8020-2104-2}}</ref> | ||
एक रेखा m और P को एक बिंदु दिया गया है जो m पर नहीं है, एक प्रारंभिक | एक रेखा m और P को एक बिंदु दिया गया है जो m पर नहीं है, एक प्रारंभिक कॉररेजन निम्नानुसार प्राप्त होता है, जो m पर प्रत्येक Q के लिए रेखा PQ बनाते हैं और इस प्रकार व्युत्क्रम फलन कॉररेजन P पर पेंसिल से शुरू होता है। इस पेंसिल में किसी भी रेखा q के लिए बिंदु {{nowrap|''m'' ∩ ''q''}}. एक ही पेंसिल साझा करने वाले दो कॉररेजन की कार्य संरचना एक परिप्रेक्ष्य के रूप में होती है। | ||
== तीन आयामों में == | == तीन आयामों में == | ||
एक 3-आयामी प्रोजेक्टिव स्थान में कॉररेजन बिंदु को एक ज्यामिति तल पर मैप करता है। जैसा कि एक पाठ्यपुस्तक में कहा गया है<ref>[[J. G. Semple]] and G. T. Kneebone (1952) ''Algebraic Projective Geometry'', p 360, [[Clarendon Press]]</ref> | एक 3-आयामी प्रोजेक्टिव स्थान में कॉररेजन बिंदु को एक ज्यामिति तल पर मैप करता है। जैसा कि एक पाठ्यपुस्तक में कहा गया है<ref>[[J. G. Semple]] and G. T. Kneebone (1952) ''Algebraic Projective Geometry'', p 360, [[Clarendon Press]]</ref> | ||
: यदि κ एक ऐसा | : यदि κ एक ऐसा कॉररेजन है, तो प्रत्येक बिंदु P इसके द्वारा एक समतल में रूपांतरित हो जाता है {{nowrap|1=''π''′ = ''κP''}} और इसके विपरीत प्रत्येक बिंदु P उलटा रूपांतरण κ<sup>-1</sup> द्वारा एक अद्वितीय तल π' से उत्पन्न होता है। | ||
त्रि-आयामी | त्रि-आयामी कॉररेजन रेखा को रेखाओं में बदल देते हैं, इसलिए उन्हें दो स्थानों के संयोग के रूप में माना जा सकता है। | ||
== उच्च आयामों में == | == उच्च आयामों में == | ||
सामान्य एन-आयामी प्रोजेक्टिव स्थान में, एक | सामान्य एन-आयामी प्रोजेक्टिव स्थान में, एक कॉररेजन[[ hyperplane | समतल]] के लिए एक बिंदु लेता है और इस प्रकार पॉल येल द्वारा इस संदर्भ का वर्णन किया गया है। | ||
: प्रोजेक्टिव स्थान 'पी' (वी) का | : प्रोजेक्टिव स्थान 'पी' (वी) का कॉररेजन 'पी' (वी) के उचित उप-स्थानों का एक समावेशन-प्रतिवर्ती क्रमरूपांतरण के रूप में होता है।<ref>Paul B. Yale (1968, 1988. 2004) ''Geometry and Symmetry'', chapter 6.9 Correlations and semi-bilinear forms, [[Dover Publications]] {{ISBN|0-486-43835-X}}</ref> | ||
यह प्रमेय साबित करती है जिसमें कहा गया है कि कॉररेजन | यह प्रमेय साबित करती है जिसमें कहा गया है कि कॉररेजन φ इंटरचेंज के रूप में होता है और प्रतिच्छेदन करता है और 'पी' (वी) के किसी भी प्रोजेक्टिव उपस्थान डब्ल्यू के लिए φ के अनुसार डब्ल्यू की छवि का आयाम {{nowrap|(''n'' − 1) − dim ''W''}}, है और जहां n सदिश स्थान V का आयाम है जिसका उपयोग प्रोजेक्टिव स्थान 'P'(V) उत्पन्न करने के लिए किया जाता है। | ||
== कॉररेजन | == कॉररेजन का अस्तित्व == | ||
यदि स्थान स्व-द्वैत है तो | यदि स्थान स्व-द्वैत के रूप में है, तो कॉररेजन के रूप में उपलब्ध होते हैं और इस प्रकार आयाम 3 और उच्चतर के लिए स्व-द्वैत का परीक्षण करना आसान है और समन्वयकारी स्क्यूफील्ड क्षेत्र के रूप में उपलब्ध होते हैं और स्व-द्वंद्व विफल हो जाता है यदि और केवल यदि स्क्यूफील्ड क्षेत्र इसके विपरीत आइसोमोर्फिक रूप में नहीं होता है। | ||
== विशेष प्रकार के | == विशेष प्रकार के कॉररेजन == | ||
=== ध्रुवीयता === | === ध्रुवीयता === | ||
यदि | यदि कॉररेजन φ एक अंतर्वलन (गणित) के रूप में है, अर्थात, कॉररेजन के दो अनुप्रयोग सभी बिंदुओं के लिए P पहचान {{nowrap|1=''φ''<sup>2</sup>(''P'') = ''P''}} के बराबर होते हैं और यह [[ध्रुवीकरण]] कहलाता है। प्रोजेक्टिव रिक्त स्थान की ध्रुवीयताएं ध्रुवीय रिक्त स्थान की ओर ले जाती हैं, जो कि सभी उप-स्थानों का संग्रह कर परिभाषित की जाती हैं जो उनकी छवि में ध्रुवीयता के अंतर्गत निहित होता हैं। | ||
=== प्राकृतिक | === प्राकृतिक कॉररेजन === | ||
प्रोजेक्टिव स्थान P(''V'') और इसके दोहरे P | प्रोजेक्टिव स्थान P(''V'') और इसके दोहरे P''V'' के बीच प्रेरित प्राकृतिक कॉररेजन प्रेरित होता है, जो अंतर्निहित सदिश रिक्त स्थान V और इसके दोहरे V∗ के बीच प्राकृतिक [[युग्मन]] {{nowrap|{{langle}}⋅,⋅{{rangle}}}} द्वारा होता है। जहां V की प्रत्येक उपसमष्टि W को V⊥ को इसके [[ऑर्थोगोनल पूरक]] W⊥ से मैप किया जाता है, जिसे {{nowrap|1=''W''<sup>⊥</sup> = {''v'' ∈ ''V'' {{!}} {{langle}}''w'', ''v''{{rangle}} = 0, ∀''w'' ∈ ''W''}.}}के रूप में परिभाषित किया जाता है {{refn|{{citation|author=Irving Kaplansky|year=1974|origyear=1969|title=Linear Algebra and Geometry|edition=2nd|page=104}}}} | ||
इस प्राकृतिक | अर्धरेखीय मानचित्र द्वारा प्रेरित प्रक्षेपीय स्थानों के समस्थानिक स्थानों के साथ इस प्राकृतिक संबंध की रचना के साथ P (V) का स्वयं में कॉररेजन उत्पन्न करता है। इस प्रकार सभी गैर-डीजेनेरेटेड अर्धरेखीय मैप {{nowrap|''V'' → ''V''<sup>∗</sup>}} में प्रोजेक्टिव स्पेस का अपने आप से कॉररेजन होता है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 00:23, 30 May 2023
प्रोजेक्टिव ज्यामिति में, कॉररेजन डी आयामी प्रोजेक्टिव स्थान का रूपांतरण होता है, जो प्रोजेक्टिव स्थान को मैप करता है और आयाम K के प्रोजेक्टिव उपस्थान को आयाम d − k − 1 के उपस्थान के रूप में मैप करता है। समावेशन को उलटना सेट सिद्धांत और घटना को संरक्षित करना है और इस प्रकार ज्यामिति कॉररेजन को पारस्परिकता या पारस्परिक रूपांतरण भी कहा जाता है।
दो आयामों में
वास्तविक प्रोजेक्टिव तल में, बिंदु और रेखाएँ एक दूसरे के लिए द्वैत (प्रोजेक्टिव ज्यामिति) के रूप में हैं। जैसा कॉक्सेटर द्वारा व्यक्त किया गया है,
- कॉररेजन एक बिंदु से रेखा और एक रेखा से बिंदु रूपांतरण है, जो द्वैत के सिद्धांत के अनुसार घटनाओं के संबंध को संरक्षित करता है। इस प्रकार यह प्रक्षेप्य सीमा को पेंसिल (गणित) में, पेंसिल को रेंज में परिवर्तित कर देती है और इस प्रकार चतुष्कोणों को चतुर्भुज के रूप में इसी तरह बदल देता है।[1]
एक रेखा m और P को एक बिंदु दिया गया है जो m पर नहीं है, एक प्रारंभिक कॉररेजन निम्नानुसार प्राप्त होता है, जो m पर प्रत्येक Q के लिए रेखा PQ बनाते हैं और इस प्रकार व्युत्क्रम फलन कॉररेजन P पर पेंसिल से शुरू होता है। इस पेंसिल में किसी भी रेखा q के लिए बिंदु m ∩ q. एक ही पेंसिल साझा करने वाले दो कॉररेजन की कार्य संरचना एक परिप्रेक्ष्य के रूप में होती है।
तीन आयामों में
एक 3-आयामी प्रोजेक्टिव स्थान में कॉररेजन बिंदु को एक ज्यामिति तल पर मैप करता है। जैसा कि एक पाठ्यपुस्तक में कहा गया है[2]
- यदि κ एक ऐसा कॉररेजन है, तो प्रत्येक बिंदु P इसके द्वारा एक समतल में रूपांतरित हो जाता है π′ = κP और इसके विपरीत प्रत्येक बिंदु P उलटा रूपांतरण κ-1 द्वारा एक अद्वितीय तल π' से उत्पन्न होता है।
त्रि-आयामी कॉररेजन रेखा को रेखाओं में बदल देते हैं, इसलिए उन्हें दो स्थानों के संयोग के रूप में माना जा सकता है।
उच्च आयामों में
सामान्य एन-आयामी प्रोजेक्टिव स्थान में, एक कॉररेजन समतल के लिए एक बिंदु लेता है और इस प्रकार पॉल येल द्वारा इस संदर्भ का वर्णन किया गया है।
- प्रोजेक्टिव स्थान 'पी' (वी) का कॉररेजन 'पी' (वी) के उचित उप-स्थानों का एक समावेशन-प्रतिवर्ती क्रमरूपांतरण के रूप में होता है।[3]
यह प्रमेय साबित करती है जिसमें कहा गया है कि कॉररेजन φ इंटरचेंज के रूप में होता है और प्रतिच्छेदन करता है और 'पी' (वी) के किसी भी प्रोजेक्टिव उपस्थान डब्ल्यू के लिए φ के अनुसार डब्ल्यू की छवि का आयाम (n − 1) − dim W, है और जहां n सदिश स्थान V का आयाम है जिसका उपयोग प्रोजेक्टिव स्थान 'P'(V) उत्पन्न करने के लिए किया जाता है।
कॉररेजन का अस्तित्व
यदि स्थान स्व-द्वैत के रूप में है, तो कॉररेजन के रूप में उपलब्ध होते हैं और इस प्रकार आयाम 3 और उच्चतर के लिए स्व-द्वैत का परीक्षण करना आसान है और समन्वयकारी स्क्यूफील्ड क्षेत्र के रूप में उपलब्ध होते हैं और स्व-द्वंद्व विफल हो जाता है यदि और केवल यदि स्क्यूफील्ड क्षेत्र इसके विपरीत आइसोमोर्फिक रूप में नहीं होता है।
विशेष प्रकार के कॉररेजन
ध्रुवीयता
यदि कॉररेजन φ एक अंतर्वलन (गणित) के रूप में है, अर्थात, कॉररेजन के दो अनुप्रयोग सभी बिंदुओं के लिए P पहचान φ2(P) = P के बराबर होते हैं और यह ध्रुवीकरण कहलाता है। प्रोजेक्टिव रिक्त स्थान की ध्रुवीयताएं ध्रुवीय रिक्त स्थान की ओर ले जाती हैं, जो कि सभी उप-स्थानों का संग्रह कर परिभाषित की जाती हैं जो उनकी छवि में ध्रुवीयता के अंतर्गत निहित होता हैं।
प्राकृतिक कॉररेजन
प्रोजेक्टिव स्थान P(V) और इसके दोहरे PV के बीच प्रेरित प्राकृतिक कॉररेजन प्रेरित होता है, जो अंतर्निहित सदिश रिक्त स्थान V और इसके दोहरे V∗ के बीच प्राकृतिक युग्मन ⟨⋅,⋅⟩ द्वारा होता है। जहां V की प्रत्येक उपसमष्टि W को V⊥ को इसके ऑर्थोगोनल पूरक W⊥ से मैप किया जाता है, जिसे W⊥ = {v ∈ V | ⟨w, v⟩ = 0, ∀w ∈ W}.के रूप में परिभाषित किया जाता है [4]
अर्धरेखीय मानचित्र द्वारा प्रेरित प्रक्षेपीय स्थानों के समस्थानिक स्थानों के साथ इस प्राकृतिक संबंध की रचना के साथ P (V) का स्वयं में कॉररेजन उत्पन्न करता है। इस प्रकार सभी गैर-डीजेनेरेटेड अर्धरेखीय मैप V → V∗ में प्रोजेक्टिव स्पेस का अपने आप से कॉररेजन होता है।
संदर्भ
- ↑ H. S. M. Coxeter (1974) Projective Geometry, second edition, page 57, University of Toronto Press ISBN 0-8020-2104-2
- ↑ J. G. Semple and G. T. Kneebone (1952) Algebraic Projective Geometry, p 360, Clarendon Press
- ↑ Paul B. Yale (1968, 1988. 2004) Geometry and Symmetry, chapter 6.9 Correlations and semi-bilinear forms, Dover Publications ISBN 0-486-43835-X
- ↑ Irving Kaplansky (1974) [1969], Linear Algebra and Geometry (2nd ed.), p. 104
- Robert J. Bumcroft (1969), Modern Projective Geometry, Holt, Rinehart, and Winston, Chapter 4.5 Correlations p. 90
- Robert A. Rosenbaum (1963), Introduction to Projective Geometry and Modern Algebra, Addison-Wesley, p. 198