घूर्णन समुच्चय: Difference between revisions

From Vigyanwiki
m (Abhishek moved page घूमने वाला सेट to घूर्णन समुच्चय without leaving a redirect)
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 57: Line 57:




{{DEFAULTSORT:Wandering Set}}[[Category: एर्गोडिक सिद्धांत]] [[Category: सीमा तय करती है]] [[Category: गतिशील प्रणाली]]
{{DEFAULTSORT:Wandering Set}}


 
[[Category:Created On 26/05/2023|Wandering Set]]
 
[[Category:Lua-based templates|Wandering Set]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Wandering Set]]
[[Category:Created On 26/05/2023]]
[[Category:Pages with script errors|Wandering Set]]
[[Category:Templates Vigyan Ready|Wandering Set]]
[[Category:Templates that add a tracking category|Wandering Set]]
[[Category:Templates that generate short descriptions|Wandering Set]]
[[Category:Templates using TemplateData|Wandering Set]]
[[Category:एर्गोडिक सिद्धांत|Wandering Set]]
[[Category:गतिशील प्रणाली|Wandering Set]]
[[Category:सीमा तय करती है|Wandering Set]]

Latest revision as of 14:49, 6 June 2023

गतिशील प्रणालियों और एर्गोडिक सिद्धांत में घूर्णन समुच्चय की अवधारणा किसी गणितीय मिश्रण के निश्चित विचार को औपचारिक रूप देती है। जब गतिशील प्रणाली में गैर-शून्य माप का घूर्णन समुच्चय उपयोग होता है, तो इस प्रकार की प्रणाली विघटनकारी प्रणाली होती है। यह रूढ़िवादी प्रणाली के विपरीत रहती है, जिस पर पोंकारे पुनरावृत्ति प्रमेय लागू होती है। इस प्रकार सहजता से, घूर्णन समुच्चय और अपव्यय के बीच संबंध सरलता से समझा जाता है: यदि चरण स्थान का भाग किसी प्रणाली के सामान्य समय विकास के समय भटक जाता है, और फिर कभी नहीं देखा जाता तो यह प्रणाली विघटनकारी रूप से प्रयुक्त होती है। अपव्यय प्रणाली की अवधारणा को सटीक, गणितीय परिभाषा देने के लिए घूर्णन वाले समुच्चय की भाषा का उपयोग किया जा सकता है। 1927 में जॉर्ज डेविड बिरखॉफ द्वारा फेज स्पेस में वांडरिंग समुच्चय की धारणा पेश की गई थी।

घूर्णन बिंदु

घूर्णन समुच्चयों की सरलता, असतत-समय को परिभाषा करने के लिए मानचित्र द्वारा इसे प्रारंभ किया जाता है, इस प्रकार फलन टोपोलॉजिकल स्पेस x बिंदु के लिए यदि कोई समीपस्थ बिन्दु x का U और धनात्मक पूर्णांक N है, तो इसे घूर्णन बिंदु कहा जाता है, जैसे कि सभी के लिए , पुनरावृत्त नक्शा गैर-प्रतिच्छेदित होता है:

किसी सरल परिभाषा के लिए केवल यह आवश्यक है कि प्रतिच्छेदन बिन्दु का मान शून्य हो। इसका सही मान प्राप्त करने के लिए इसकी परिभाषा के अनुसार यह आवश्यक है कि X माप स्थान हो, अर्ताथ ट्रिपल भाग के लिए बोरेल समुच्चय की और का मान इस प्रकार है कि

इसके सभी मानों के लिए रहता हैं। इसी प्रकार सतत समय प्रणाली में नक्शा प्राप्त होगा। इस प्रकार टाइम इवोल्यूशन ऑपरेटर के साथ प्रणाली के समय विकास या प्रवाह (गणित) को X द्वारा परिभाषित करने पर एक-पैरामीटर सतत एबेलियन समूह समूह क्रिया (गणित) होती हैं जो इस प्रकार हैं:

ऐसे में यह घूर्णन बिंदु है जिसके लिए x का समीपस्थ बिंदु U होगा और समय T ऐसा होगा कि हर समय के लिए , समय-विकसित नक्शे की माप करने पर मान शून्य है:

इन सरल परिभाषाओं को टोपोलॉजिकल समूह के समूह क्रिया को गणितीय रूप से पूर्ण रूप से सामान्यीकृत किया जा सकता है। इस प्रकार माप स्थान को प्रकट करता हैं, जो कि समुच्चय (गणित) है जिसमें माप (गणित) है जो इसके बोरेल सबसमुच्चय पर परिभाषित है। इस प्रकार उस समुच्चय पर अभिनय करने वाला समूह बनाता हैं। इस प्रकार दिया गया बिंदु के लिए समुच्चय

बिंदु x का प्रक्षेपवक्र या समूह सिद्धांत कहा जाता है।

इस प्रकार अवयव घूर्णन बिंदु कहा जाता है यदि वहां 'x' का समीपस्थ 'U' और इसकी पहचान के लिए समीपस्थ 'v' बिंदु उपस्थित है जिसे से प्रकट करते हैं जो इस प्रकार हैं-

इसके सभी मानों के लिए समीकरण प्रयुक्त हैं।

गैर-घूर्णन वाले बिंदु

गैर-घूर्णन बिंदु विपरीत रहते हैं। असतत स्थितियों में, गैर-घूमने वाले बिंदु है, यदि x और प्रत्येक N> 0 वाले प्रत्येक खुले समुच्चय U के लिए, कुछ n> N ऐसा है

इसी प्रकार की परिभाषाएँ निरंतर-समय और असतत और निरंतर समूह क्रियाओं के लिए अनुसरण करती हैं।

वांडरिंग समुच्चय और अपव्यय प्रणाली

वांडरिंग समुच्चय वांडरिंग पॉइंट्स का संग्रह है। अधिक सटीक रूप से, का उपसमुच्चय W असतत समूह के कार्यों के फलस्वरुप घूर्णन वाला समुच्चय है, इस प्रकार यदि W औसत स्थिति का है और यदि, किसी के लिए प्रतिच्छेदन

माप शून्य का समुच्चय है।

घूर्णन समुच्चय की अवधारणा पोंकारे पुनरावृत्ति प्रमेय में व्यक्त विचारों के लिए अर्थ में दोहरी है। यदि धनात्मक माप के लिए यह समुच्चय उपयोग किया जाता है, तो इस क्रिया को द्वारा बताया गया हैं। इस प्रकार गतिशील प्रणाली अपव्यय प्रणाली कहा जाता है। यदि ऐसा कोई वांडरिंग समुच्चय नहीं है, तो क्रिया को कहा जाता है, अपव्ययी प्रणाली एक प्रकार से रूढ़िवादी प्रणाली है। इस प्रकार उदाहरण के लिए, कोई भी प्रणाली जिसके लिए पॉइनकेयर पुनरावृत्ति प्रमेय धारण करता है, परिभाषा के अनुसार, धनात्मक माप का घूर्णन वाला समुच्चय नहीं हो सकता है; और इस प्रकार रूढ़िवादी प्रणाली का उदाहरण है।

वांडरिंग समुच्चय W के प्रक्षेपपथ को परिभाषित कीजिए

की क्रिया में बताया गया हैं कि समुच्चय यदि धनात्मक माप का घूर्णन समुच्चय W मान प्रस्तुत करता है, जैसे कि कक्षा लगभग-हर जगह के बराबर है , अर्ताथ यदि

माप शून्य का समुच्चय है।

हॉफ अपघटन बताता है कि रूढ़िवादी प्रणाली के साथ प्रत्येक माप स्थान या गैर-एकवचन परिवर्तन को अपरिवर्तनीय रूढ़िवादी समुच्चय और अपरिवर्तनीय घूर्णन वाले समुच्चय में विघटित किया जा सकता है।

यह भी देखें

संदर्भ

  • Nicholls, Peter J. (1989). The Ergodic Theory of Discrete Groups. Cambridge: Cambridge University Press. ISBN 0-521-37674-2.
  • Alexandre I. Danilenko and Cesar E. Silva (8 April 2009). Ergodic theory: Nonsingular transformations; See Arxiv arXiv:0803.2424.
  • Krengel, Ulrich (1985), Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, de Gruyter, ISBN 3-11-008478-3