प्रोटॉन परमाणु चुंबकीय अनुनाद: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|NMR via protons, hydrogen-1 nuclei}} thumb|431px|उदाहरण <sup>1</sup> [[मेन्थॉल एनैन...")
 
No edit summary
 
(23 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|NMR via protons, hydrogen-1 nuclei}}
{{Short description|NMR via protons, hydrogen-1 nuclei}}
[[File:Menthol Proton Spectrum.jpg|thumb|431px|उदाहरण <sup>1</sup> [[मेन्थॉल]] एनैन्टीओमर्स के मिश्रण का एच एनएमआर स्पेक्ट्रम (1-आयामी) सिग्नल तीव्रता (ऊर्ध्वाधर अक्ष) बनाम रासायनिक बदलाव (क्षैतिज अक्ष पर पीपीएम में) के रूप में प्लॉट किया गया। स्पेक्ट्रम से संकेतों को ऊपरी बाएँ में दिखाए गए [[रासायनिक संरचना]] से [[हाइड्रोजन]] परमाणु समूहों (ए से जे) को सौंपा गया है।]]प्रोटॉन परमाणु चुंबकीय अनुनाद (प्रोटॉन एनएमआर, हाइड्रोजन -1 एनएमआर, या<sup>1</sup>H NMR) किसी पदार्थ के [[अणुओं]] के भीतर [[हाइड्रोजन -1]] [[परमाणु नाभिक]] के संबंध में [[एनएमआर स्पेक्ट्रोस्कोपी]] में परमाणु चुंबकीय अनुनाद का अनुप्रयोग है, ताकि इसके अणुओं की संरचना का निर्धारण किया जा सके।<ref>R. M. Silverstein, G. C. Bassler and T. C. Morrill, ''Spectrometric Identification of Organic Compounds'', 5th Ed., Wiley, '''1991'''.</ref> नमूने में जहां प्राकृतिक हाइड्रोजन (एच) का उपयोग किया जाता है, व्यावहारिक रूप से सभी हाइड्रोजन में [[आइसोटोप]] होता है <sup>1</sup>H (हाइड्रोजन-1; यानी एक नाभिक के लिए एक [[प्रोटॉन]] होना)
[[File:Menthol Proton Spectrum.jpg|thumb|431px|उदाहरण <sup>1</sup> [[मेन्थॉल]] एनैन्टीओमर्स के मिश्रण का एच एनएमआर स्पेक्ट्रम (1-आयामी) सिग्नल तीव्रता (ऊर्ध्वाधर अक्ष) बनाम रासायनिक परिवर्तन (क्षैतिज अक्ष पर पीपीएम में) के रूप में प्लॉट किया गया। स्पेक्ट्रम से संकेतों को ऊपरी बाएँ में दिखाए गए [[रासायनिक संरचना]] से [[हाइड्रोजन]] परमाणु समूहों (ए से जे) को सौंपा गया है।]]प्रोटॉन परमाणु चुंबकीय अनुनाद (प्रोटॉन एनएमआर, एनएमआर, हाइड्रोजन -1 एनएमआर, या <sup>1</sup>H एनएमआर) किसी पदार्थ के [[अणुओं]] के भीतर [[हाइड्रोजन -1]] [[परमाणु नाभिक]] के संबंध में [[एनएमआर स्पेक्ट्रोस्कोपी]] में परमाणु चुंबकीय अनुनाद का अनुप्रयोग है, जिससे की इसके अणुओं की संरचना का निर्धारण किया जा सके।<ref>R. M. Silverstein, G. C. Bassler and T. C. Morrill, ''Spectrometric Identification of Organic Compounds'', 5th Ed., Wiley, '''1991'''.</ref> नमूनों में जहां प्राकृतिक हाइड्रोजन (H) का उपयोग किया जाता है, व्यावहारिक रूप से सभी हाइड्रोजन में [[आइसोटोप]] <sup>1</sup>H (हाइड्रोजन-1; अर्थात एक नाभिक के लिए एक [[प्रोटॉन]]) होता है।


सरल एनएमआर स्पेक्ट्रा [[समाधान (रसायन विज्ञान)]] में दर्ज किए जाते हैं, और [[विलायक]] प्रोटॉन को हस्तक्षेप करने की अनुमति नहीं दी जानी चाहिए। [[ड्यूटेरियम]] (ड्यूटेरियम = <sup>2</sup>H, जिसे अक्सर D के रूप में दर्शाया जाता है) विशेष रूप से NMR में उपयोग के लिए सॉल्वैंट्स को प्राथमिकता दी जाती है, उदा। भारी पानी, डी<sub>2</sub>हे, ड्यूटेरेटेड [[एसीटोन]], (सीडी<sub>3</sub>)<sub>2</sub>सीओ, ड्यूटेरेटेड [[मेथनॉल]], सीडी<sub>3</sub>आयुध डिपो, [[ड्यूटेरेटेड डाइमिथाइल सल्फ़ोक्साइड]], (CD<sub>3</sub>)<sub>2</sub>एसओ, और [[ड्यूटेरेटेड क्लोरोफॉर्म]], सीडीसीएल<sub>3</sub>. हालांकि, हाइड्रोजन के बिना एक विलायक, जैसे [[कार्बन टेट्राक्लोराइड]], सीसीएल<sub>4</sub> या [[कार्बन डाइसल्फ़ाइड]], सीएस<sub>2</sub>, का भी उपयोग किया जा सकता है।
सरल एनएमआर स्पेक्ट्रा [[समाधान (रसायन विज्ञान)|विलयन (रसायन विज्ञान)]] में दर्ज किए जाते हैं, और [[विलायक]] प्रोटॉन को अंतःक्षेप करने की अनुमति नहीं दी जानी चाहिए। [[ड्यूटेरियम]] (ड्यूटेरियम = <sup>2</sup>H, जिसे अधिकांशतः D के रूप में दर्शाया जाता है) विशेष रूप से NMR में उपयोग के लिए विलायक को प्राथमिकता दी जाती है, उदा। ड्यूटेरेटेड पानी, D<sub>2</sub>O, ड्यूटेरेटेड [[एसीटोन]], (CD<sub>3</sub>)<sub>2</sub>CO, ड्यूटेरेटेड [[मेथनॉल]], CD<sub>3</sub>OD, [[ड्यूटेरेटेड डाइमिथाइल सल्फ़ोक्साइड|ड्यूटेरेटेड डाइमिथाइल, सल्फ़ोक्साइड]], (CD<sub>3</sub>)<sub>2</sub>SO, और [[ड्यूटेरेटेड क्लोरोफॉर्म]], CDCl<sub>3</sub> । चूँकि, हाइड्रोजन के बिना एक विलायक, जैसे [[कार्बन टेट्राक्लोराइड]], CCl<sub>4</sub> या [[कार्बन डाइसल्फ़ाइड]],CS<sub>2</sub> का भी उपयोग किया जा सकता है।


ऐतिहासिक रूप से, ड्यूटेरेटेड सॉल्वैंट्स को प्रत्येक विश्लेषण प्रोटॉन की रासायनिक पारियों को संदर्भित करने के लिए एक [[आंतरिक मानक]] के रूप में [[टेट्रामेथिलसिलीन]] (टीएमएस) की एक छोटी राशि (आमतौर पर 0.1%) के साथ आपूर्ति की जाती थी। टीएमएस एक [[टेट्राहेड्रल आणविक ज्यामिति]] अणु है, जिसमें सभी प्रोटॉन रासायनिक रूप से समतुल्य होते हैं, एक एकल संकेत देते हैं, जिसका उपयोग रासायनिक बदलाव = 0 पीपीएम को परिभाषित करने के लिए किया जाता है।
ऐतिहासिक रूप से, ड्यूटेरेटेड विलायक को प्रत्येक विश्लेषण प्रोटॉन की रासायनिक पारियों को संदर्भित करने के लिए एक [[आंतरिक मानक]] के रूप में [[टेट्रामेथिलसिलीन]] (टीएमएस) की एक छोटी राशि (सामान्यतः 0.1%) के साथ आपूर्ति की जाती थी। टीएमएस एक [[टेट्राहेड्रल आणविक ज्यामिति|चतुष्फलकीय  आणविक ज्यामिति]] अणु है, जिसमें सभी प्रोटॉन रासायनिक रूप से समतुल्य होते हैं, एकल संकेत देते हैं, जिसका उपयोग रासायनिक परिवर्तन = 0 पीपीएम को परिभाषित करने के लिए किया जाता है।<ref>{{Cite web |title=रासायनिक पारी|url=http://orgchem.colorado.edu/Spectroscopy/nmrtheory/chemshift.html |url-status=dead |archive-url=https://web.archive.org/web/20160306142134/http://orgchem.colorado.edu/Spectroscopy/nmrtheory/chemshift.html |archive-date=2016-03-06}}</ref> यह [[अस्थिरता (रसायन विज्ञान)]] होते है, जिससे नमूना पुनर्प्राप्ति भी आसान हो जाती है। आधुनिक स्पेक्ट्रोमीटर विलायक में अवशिष्ट प्रोटॉन के आधार पर स्पेक्ट्रा को संदर्भित करने में सक्षम हैं (उदाहरण के लिए CHCl<sub>3</sub>, 99.99% CDCl<sub>3</sub> में 0.01%) डयूटरित विलायक अब सामान्यतः बिना TMS के सप्लाई किए जाते हैं।
<ref>{{Cite web |title=रासायनिक पारी|url=http://orgchem.colorado.edu/Spectroscopy/nmrtheory/chemshift.html |url-status=dead |archive-url=https://web.archive.org/web/20160306142134/http://orgchem.colorado.edu/Spectroscopy/nmrtheory/chemshift.html |archive-date=2016-03-06}}</ref> यह [[अस्थिरता (रसायन विज्ञान)]] है, जिससे नमूना पुनर्प्राप्ति भी आसान हो जाती है। आधुनिक स्पेक्ट्रोमीटर विलायक में अवशिष्ट प्रोटॉन के आधार पर स्पेक्ट्रा को संदर्भित करने में सक्षम हैं (उदाहरण के लिए सीएचसीएल<sub>3</sub>, 99.99% सीडीसीएल में 0.01%<sub>3</sub>). Deuterated सॉल्वैंट्स अब आमतौर पर बिना TMS के सप्लाई किए जाते हैं।


ड्यूटेरेटेड सॉल्वैंट्स एनएमआर के चुंबकीय क्षेत्र के प्राकृतिक बहाव के प्रभाव को ऑफसेट करने के लिए ड्यूटेरियम फ्रीक्वेंसी-फील्ड लॉक (जिसे ड्यूटेरियम लॉक या फील्ड लॉक के रूप में भी जाना जाता है) के उपयोग की अनुमति देता है।  <math>B_0</math>. ड्यूटेरियम लॉक प्रदान करने के लिए, NMR विलायक से ड्यूटेरियम सिग्नल अनुनाद आवृत्ति की लगातार निगरानी करता है और इसमें परिवर्तन करता है <math>B_0</math> अनुनाद आवृत्ति स्थिर रखने के लिए।<ref>{{US patent reference| number = 4110681| y = 1978| m = 08| d = 29| inventor = Donald C. Hofer; Vincent N. Kahwaty; Carl R. Kahwaty| title = NMR field frequency lock system}}</ref> इसके अतिरिक्त, ड्यूटेरियम सिग्नल का उपयोग 0 पीपीएम को सटीक रूप से परिभाषित करने के लिए किया जा सकता है क्योंकि लॉक सॉल्वेंट की गुंजयमान आवृत्ति और लॉक सॉल्वेंट और 0 पीपीएम (टीएमएस) के बीच का अंतर अच्छी तरह से जाना जाता है।
ड्यूटेरेटेड विलायक एनएमआर के चुंबकीय क्षेत्र के प्राकृतिक बहाव के प्रभाव को ऑफसेट करने के लिए ड्यूटेरियम फ्रीक्वेंसी-फील्ड लॉक (जिसे ड्यूटेरियम लॉक या फील्ड लॉक के रूप में भी जाना जाता है) के उपयोग की अनुमति देता है।  <math>B_0</math> ड्यूटेरियम लॉक प्रदान करने के लिए, NMR विलायक से ड्यूटेरियम सिग्नल अनुनाद आवृत्ति की लगातार निगरानी करता है और इसमें परिवर्तन करता है <math>B_0</math> अनुनाद आवृत्ति स्थिर रखने के लिए।<ref>{{US patent reference| number = 4110681| y = 1978| m = 08| d = 29| inventor = Donald C. Hofer; Vincent N. Kahwaty; Carl R. Kahwaty| title = NMR field frequency lock system}}</ref> इसके अतिरिक्त, ड्यूटेरियम सिग्नल का उपयोग 0 पीपीएम को त्रुटिहीन रूप से परिभाषित करने के लिए किया जा सकता है क्योंकि लॉक सॉल्वेंट की गुंजयमान आवृत्ति और लॉक सॉल्वेंट और 0 पीपीएम (टीएमएस) के बीच का अंतर अच्छी तरह से जाना जाता है।


अधिकांश कार्बनिक यौगिकों के प्रोटॉन एनएमआर स्पेक्ट्रा की विशेषता +14 से -4 पीपीएम की सीमा में रासायनिक बदलाव और प्रोटॉन के बीच [[स्पिन-स्पिन युग्मन]] द्वारा होती है। प्रत्येक प्रोटॉन के लिए [[ अभिन्न ]] अलग-अलग प्रोटॉन की प्रचुरता को दर्शाता है।
अधिकांश कार्बनिक यौगिकों के प्रोटॉन एनएमआर स्पेक्ट्रा की विशेषता +14 से -4 पीपीएम की सीमा में रासायनिक परिवर्तन और प्रोटॉन के बीच [[स्पिन-स्पिन युग्मन]] द्वारा होती है। प्रत्येक प्रोटॉन के लिए [[ अभिन्न |अभिन्न]] अलग-अलग प्रोटॉन की प्रचुरता को दर्शाता है।


सरल अणुओं में सरल स्पेक्ट्रा होता है। [[एथिल क्लोराइड]] के स्पेक्ट्रम में 1.5 पीपीएम पर एक ट्रिपलेट और 3:2 के अनुपात में 3.5 पीपीएम पर एक क्वार्टेट होता है। प्रतिचुंबकीय वलय धारा के कारण [[बेंजीन]] के स्पेक्ट्रम में 7.2 पीपीएम पर एक शिखर होता है।
सरल अणुओं में सरल स्पेक्ट्रा होता है। [[एथिल क्लोराइड]] के स्पेक्ट्रम में 1.5 पीपीएम पर एक त्रिज और 3:2 के अनुपात में 3.5 पीपीएम पर एक क्वार्टेट होता है। प्रतिचुंबकीय वलय धारा के कारण [[बेंजीन]] के स्पेक्ट्रम में 7.2 पीपीएम पर एक शीर्ष होता है।


[[कार्बन-13 एनएमआर]] के साथ, प्रोटॉन एनएमआर आणविक संरचना लक्षण वर्णन के लिए एक शक्तिशाली उपकरण है।
[[कार्बन-13 एनएमआर]] के साथ, प्रोटॉन एनएमआर आणविक संरचना लक्षण वर्णन के लिए प्रबल उपकरण है।


== रासायनिक बदलाव ==
== रासायनिक परिवर्तन ==
रासायनिक बदलाव मान, δ द्वारा चिन्हित, सटीक नहीं हैं, लेकिन विशिष्ट हैं - इसलिए उन्हें मुख्य रूप से एक संदर्भ के रूप में माना जाता है। विचलन ± 0.2 भाग प्रति मिलियन रेंज में हैं, कभी-कभी अधिक। रासायनिक बदलाव का सटीक मूल्य आणविक संरचना और विलायक, [[तापमान]], [[चुंबकीय क्षेत्र]] जिसमें स्पेक्ट्रम दर्ज किया जा रहा है और अन्य पड़ोसी [[कार्यात्मक समूह]]ों पर निर्भर करता है। हाइड्रोजन नाभिक उस परमाणु के [[कक्षीय संकरण]] के प्रति संवेदनशील होते हैं जिससे हाइड्रोजन परमाणु जुड़ा होता है और [[इलेक्ट्रॉनिक प्रभाव]]ों के प्रति। नाभिक उन समूहों द्वारा ढके हुए होते हैं जो इलेक्ट्रॉन घनत्व को वापस लेते हैं। परिरक्षित नाभिक उच्च δ मानों पर प्रतिध्वनित होते हैं, जबकि परिरक्षित नाभिक निम्न δ मानों पर प्रतिध्वनित होते हैं।
रासायनिक परिवर्तन मान, δ द्वारा चिन्हित, त्रुटिहीन नहीं होते हैं, किन्तु विशिष्ट होते हैं - इसलिए उन्हें मुख्य रूप से अनुमोदक के रूप में माना जाता है। कभी-कभी विचलन ± 0.2 भाग प्रति मिलियन अधिक रेंज में होते हैं।  रासायनिक परिवर्तन का त्रुटिहीन मूल्य आणविक संरचना और विलायक, [[तापमान]], [[चुंबकीय क्षेत्र]] जिसमें विस्तृत श्रेणी में लेख्यांकित किया जाता है और यह अन्य निकटवर्ती [[कार्यात्मक समूह|कार्यात्मक]] समूहों पर भी निर्भर करता है। हाइड्रोजन नाभिक उस परमाणु के [[कक्षीय संकरण]] के प्रति संवेदनशील होते हैं, जिससे हाइड्रोजन परमाणु समाहित होता है और [[इलेक्ट्रॉनिक प्रभाव|इलेक्ट्रॉनिक प्रभावों]] के प्रति होता है । नाभिक उन समूहों द्वारा ढके हुए होते हैं जो इलेक्ट्रॉन घनत्व को वापस लेते हैं। परिरक्षित नाभिक उच्च δ मानों पर प्रतिध्वनित होते हैं, जबकि परिरक्षित नाभिक निम्न δ मानों पर प्रतिध्वनित होते हैं।


इलेक्ट्रॉन निकालने वाले पदार्थों के उदाहरण हैं [[ हाइड्रॉकसिल ]]|-OH, [[कार्बोक्सिलेट]]|-OCOR, [[अल्कोक्सी]]|-OR, नाइट्रो यौगिक|-NO<sub>2</sub>और [[हलोजन]]। ये सी पर हाइड्रोजन परमाणुओं के लिए लगभग 2-4 पीपीएम की डाउनफील्ड शिफ्ट का कारण बनते हैं<sub>α</sub> और सी पर एच परमाणुओं के लिए 1-2 पीपीएम से कम<sub>β</sub>. सी<sub>α</sub> एक [[एलिफैटिक]] [[कार्बन]] परमाणु है जो सीधे प्रश्न में प्रतिस्थापन से जुड़ा हुआ है, और सी<sub>β</sub> C से बंधा हुआ एक स्निग्ध C परमाणु है<sub>α</sub>. [[कार्बोनिल समूह]], [[ओलेफिन]]िक टुकड़े और सुगंधित छल्ले सपा का योगदान करते हैं<sup>2</sup> संकरित कार्बन परमाणुओं को एक स्निग्ध श्रृंखला में। यह सी पर 1-2 पीपीएम की डाउनफील्ड शिफ्ट का कारण बनता है<sub>α</sub>.
इलेक्ट्रॉन निकालने वाले पदार्थों के उदाहरण हैं [[ हाइड्रॉकसिल |हाइड्रॉकसिल]] -OH, [[कार्बोक्सिलेट]]-OCOR, [[अल्कोक्सी]]-OR, नाइट्रो यौगिक-NO और [[हलोजन]]। ये C<sub>α</sub> पर H परमाणुओं के लिए लगभग 2-4 पीपीएम और C<sub>β</sub> पर H परमाणुओं के लिए 1-2 पीपीएम से कम की डाउनफील्ड  स्थानान्तरित करने के कारण बनते हैं। C<sub>α</sub> एक स्निग्ध C परमाणु है जो प्रश्न में प्रतिस्थापी से सीधे समाहित हुआ होता है,और C<sub>β</sub> एक स्निग्ध C परमाणु है जो  C<sub>α</sub> से जुड़ा होता है। [[कार्बोनिल समूह]], [[एलिफैटिक|ओलेफिनिक]] खंड और ऐरोमैटिक वलय ''sp<sup>2</sup>'' संकरित कार्बन परमाणुओं को एक स्निग्ध श्रृंखला में योगदान करते हैं।  यह C<sub>α</sub> पर 1-2 पीपीएम की डाउनफील्ड शिफ्ट का कारण बनता है।


ध्यान दें कि अस्थिर प्रोटॉन (-OH, एमिनो|-NH<sub>2</sub>, [[सल्फहाइड्रील]] | -एसएच) में कोई विशिष्ट रासायनिक बदलाव नहीं है। हालांकि, इस तरह के अनुनादों को भारी पानी के साथ प्रतिक्रिया करने पर चोटी के गायब होने से पहचाना जा सकता है। डी<sub>2</sub>हे, ड्यूटेरियम एक हाइड्रोजन -1 परमाणु की जगह लेगा। इस विधि को डी कहा जाता है<sub>2</sub>ओ हिलाओ। [[अम्लीय]] ड्यूटेरियम आयनों (जैसे मेथनॉल-''डी'' युक्त एक विलायक होने पर अम्लीय प्रोटॉन को भी दबाया जा सकता है<sub>4</sub>) प्रयोग किया जाता है। प्रोटॉन की पहचान करने के लिए एक वैकल्पिक तरीका जो कार्बन से जुड़ा नहीं है, [[हेटेरोन्यूक्लियर सिंगल क्वांटम सुसंगतता]] (एचएसक्यूसी) प्रयोग है, जो प्रोटॉन और कार्बन से संबंधित है जो एक दूसरे से एक बंधन दूर हैं। एक हाइड्रोजन जो कार्बन से जुड़ी नहीं है, की पहचान की जा सकती है क्योंकि इसमें HSQC स्पेक्ट्रम में [[ crosspeak ]] नहीं है।
ध्यान दें कि अस्थिर प्रोटॉन (-OH, -NH<sub>2</sub>, -SH) में कोई विशिष्ट रासायनिक परिवर्तन नहीं होती है। चूँकि, इस तरह के अनुनादों को '''D<sub>2</sub>O''' के साथ प्रतिक्रिया करने पर क्षीण होने पर पहचाना जा सकता है। क्योंकि ड्यूटेरियम प्रोटियम परमाणु को प्रतिस्थापित करेगा। इस विधि को '''D<sub>2</sub>O''' स्पन्दन कहा जाता है। [[अम्लीय]] ड्यूटेरियम आयनों (जैसे मेथनॉल-डी4) युक्त एक विलायक होने पर अम्लीय प्रोटॉन को भी संदमित किया जा सकता है, प्रोटॉन की पहचान करने के लिए एक वैकल्पिक विधि जो कार्बन से जुड़ा नहीं है, [[हेटेरोन्यूक्लियर सिंगल क्वांटम सुसंगतता]] (एचएसक्यूसी) प्रयोग है, जो प्रोटॉन और कार्बन से संबंधित है जो एक दूसरे से एक बंधन दूर हैं। हाइड्रोजन जो कार्बन से जुड़ी नहीं होती और इसकी पहचान की जा सकती है क्योंकि इसमें HSQC स्पेक्ट्रम में [[ crosspeak |  केंद्र शीर्षक]] नहीं होते है।


{| border="1" cellpadding="2" align="left" class="wikitable sortable"
{| border="1" cellpadding="2" align="left" class="wikitable sortable"
!Functional group
!क्रियात्मक गुण
!CH<sub>3</sub>
!CH<sub>3</sub>
!CH<sub>2</sub>
!CH<sub>2</sub>
Line 183: Line 182:
| {{val|-5}} to {{val|-15}}
| {{val|-5}} to {{val|-15}}
|}
|}
{{clear}}
== सिग्नल की तीव्रता ==
== सिग्नल की तीव्रता ==
[[File:Predicted proton NMR of 1,4-dimethylbenzene from ChemDraw. The ratio of signal strengths of proton A and proton B equals to their molar ratio in the molecule..png|thumb|<sup>1</sup>1,4-डाइमिथाइलबेनज़ीन के लिए एच एनएमआर स्पेक्ट्रम की भविष्यवाणी की गई। आदर्श परिस्थितियों में, प्रोटॉन ए और बी के एकीकृत सिग्नल का अनुपात इस अणु की संरचना से संबंधित है।]]एनएमआर संकेतों की एकीकृत तीव्रता, आदर्श रूप से, अणु के भीतर नाभिक के अनुपात के समानुपाती होती है।<ref>Balci, M., in "Basic <sup>1</sup>H- and <sup>13</sup>C-NMR Spectroscopy" (1st Edition, Elsevier), {{ISBN|978-0444518118}}.</ref> रासायनिक बदलाव और युग्मन स्थिरांक के साथ, एकीकृत तीव्रता संरचनात्मक कार्य की अनुमति देती है। मिश्रण के लिए, दाढ़ अनुपात निर्धारित करने के लिए संकेत तीव्रता का उपयोग किया जा सकता है। ये विचार तभी मान्य होते हैं जब प्रभावित संकेतों की पूर्ण छूट के लिए पर्याप्त समय दिया जाता है, जैसा कि उनके टी द्वारा निर्धारित किया जाता है<sub>1</sub> मान। बहुत भिन्न रेखा आकृतियों के संकेतों को एकीकृत करने में कठिनाई से एक और जटिलता उत्पन्न होती है।
[[File:Predicted proton NMR of 1,4-dimethylbenzene from ChemDraw. The ratio of signal strengths of proton A and proton B equals to their molar ratio in the molecule..png|thumb|<sup>1</sup>1,4-डाइमिथाइलबेनज़ीन के लिए एच एनएमआर स्पेक्ट्रम की भविष्यवाणी की गई। आदर्श परिस्थितियों में, प्रोटॉन ए और बी के एकीकृत सिग्नल का अनुपात इस अणु की संरचना से संबंधित है। ]]एनएमआर संकेतों की एकीकृत तीव्रता, आदर्श रूप से, अणु के भीतर नाभिक के अनुपात के समानुपाती होती है।<ref>Balci, M., in "Basic <sup>1</sup>H- and <sup>13</sup>C-NMR Spectroscopy" (1st Edition, Elsevier), {{ISBN|978-0444518118}}.</ref> रासायनिक परिवर्तन और युग्मन स्थिरांक के साथ, एकीकृत तीव्रता संरचनात्मक कार्य की अनुमति देती है। मिश्रण के लिए, ग्राम अणुक अनुपात निर्धारित करने के लिए संकेत तीव्रता का उपयोग किया जा सकता है।ये विचार तभी मान्य होते हैं जब प्रभावित संकेतों के पूर्ण विश्राम के लिए पर्याप्त समय दिया जाता है, जैसा कि उनके T<sub>1</sub> मानों द्वारा निर्धारित किया जाता है। बहुत भिन्न रेखा आकृतियों के संकेतों को एकीकृत करने में जटिलता उत्पन्न होती है।


==स्पिन-स्पिन कपलिंग्स==
==स्पिन-स्पिन कपलिंग्स==
[[File:1H NMR Ethyl Acetate Coupling shown.png|thumb|450px|उदाहरण <sup>1</sup>इथाइल एसीटेट के एच एनएमआर स्पेक्ट्रम (1-आयामी) को सिग्नल तीव्रता बनाम रासायनिक बदलाव के रूप में प्लॉट किया गया। एनएमआर के संबंध में [[एथिल एसीटेट]] में तीन अलग-अलग प्रकार के हाइड्रोजन परमाणु होते हैं। सीएच पर हाइड्रोजन्स (एच)।<sub>3</sub>सीओओ- ([[एसीटेट]]) समूह अन्य एच परमाणुओं के साथ युग्मन नहीं कर रहे हैं और एक एकल के रूप में दिखाई देते हैं, लेकिन -सीएच<sub>2</sub>- और -सीएच<sub>3</sub> [[एथिल समूह]] के हाइड्रोजन (-CH<sub>2</sub>चौधरी<sub>3</sub>) एक दूसरे के साथ युग्मन कर रहे हैं, जिसके परिणामस्वरूप क्रमशः चौकड़ी और त्रिक है।]]रासायनिक बदलाव के अलावा, NMR स्पेक्ट्रा स्पिन-स्पिन कपलिंग (और एकीकृत तीव्रता) के आधार पर संरचनात्मक असाइनमेंट की अनुमति देता है। क्योंकि नाभिक में स्वयं एक छोटा चुंबकीय क्षेत्र होता है, वे एक-दूसरे को प्रभावित करते हैं, ऊर्जा को बदलते हैं और इसलिए आस-पास के नाभिक की आवृत्ति जैसे-जैसे वे प्रतिध्वनित होते हैं- इसे स्पिन-स्पिन युग्मन के रूप में जाना जाता है। मूल एनएमआर में सबसे महत्वपूर्ण प्रकार अदिश युग्मन है। दो नाभिकों के बीच यह अंतःक्रिया [[रासायनिक बंध]]ों के माध्यम से होती है, और आमतौर पर तीन बंधों (3-जे युग्मन) तक दूर देखी जा सकती है, हालांकि यह कभी-कभी चार से पांच बंधों पर दिखाई दे सकती है, हालांकि ये काफी कमजोर होते हैं।
[[File:1H NMR Ethyl Acetate Coupling shown.png|thumb|450px|उदाहरण <sup>1</sup>इथाइल एसीटेट के एच एनएमआर स्पेक्ट्रम (1-आयामी) को सिग्नल तीव्रता बनाम रासायनिक परिवर्तन के रूप में प्लॉट किया गया। एनएमआर के संबंध में [[एथिल एसीटेट]] में तीन अलग-अलग प्रकार के हाइड्रोजन परमाणु होते हैं। सीएच पर हाइड्रोजन्स (एच)।<sub>3</sub>सीओओ- ([[एसीटेट]]) समूह अन्य एच परमाणुओं के साथ युग्मन नहीं कर रहे हैं और एक एकल के रूप में दिखाई देते हैं, किन्तु -सीएच<sub>2</sub>- और -सीएच<sub>3</sub> [[एथिल समूह]] के हाइड्रोजन (-CH<sub>2</sub>चौधरी<sub>3</sub>) एक दूसरे के साथ युग्मन कर रहे हैं, जिसके परिणामस्वरूप क्रमशः चौकड़ी और त्रिक है।]]रासायनिक परिवर्तन के अतिरिक्त, NMR स्पेक्ट्रा स्पिन-स्पिन कपलिंग (और एकीकृत तीव्रता) के आधार पर संरचनात्मक असाइनमेंट की अनुमति देता है। क्योंकि नाभिक में स्वयं एक छोटा चुंबकीय क्षेत्र होता है, वे एक-दूसरे को प्रभावित करते हैं, ऊर्जा को बदलते हैं और इसलिए आस-पास के नाभिक की आवृत्ति जैसे-जैसे वे प्रतिध्वनित होते हैं- इसे स्पिन-स्पिन युग्मन के रूप में जाना जाता है। मूल एनएमआर में सबसे महत्वपूर्ण प्रकार अदिश युग्मन है। दो नाभिकों के बीच यह अंतःक्रिया रासायनिक आबंध के माध्यम से होती है, और सामान्यतः तीन आबंध (3-जे युग्मन) तक दूर देखी जा सकती है, चूँकि यह कभी-कभी चार से पांच आबंध पर दिखाई दे सकती है, चूँकि ये काफी कमजोर होते हैं।
फ़ाइल: H2&HDlowRes.tiff|thumb|बाएं|H NMR स्पेक्ट्रम HD के एक समाधान (लाल पट्टियों के साथ लेबल) और H<sub>2</sub> (नीली पट्टी)। HD के लिए 1:1:1 त्रिक हेटेरोन्यूक्लियर (विभिन्न समस्थानिक) युग्मन से उत्पन्न होता है।
अदिश युग्मन के प्रभाव को एक प्रोटॉन के परीक्षण से समझा जा सकता है जिसका संकेत 1 पीपीएम पर होता है। यह प्रोटॉन एक काल्पनिक अणु में होता है जहां तीन आबंध दूर एक और प्रोटॉन समल्लित होता है (उदाहरण के लिए सीएच-सीएच समूह में), निकटवर्ती समूह (एक चुंबकीय क्षेत्र) 1 पीपीएम पर सिग्नल को दो में विभाजित करने का कारण बनता है, जिसमें एक स्तर होता है हर्ट्ज़ 1 पीपीएम से अधिक और दूसरी चोटी 1 पीपीएम से कम हर्ट्ज़ की समान संख्या होती है। इन शीर्ष में से प्रत्येक में पूर्व एकल शीर्ष का आधा क्षेत्र होता है। इस विभाजन के परिमाण (शीर्ष के बीच आवृत्ति में अंतर) को युग्मन स्थिरांक के रूप में जाना जाता है। स्निग्ध प्रोटॉनों के लिए विशिष्ट युग्मन स्थिरांक मान 7 हर्ट्ज होगा।
अदिश युग्मन के प्रभाव को एक प्रोटॉन के परीक्षण से समझा जा सकता है जिसका संकेत 1 पीपीएम पर होता है। यह प्रोटॉन एक काल्पनिक अणु में है जहां तीन बंधन दूर एक और प्रोटॉन मौजूद है (उदाहरण के लिए सीएच-सीएच समूह में), पड़ोसी समूह (एक चुंबकीय क्षेत्र) 1 पीपीएम पर सिग्नल को दो में विभाजित करने का कारण बनता है, जिसमें एक शिखर कुछ होता है [[ हेटर्स ]]़ 1 पीपीएम से अधिक और दूसरी चोटी 1 पीपीएम से कम हर्ट्ज़ की समान संख्या है। इन चोटियों में से प्रत्येक में पूर्व एकल शिखर का आधा क्षेत्र है। इस विभाजन के परिमाण (चोटियों के बीच आवृत्ति में अंतर) को [[जे-युग्मन]] के रूप में जाना जाता है। स्निग्ध प्रोटॉनों के लिए विशिष्ट युग्मन स्थिरांक मान 7 Hz होगा।


युग्मन स्थिरांक चुंबकीय क्षेत्र की ताकत से स्वतंत्र है क्योंकि यह किसी अन्य नाभिक के चुंबकीय क्षेत्र के कारण होता है, न कि स्पेक्ट्रोमीटर चुंबक के कारण। इसलिए, इसे हर्ट्ज़ (आवृत्ति) में उद्धृत किया गया है न कि पीपीएम (रासायनिक पारी) में।
युग्मन स्थिरांक चुंबकीय क्षेत्र की ताकत से स्वतंत्र है क्योंकि यह किसी अन्य नाभिक के चुंबकीय क्षेत्र के कारण होता है, न कि स्पेक्ट्रोमीटर चुंबक के कारण होता है । इसलिए, इसे हर्ट्ज़ (आवृत्ति) में उद्धृत किया गया है न कि पीपीएम (रासायनिक पारी) में।


एक अन्य अणु में एक प्रोटॉन 2.5 पीपीएम पर प्रतिध्वनित होता है और वह प्रोटॉन भी 1 पीपीएम पर प्रोटॉन द्वारा दो भागों में विभाजित हो जाएगा। क्योंकि अन्योन्यक्रिया का परिमाण समान होता है इसलिए विपाटन में समान युग्मन स्थिरांक 7 Hz अलग होगा। स्पेक्ट्रम में दो सिग्नल होंगे, प्रत्येक एक डबलट होगा। प्रत्येक द्विक का क्षेत्रफल समान होगा क्योंकि दोनों द्विक एक-एक प्रोटॉन द्वारा निर्मित होते हैं।
एक अन्य अणु में एक प्रोटॉन 2.5 पीपीएम पर प्रतिध्वनित होता है और वह प्रोटॉन भी 1 पीपीएम पर प्रोटॉन द्वारा दो भागों में विभाजित हो जाएगा। क्योंकि अंतःक्रिया का परिमाण समान होता है, विभाजन में समान युग्मन स्थिरांक 7 हर्ट्ज अलग होता है। स्पेक्ट्रम में दो सिग्नल होंगे, प्रत्येक एक द्विरावृत्ति होगा। प्रत्येक द्विक का क्षेत्रफल समान होगा क्योंकि दोनों द्विक एक-एक प्रोटॉन द्वारा निर्मित होते हैं।


काल्पनिक अणु सीएच-सीएच से 1 पीपीएम और 2.5 पीपीएम पर दो डबल अब सीएच में बदल दिए गए हैं<sub>2</sub>-सीएच:
काल्पनिक अणु CH-CH से 1 पीपीएम और 2.5 पीपीएम पर दो डबल अब CH<sub>2</sub>-CH में बदल दिए गए हैं:
*1 पीपीएम सीएच का कुल क्षेत्रफल<sub>2</sub> चोटी 2.5 पीपीएम सीएच चोटी की दोगुनी होगी ।
*1 पीपीएम CH<sub>2</sub> का कुल क्षेत्रफल शिखर 2.5 पीपीएम CH शिखर की दोगुनी होगी ।
* सीएच<sub>2</sub> पीक को CH पीक द्वारा एक डबलेट में विभाजित किया जाएगा—एक पीक 1 ppm + 3.5 Hz पर और एक 1 ppm - 3.5 Hz पर (कुल स्प्लिटिंग या कपलिंग स्थिरांक 7 Hz है)।
* CH<sub>2</sub> पीक को CH पीक द्वारा एक द्विरावृत्ति में विभाजित किया जाएगा—एक पीक 1 ppm + 3.5 Hz पर और एक 1 ppm - 3.5 Hz पर (कुल विभाजन या युग्मन स्थिरांक 7 Hz होता है)।


परिणामस्वरूप 2.5 पीपीएम पर सीएच चोटी सीएच से प्रत्येक प्रोटॉन द्वारा दो बार विभाजित हो जाएगी<sub>2</sub>. पहला प्रोटॉन चोटी को दो समान तीव्रता में विभाजित करेगा और 2.5 पीपीएम पर एक शिखर से दो शिखर तक जाएगा, एक 2.5 पीपीएम + 3.5 हर्ट्ज पर और दूसरा 2.5 पीपीएम - 3.5 हर्ट्ज—प्रत्येक की समान तीव्रता होगी। हालाँकि ये दूसरे प्रोटॉन द्वारा फिर से विभाजित हो जाएंगे। आवृत्तियों तदनुसार बदल जाएगी:
परिणामस्वरूप 2.5 पीपीएम पर सीएच चोटी सीएच से प्रत्येक प्रोटॉन द्वारा दो बार विभाजित हो जाएगी<sub>2</sub>. पहला प्रोटॉन चोटी को दो समान तीव्रता में विभाजित करेगा और 2.5 पीपीएम पर एक शीर्ष से दो शीर्ष तक जाएगा, एक 2.5 पीपीएम + 3.5 हर्ट्ज पर और दूसरा 2.5 पीपीएम - 3.5 हर्ट्ज—प्रत्येक की समान तीव्रता होगी। हालाँकि ये दूसरे प्रोटॉन द्वारा फिर से विभाजित हो जाएंगे। आवृत्तियों तदनुसार बदल जाएगी:
*2.5 पीपीएम + 3.5 हर्ट्ज सिग्नल 2.5 पीपीएम + 7 हर्ट्ज और 2.5 पीपीएम में बंट जाएगा
*2.5 पीपीएम + 3.5 हर्ट्ज सिग्नल 2.5 पीपीएम + 7 हर्ट्ज और 2.5 पीपीएम में बंट जाएगा
*2.5 पीपीएम - 3.5 हर्ट्ज सिग्नल 2.5 पीपीएम और 2.5 पीपीएम - 7 हर्ट्ज में बंट जाएगा
*2.5 पीपीएम - 3.5 हर्ट्ज सिग्नल 2.5 पीपीएम और 2.5 पीपीएम - 7 हर्ट्ज में बंट जाएगा


शुद्ध परिणाम 4 चोटियों से बना एक संकेत नहीं है, लेकिन तीन: 2.5 पीपीएम से ऊपर 7 हर्ट्ज पर एक संकेत, 2.5 पीपीएम पर दो संकेत, और 2.5 पीपीएम से नीचे 7 हर्ट्ज पर अंतिम परिणाम। उनके बीच ऊंचाई का अनुपात 1:2:1 है। इसे त्रिक के रूप में जाना जाता है और यह एक संकेतक है कि प्रोटॉन एक CH से तीन-बंध है<sub>2</sub> समूह।
शुद्ध परिणाम 4 शीर्ष से युक्त एक संकेत नहीं होता है, किन्तु तीन: 2.5 पीपीएम से ऊपर 7 हर्ट्ज पर एक संकेत, 2.5 पीपीएम पर दो संकेत और 2.5 पीपीएम से नीचे 7 हर्ट्ज पर अंतिम एक संकेत है। उनके बीच ऊंचाई का अनुपात 1:2:1 है। इसे '''त्रिक''' के रूप में जाना जाता है और यह एक संकेतक है कि प्रोटॉन एक CH<sub>2</sub> समूह से तीन-बॉन्ड होता है।


इसे किसी भी सीएच तक बढ़ाया जा सकता है<sub>n</sub> समूह। जब सीएच<sub>2</sub>-CH समूह को CH में बदल दिया जाता है<sub>3</sub>-सीएच<sub>2</sub>रासायनिक बदलाव और युग्मन स्थिरांक को समान रखते हुए, निम्नलिखित परिवर्तन देखे गए हैं:
इसे किसी भी CH<sub>n</sub> समूह तक बढ़ाया जा सकता है। जब CH<sub>2</sub>-CH समूह को CH<sub>3</sub>-CH<sub>2</sub> में बदल दिया जाता है, रासायनिक परिवर्तन और युग्मन स्थिरांक को समान रखते हुए, निम्नलिखित परिवर्तन देखे जाते हैं:
* सीएच के बीच सापेक्ष क्षेत्र<sub>3</sub> और सीएच<sub>2</sub> सबयूनिट 3:2 होंगे।
* CH<sub>3</sub> और CH<sub>2</sub> उपइकाइयों के बीच सापेक्ष क्षेत्र 3:2 होंगे।
* सीएच<sub>3</sub> 1 पीपीएम के आसपास 1:2:1 त्रिक में दो प्रोटॉन के साथ युग्मित है।
* सीएच<sub>3</sub> H3 को दो प्रोटॉन के साथ 1:2:1 त्रिक में 1 पीपीएम के साथ युग्मित किया जाता है।
* सीएच<sub>2</sub> तीन प्रोटॉन से जुड़ा है।
* CH<sub>2</sub> तीन प्रोटॉन से जुड़ा है।
तीन समान प्रोटॉनों द्वारा विभाजित कोई चीज एक आकार लेती है जिसे 'चौकड़ी' के रूप में जाना जाता है, प्रत्येक शिखर की सापेक्ष तीव्रता 1:3:3:1 होती है।
तीन समान प्रोटॉनों द्वारा विभाजित कुछ एक आकार लेता है जिसे क्वार्टेट के रूप में जाना जाता है, प्रत्येक चोटी में 1:3:3:1 की सापेक्ष तीव्रता होती है।


एक चोटी को n समान प्रोटॉन द्वारा ऐसे घटकों में विभाजित किया जाता है जिनके आकार पास्कल के त्रिभुज की nवीं पंक्ति के अनुपात में होते हैं:
एक चोटी को n समान प्रोटॉन द्वारा ऐसे घटकों में विभाजित किया जाता है जिनके आकार पास्कल के त्रिभुज की nवीं पंक्ति के अनुपात में होते हैं:
Line 217: Line 213:
|-
|-
!  style="min-width:4em"| ''n''  
!  style="min-width:4em"| ''n''  
! style="padding: 1em 0"| Name !! Row
! style="padding: 1em 0"| नाम !! पंक्ति
|-
|-
|  0  || singlet
|  0  || सिंग्लेट
|style="text-align:center"|                  1
|style="text-align:center"|                  1
|-
|-
|  1  || doublet
|  1  || डोबलेट
|style="text-align:center"|                  1 1
|style="text-align:center"|                  1 1
|-
|-
Line 228: Line 224:
|style="text-align:center"|            1 2  1
|style="text-align:center"|            1 2  1
|-
|-
|  3 ||  quartet
|  3 ||  क्वार्टेट
|style="text-align:center"|          1 3  3 1
|style="text-align:center"|          1 3  3 1
|-
|-
|  4 ||  quintet
|  4 ||  क्विंटेट
|style="text-align:center"|            1 4  6 4  1
|style="text-align:center"|            1 4  6 4  1
|-
|-
|  5  || sextet
|  5  || सेक्सटेट
|style="text-align:center"|        1 5  10 10 5  1
|style="text-align:center"|        1 5  10 10 5  1
|-
|-
|  6 ||  septet
|  6 ||  सेप्टेट
|style="text-align:center"|      1 6  15 20 15 6  1
|style="text-align:center"|      1 6  15 20 15 6  1
|-
|-
Line 247: Line 243:
|-
|-
|}
|}
क्योंकि nवीं पंक्ति में n+1 घटक हैं, इस प्रकार के विभाजन को n+1 नियम का पालन करने के लिए कहा जाता है: n पड़ोसियों वाला एक प्रोटॉन n+1 चोटियों के समूह के रूप में प्रकट होता है।
क्योंकि n वीं पंक्ति में n+1 घटक हैं, इस प्रकार के विभाजन को "n+1 नियम" का पालन करने के लिए कहा जाता है: n पड़ोसियों वाला एक प्रोटॉन n+1 शीर्ष के समूह के रूप में प्रकट होता है।


2-मिथाइलप्रोपेन के साथ, (CH<sub>3</sub>)<sub>3</sub>सीएच, एक अन्य उदाहरण के रूप में: सीएच प्रोटॉन तीन समान मिथाइल समूहों से जुड़ा होता है जिसमें कुल 9 समान प्रोटॉन होते हैं। बहुलता के (n + 1) नियम के अनुसार स्पेक्ट्रम में C-H सिग्नल को दस चोटियों में विभाजित किया जाएगा। नीचे इस प्रकार के कई सरल गुणकों के अनुरूप NMR संकेत दिए गए हैं। ध्यान दें कि नॉनट की बाहरी रेखाएं (जो कि दूसरी चोटी की तुलना में केवल 1/8 ऊंची हैं) को मुश्किल से देखा जा सकता है, जो एक सेप्टेट के लिए एक सतही समानता देता है।
2-मिथाइलप्रोपेन के साथ, (CH3)3CH, एक अन्य उदाहरण के रूप में: सीएच प्रोटॉन तीन समान मिथाइल समूहों से जुड़ा होता है जिसमें कुल 9 समान प्रोटॉन होते हैं। बहुलता के (n + 1) नियम के अनुसार स्पेक्ट्रम में C-H सिग्नल को दस शीर्ष में विभाजित किया जाएगा। नीचे इस प्रकार के कई सरल गुणकों के अनुरूप NMR संकेत दिए गए हैं। ध्यान दें कि नॉनट की बाहरी रेखाएं (जो कि दूसरी चोटी की तुलना में केवल 1/8 ऊंची हैं) को मुश्किल से देखा जा सकता है, जो एक सेप्टेट के लिए एक सतही समानता देता है।


[[Image:J-Coupling-simple-multiplets.gif]]जब एक प्रोटॉन को दो अलग-अलग प्रोटॉन से जोड़ा जाता है, तो युग्मन स्थिरांक अलग-अलग होने की संभावना होती है, और ट्रिपलेट के बजाय, डबलेट का एक डबलट दिखाई देगा। इसी तरह, यदि एक प्रोटॉन एक प्रकार के दो अन्य प्रोटॉनों के साथ युग्मित होता है, और एक अन्य प्रकार का तीसरा एक अलग, छोटे युग्मन स्थिरांक के साथ होता है, तो दोहरेपन का एक त्रिक देखा जाता है। नीचे दिए गए उदाहरण में, त्रिक युग्मन स्थिरांक द्विक से बड़ा है। परंपरा के अनुसार सबसे बड़े युग्मन स्थिरांक द्वारा बनाए गए पैटर्न को पहले इंगित किया जाता है और छोटे स्थिरांकों के विभाजन पैटर्न को बारी-बारी से नाम दिया जाता है। नीचे दिए गए मामले में ट्रिपल के चौकड़ी को चौकड़ी के रूप में संदर्भित करना गलत होगा। ऐसे मल्टीप्लेट्स का विश्लेषण (जो यहां दिखाए गए लोगों की तुलना में बहुत अधिक जटिल हो सकता है) अध्ययन किए जा रहे अणु की संरचना के लिए महत्वपूर्ण सुराग प्रदान करता है।
[[Image:J-Coupling-simple-multiplets.gif]]जब एक प्रोटॉन को दो अलग-अलग प्रोटॉन जब एक प्रोटॉन को दो अलग-अलग प्रोटॉन से जोड़ा जाता है, तो युग्मन स्थिरांक अलग-अलग होने की संभावना होती है, और त्रिज के अतिरिक्त, द्विरावृत्ति का एक द्विरावृत्ति दिखाई देगा। इसी तरह, यदि एक प्रोटॉन एक प्रकार के दो अन्य प्रोटॉनों के साथ युग्मित होता है, और एक अन्य प्रकार का तीसरा एक अलग, छोटे युग्मन स्थिरांक के साथ होता है, तो दोहरेपन का एक त्रिक देखा जाता है। नीचे दिए गए उदाहरण में, त्रिक युग्मन स्थिरांक द्विक से बड़ा है। परंपरा के अनुसार सबसे बड़े युग्मन स्थिरांक द्वारा बनाए गए पैटर्न को पहले इंगित किया जाता है और छोटे स्थिरांकों के विभाजन पैटर्न को बारी-बारी से नाम दिया जाता है। नीचे दिए गए स्थितियों में त्रिज के चतुष्क को चतुष्क के रूप में संदर्भित करना गलत होगा। ऐसे गुणक का विश्लेषण (जो यहां दिखाए गए लोगों की तुलना में बहुत अधिक जटिल हो सकता है) अध्ययन किए जा रहे अणु की संरचना के लिए महत्वपूर्ण सुराग प्रदान करता है।


[[Image:J-Coupling-complex-multiplets.gif]]ऊपर वर्णित एनएमआर संकेतों के स्पिन-स्पिन विभाजन के सरल नियम केवल तभी लागू होते हैं जब युग्मन भागीदारों के रासायनिक बदलाव उनके बीच युग्मन स्थिरांक से काफी बड़े होते हैं। अन्यथा अधिक चोटियाँ हो सकती हैं, और अलग-अलग चोटियों की तीव्रता विकृत हो जाएगी (दूसरे क्रम के प्रभाव)।
[[Image:J-Coupling-complex-multiplets.gif]]ऊपर वर्णित एनएमआर संकेतों के स्पिन-स्पिन ऊपर वर्णित एनएमआर संकेतों के स्पिन-स्पिन विभाजन के सरल नियम केवल तभी लागू होते हैं जब युग्मन भागीदारों के रासायनिक परिवर्तन उनके बीच युग्मन स्थिरांक से काफी बड़े होते हैं। अन्यथा अधिक चोटियाँ हो सकती हैं, और अलग-अलग शीर्ष की तीव्रता विकृत हो जाएगी (दूसरे क्रम के प्रभाव)।


=== विषम-परमाणु युग्मन ===
=== विषम-परमाणु युग्मन ===
यदि अणु में अन्य एनएमआर-सक्रिय नाभिक मौजूद हैं, तो विषम-परमाणुओं और प्रोटॉन के बीच स्पिन-स्पिन युग्मन देखा जाएगा। यह अक्सर उन यौगिकों में होता है जिनमें फॉस्फोरस या फ्लोरीन होता है, क्योंकि वे दोनों 100% बहुतायत के 1/2 नाभिक स्पिन करते हैं। उदाहरण के लिए, [[फ्लोरोमीथेन]] में प्रोटॉन के लिए 1H सिग्नल फ्लोरीन परमाणु द्वारा एक डबलेट में विभाजित हो जाते हैं; इसके विपरीत इस यौगिक का फ्लोरीन-19 एनएमआर स्पेक्ट्रम तीन प्रोटॉनों द्वारा विभाजित होने के कारण एक चौकड़ी दिखाता है। फ्लोरीन और प्रोटॉन के बीच विशिष्ट 2J युग्मन स्थिरांक 48 हर्ट्ज या इससे अधिक हैं; 4J कपलिंग में कपलिंग की ताकत घटकर 2 Hz हो जाती है।<ref>{{Cite web|url=https://faculty.missouri.edu/~glaserr/8160f09/fluoroacetone_NMR.pdf|title=Coupling of Protons with Fluorine Page}}</ref>
यदि अणु में अन्य एनएमआर-सक्रिय नाभिक मौजूद हैं, तो विषम-परमाणुओं और प्रोटॉन के बीच स्पिन-स्पिन युग्मन देखा जाएगा। यह अधिकांशतः उन यौगिकों में होता है जिनमें फॉस्फोरस या फ्लोरीन होता है, क्योंकि वे दोनों 100% बहुतायत के 1/2 नाभिक स्पिन करते हैं। उदाहरण के लिए, [[फ्लोरोमीथेन]] में प्रोटॉन के लिए 1H सिग्नल फ्लोरीन परमाणु द्वारा एक द्विरावृत्ति में विभाजित हो जाते हैं; इसके विपरीत इस यौगिक का फ्लोरीन-19 एनएमआर स्पेक्ट्रम तीन प्रोटॉनों द्वारा विभाजित होने के कारण चतुष्क दिखाता है। फ्लोरीन और प्रोटॉन के बीच विशिष्ट 2J युग्मन स्थिरांक 48 हर्ट्ज या इससे अधिक हैं; 4J युग्मन में युग्मन की शक्ति घटकर 2 Hz रह जाती है।<ref>{{Cite web|url=https://faculty.missouri.edu/~glaserr/8160f09/fluoroacetone_NMR.pdf|title=Coupling of Protons with Fluorine Page}}</ref>
फॉस्फीन में भी बड़े युग्मन स्थिरांक देखे जा सकते हैं, खासकर अगर प्रोटॉन सीधे फास्फोरस से जुड़ा हो। इन प्रोटॉनों के लिए युग्मन स्थिरांक अक्सर 200 हर्ट्ज जितना बड़ा होता है, उदाहरण के लिए डायथाइलफॉस्फीन में, जहां 1J PH युग्मन स्थिरांक 190 हर्ट्ज है।<ref>{{Cite journal|last=Baccolini|first=Graziano|last2=Boga|first2=Carla|last3=Mazzacurati|first3=Marzia|last4=Sangirardi|first4=Federico|date=2006-04-01|title=पुनर्चक्रण फास्फोरस दाता अभिकर्मक का उपयोग करके माध्यमिक फॉस्फीन और उनके बोरेन परिसरों का उच्च परमाणु-किफायती एक-पॉट संश्लेषण|journal=Organic Letters|volume=8|issue=8|pages=1677–1680|doi=10.1021/ol060284d|pmid=16597139|issn=1523-7060}}</ref> ये युग्मन स्थिरांक इतने बड़े होते हैं कि वे 1ppm (स्पेक्ट्रोमीटर के आधार पर) से अधिक की दूरी तय कर सकते हैं, जिससे उन्हें अणु में अन्य प्रोटॉन संकेतों के साथ अतिव्याप्ति का खतरा होता है।
 
फॉस्फीन में भी बड़े युग्मन स्थिरांक देखे जा सकते हैं, खासकर अगर प्रोटॉन सीधे फास्फोरस से जुड़ा हो। इन प्रोटॉनों के लिए युग्मन स्थिरांक अक्सर 200 हर्ट्ज जितना बड़ा होता है, उदाहरण के लिए डायथाइलफॉस्फीन में, जहां 1J PH युग्मन स्थिरांक 190 हर्ट्ज है। <ref>{{Cite journal|last=Baccolini|first=Graziano|last2=Boga|first2=Carla|last3=Mazzacurati|first3=Marzia|last4=Sangirardi|first4=Federico|date=2006-04-01|title=पुनर्चक्रण फास्फोरस दाता अभिकर्मक का उपयोग करके माध्यमिक फॉस्फीन और उनके बोरेन परिसरों का उच्च परमाणु-किफायती एक-पॉट संश्लेषण|journal=Organic Letters|volume=8|issue=8|pages=1677–1680|doi=10.1021/ol060284d|pmid=16597139|issn=1523-7060}}</ref> ये युग्मन स्थिरांक इतने बड़े होते हैं कि वे 1ppm (स्पेक्ट्रोमीटर के आधार पर) से अधिक की दूरी तय कर सकते हैं, जिससे उन्हें अणु में अन्य प्रोटॉन संकेतों के साथ अतिव्याप्ति का खतरा होता है।


== कार्बन उपग्रह और कताई साइडबैंड ==
== कार्बन उपग्रह और कताई साइडबैंड ==
कभी-कभी छोटी चोटियों को मुख्य को कंधा देते हुए देखा जा सकता है <sup>1</sup>एच एनएमआर शिखर। ये शिखर प्रोटॉन-प्रोटॉन युग्मन का परिणाम नहीं हैं, बल्कि युग्मन के परिणाम हैं <sup>1</sup>H परमाणु निकटवर्ती [[कार्बन -13]] (<sup>13</sup>सी) परमाणु। इन छोटी चोटियों को [[कार्बन-13 एनएमआर उपग्रह]] के रूप में जाना जाता है क्योंकि ये छोटी होती हैं और मुख्य के चारों ओर दिखाई देती हैं <sup>1</sup>एच चोटी यानी सैटेलाइट (चारों ओर)। कार्बन [[उपग्रह]] छोटे हैं क्योंकि नमूने में बहुत कम अणुओं में कार्बन दुर्लभ एनएमआर-सक्रिय के रूप में है <sup>13</sup>सी आइसोटोप। हमेशा की तरह एक एकल स्पिन-1/2 नाभिक के कारण युग्मन के लिए, एच से जुड़े सिग्नल विभाजन <sup>13</sup>C एक द्विक है। एच अधिक प्रचुर मात्रा में जुड़ा हुआ है <sup>12</sup>C विभाजित नहीं है, इसलिए यह एक बड़ा एकल है। शुद्ध परिणाम मुख्य एक के चारों ओर समान रूप से दूरी वाले छोटे संकेतों की एक जोड़ी है। यदि H-H युग्मन या अन्य प्रभावों के कारण H सिग्नल पहले से ही विभाजित हो जाएगा, तो प्रत्येक उपग्रह इस युग्मन को भी प्रतिबिंबित करेगा (जैसा कि भिन्न युग्मन भागीदारों के कारण जटिल विभाजन पैटर्न के लिए सामान्य है)। अन्य एनएमआर-सक्रिय नाभिक भी इन उपग्रहों का कारण बन सकते हैं, लेकिन कार्बनिक यौगिकों के प्रोटॉन एनएमआर स्पेक्ट्रा में कार्बन सबसे आम अपराधी है।
कभी-कभी मुख्य <sup>1</sup>H NMR शीर्ष को दायित्व लेते हुए देखा जा सकता है। ये शिखर प्रोटॉन-प्रोटॉन युग्मन का परिणाम नहीं हैं, बल्कि 1H परमाणुओं के निकटवर्ती [[कार्बन -13]] (<sup>13</sup>सी) परमाणु के युग्मन का परिणाम होते हैं। इन छोटी शीर्ष को [[कार्बन-13 एनएमआर उपग्रह]] के रूप में जाना जाता है क्योंकि ये छोटी होती हैं और मुख्य 1H शिखर अर्थात उपग्रह के (चारों ओर) आसपास दिखाई देती हैं। कार्बन [[उपग्रह]] छोटे हैं, क्योंकि नमूने में बहुत कम अणुओं में कार्बन दुर्लभ एनएमआर-सक्रिय सक्रिय 13C समस्थानिक के रूप में होते है। सदैव की तरह एक एकल स्पिन-1/2 नाभिक के कारण युग्मन के लिए, एच से समाहित संकेत विभाजन <sup>13</sup>C एक युग्मक होते है। एच अधिक प्रचुर मात्रा में जुड़ा हुआ होता है <sup>12</sup>C से विभाजित नहीं होता है, इसलिए यह एक बड़ा एकल है। शुद्ध परिणाम मुख्य एक के चारों ओर समान रूप से दूरी वाले छोटे संकेतों की एक जोड़ी है। यदि H-H युग्मन या अन्य प्रभावों के कारण H सिग्नल पहले से ही विभाजित हो जाएगा, तो प्रत्येक उपग्रह इस युग्मन को भी प्रतिबिंबित करेगा (जैसा कि भिन्न युग्मन भागीदारों के कारण जटिल विभाजन पैटर्न के लिए सामान्य है)। अन्य एनएमआर-सक्रिय नाभिक भी इन उपग्रहों का कारण बन सकते हैं, किन्तु कार्बनिक यौगिकों के प्रोटॉन एनएमआर स्पेक्ट्रा में कार्बन सबसे सामान्य अभियुक्त होते है।


कभी-कभी अन्य चोटियों को भी देखा जा सकता है <sup>1</sup>एच पीक्स, जिन्हें [[ कताई पक्ष ]] के रूप में जाना जाता है और [[एनएमआर ट्यूब]] के स्पिन की दर से संबंधित हैं। ये स्पेक्ट्रोस्कोपिक विश्लेषण से ही प्रायोगिक कलाकृतियां हैं, न कि रासायनिक के स्पेक्ट्रम की एक आंतरिक विशेषता और विशेष रूप से रासायनिक या इसकी संरचना से संबंधित भी नहीं हैं।
कभी-कभी अन्य शिखरों <sup>1</sup>एच पीक्स को भी देखा जा सकता है जिन्हें [[ कताई पक्ष | स्पिनिंग साइडबैंड]] के रूप में जाना जाता है और [[एनएमआर ट्यूब]] के स्पिन की दर से संबंधित हैं। ये स्पेक्ट्रोस्कोपिक विश्लेषण से ही प्रायोगिक कलाकृतियां हैं, न कि रासायनिक के स्पेक्ट्रम की एक आंतरिक विशेषता और विशेष रूप से रासायनिक या इसकी संरचना से संबंधित भी नहीं होते हैं।


कार्बन उपग्रहों और स्पिनिंग साइडबैंडों को अशुद्धता की चोटियों के साथ भ्रमित नहीं होना चाहिए।<ref>{{cite journal |author=Gottlieb HE |author2=Kotlyar V |author3=Nudelman A |title=ट्रेस अशुद्धियों के रूप में सामान्य प्रयोगशाला सॉल्वैंट्स के एनएमआर रासायनिक बदलाव|journal=J. Org. Chem. |volume=62 |issue=21 |pages=7512–7515 |date=October 1997 |pmid=11671879 |doi = 10.1021/jo971176v}}</ref>
कार्बन उपग्रहों और स्पिनिंग साइडबैंडों को अशुद्धता की पीक्स के साथ असंगत नहीं होना चाहिए।<ref>{{cite journal |author=Gottlieb HE |author2=Kotlyar V |author3=Nudelman A |title=ट्रेस अशुद्धियों के रूप में सामान्य प्रयोगशाला सॉल्वैंट्स के एनएमआर रासायनिक बदलाव|journal=J. Org. Chem. |volume=62 |issue=21 |pages=7512–7515 |date=October 1997 |pmid=11671879 |doi = 10.1021/jo971176v}}</ref>




Line 288: Line 285:
{{NMR by isotope}}
{{NMR by isotope}}


{{DEFAULTSORT:Proton Nmr}}[[Category: परमाणु चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी]] [[Category: प्रोटॉन]]
{{DEFAULTSORT:Proton Nmr}}
 
 


[[Category: Machine Translated Page]]
[[Category:Collapse templates|Proton Nmr]]
[[Category:Created On 06/04/2023]]
[[Category:Created On 06/04/2023|Proton Nmr]]
[[Category:Lua-based templates|Proton Nmr]]
[[Category:Machine Translated Page|Proton Nmr]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Proton Nmr]]
[[Category:Pages with script errors|Proton Nmr]]
[[Category:Sidebars with styles needing conversion|Proton Nmr]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Proton Nmr]]
[[Category:Templates generating microformats|Proton Nmr]]
[[Category:Templates that add a tracking category|Proton Nmr]]
[[Category:Templates that are not mobile friendly|Proton Nmr]]
[[Category:Templates that generate short descriptions|Proton Nmr]]
[[Category:Templates using TemplateData|Proton Nmr]]
[[Category:Wikipedia metatemplates|Proton Nmr]]
[[Category:परमाणु चुंबकीय अनुनाद स्पेक्ट्रोस्कोपी|Proton Nmr]]
[[Category:प्रोटॉन|Proton Nmr]]

Latest revision as of 11:32, 8 June 2023

उदाहरण 1 मेन्थॉल एनैन्टीओमर्स के मिश्रण का एच एनएमआर स्पेक्ट्रम (1-आयामी) सिग्नल तीव्रता (ऊर्ध्वाधर अक्ष) बनाम रासायनिक परिवर्तन (क्षैतिज अक्ष पर पीपीएम में) के रूप में प्लॉट किया गया। स्पेक्ट्रम से संकेतों को ऊपरी बाएँ में दिखाए गए रासायनिक संरचना से हाइड्रोजन परमाणु समूहों (ए से जे) को सौंपा गया है।

प्रोटॉन परमाणु चुंबकीय अनुनाद (प्रोटॉन एनएमआर, एनएमआर, हाइड्रोजन -1 एनएमआर, या 1H एनएमआर) किसी पदार्थ के अणुओं के भीतर हाइड्रोजन -1 परमाणु नाभिक के संबंध में एनएमआर स्पेक्ट्रोस्कोपी में परमाणु चुंबकीय अनुनाद का अनुप्रयोग है, जिससे की इसके अणुओं की संरचना का निर्धारण किया जा सके।[1] नमूनों में जहां प्राकृतिक हाइड्रोजन (H) का उपयोग किया जाता है, व्यावहारिक रूप से सभी हाइड्रोजन में आइसोटोप 1H (हाइड्रोजन-1; अर्थात एक नाभिक के लिए एक प्रोटॉन) होता है।

सरल एनएमआर स्पेक्ट्रा विलयन (रसायन विज्ञान) में दर्ज किए जाते हैं, और विलायक प्रोटॉन को अंतःक्षेप करने की अनुमति नहीं दी जानी चाहिए। ड्यूटेरियम (ड्यूटेरियम = 2H, जिसे अधिकांशतः D के रूप में दर्शाया जाता है) विशेष रूप से NMR में उपयोग के लिए विलायक को प्राथमिकता दी जाती है, उदा। ड्यूटेरेटेड पानी, D2O, ड्यूटेरेटेड एसीटोन, (CD3)2CO, ड्यूटेरेटेड मेथनॉल, CD3OD, ड्यूटेरेटेड डाइमिथाइल, सल्फ़ोक्साइड, (CD3)2SO, और ड्यूटेरेटेड क्लोरोफॉर्म, CDCl3 । चूँकि, हाइड्रोजन के बिना एक विलायक, जैसे कार्बन टेट्राक्लोराइड, CCl4 या कार्बन डाइसल्फ़ाइड,CS2 का भी उपयोग किया जा सकता है।

ऐतिहासिक रूप से, ड्यूटेरेटेड विलायक को प्रत्येक विश्लेषण प्रोटॉन की रासायनिक पारियों को संदर्भित करने के लिए एक आंतरिक मानक के रूप में टेट्रामेथिलसिलीन (टीएमएस) की एक छोटी राशि (सामान्यतः 0.1%) के साथ आपूर्ति की जाती थी। टीएमएस एक चतुष्फलकीय आणविक ज्यामिति अणु है, जिसमें सभी प्रोटॉन रासायनिक रूप से समतुल्य होते हैं, एकल संकेत देते हैं, जिसका उपयोग रासायनिक परिवर्तन = 0 पीपीएम को परिभाषित करने के लिए किया जाता है।[2] यह अस्थिरता (रसायन विज्ञान) होते है, जिससे नमूना पुनर्प्राप्ति भी आसान हो जाती है। आधुनिक स्पेक्ट्रोमीटर विलायक में अवशिष्ट प्रोटॉन के आधार पर स्पेक्ट्रा को संदर्भित करने में सक्षम हैं (उदाहरण के लिए CHCl3, 99.99% CDCl3 में 0.01%) डयूटरित विलायक अब सामान्यतः बिना TMS के सप्लाई किए जाते हैं।

ड्यूटेरेटेड विलायक एनएमआर के चुंबकीय क्षेत्र के प्राकृतिक बहाव के प्रभाव को ऑफसेट करने के लिए ड्यूटेरियम फ्रीक्वेंसी-फील्ड लॉक (जिसे ड्यूटेरियम लॉक या फील्ड लॉक के रूप में भी जाना जाता है) के उपयोग की अनुमति देता है। ड्यूटेरियम लॉक प्रदान करने के लिए, NMR विलायक से ड्यूटेरियम सिग्नल अनुनाद आवृत्ति की लगातार निगरानी करता है और इसमें परिवर्तन करता है अनुनाद आवृत्ति स्थिर रखने के लिए।[3] इसके अतिरिक्त, ड्यूटेरियम सिग्नल का उपयोग 0 पीपीएम को त्रुटिहीन रूप से परिभाषित करने के लिए किया जा सकता है क्योंकि लॉक सॉल्वेंट की गुंजयमान आवृत्ति और लॉक सॉल्वेंट और 0 पीपीएम (टीएमएस) के बीच का अंतर अच्छी तरह से जाना जाता है।

अधिकांश कार्बनिक यौगिकों के प्रोटॉन एनएमआर स्पेक्ट्रा की विशेषता +14 से -4 पीपीएम की सीमा में रासायनिक परिवर्तन और प्रोटॉन के बीच स्पिन-स्पिन युग्मन द्वारा होती है। प्रत्येक प्रोटॉन के लिए अभिन्न अलग-अलग प्रोटॉन की प्रचुरता को दर्शाता है।

सरल अणुओं में सरल स्पेक्ट्रा होता है। एथिल क्लोराइड के स्पेक्ट्रम में 1.5 पीपीएम पर एक त्रिज और 3:2 के अनुपात में 3.5 पीपीएम पर एक क्वार्टेट होता है। प्रतिचुंबकीय वलय धारा के कारण बेंजीन के स्पेक्ट्रम में 7.2 पीपीएम पर एक शीर्ष होता है।

कार्बन-13 एनएमआर के साथ, प्रोटॉन एनएमआर आणविक संरचना लक्षण वर्णन के लिए प्रबल उपकरण है।

रासायनिक परिवर्तन

रासायनिक परिवर्तन मान, δ द्वारा चिन्हित, त्रुटिहीन नहीं होते हैं, किन्तु विशिष्ट होते हैं - इसलिए उन्हें मुख्य रूप से अनुमोदक के रूप में माना जाता है। कभी-कभी विचलन ± 0.2 भाग प्रति मिलियन अधिक रेंज में होते हैं। रासायनिक परिवर्तन का त्रुटिहीन मूल्य आणविक संरचना और विलायक, तापमान, चुंबकीय क्षेत्र जिसमें विस्तृत श्रेणी में लेख्यांकित किया जाता है और यह अन्य निकटवर्ती कार्यात्मक समूहों पर भी निर्भर करता है। हाइड्रोजन नाभिक उस परमाणु के कक्षीय संकरण के प्रति संवेदनशील होते हैं, जिससे हाइड्रोजन परमाणु समाहित होता है और इलेक्ट्रॉनिक प्रभावों के प्रति होता है । नाभिक उन समूहों द्वारा ढके हुए होते हैं जो इलेक्ट्रॉन घनत्व को वापस लेते हैं। परिरक्षित नाभिक उच्च δ मानों पर प्रतिध्वनित होते हैं, जबकि परिरक्षित नाभिक निम्न δ मानों पर प्रतिध्वनित होते हैं।

इलेक्ट्रॉन निकालने वाले पदार्थों के उदाहरण हैं हाइड्रॉकसिल -OH, कार्बोक्सिलेट-OCOR, अल्कोक्सी-OR, नाइट्रो यौगिक-NO और हलोजन। ये Cα पर H परमाणुओं के लिए लगभग 2-4 पीपीएम और Cβ पर H परमाणुओं के लिए 1-2 पीपीएम से कम की डाउनफील्ड स्थानान्तरित करने के कारण बनते हैं। Cα एक स्निग्ध C परमाणु है जो प्रश्न में प्रतिस्थापी से सीधे समाहित हुआ होता है,और Cβ एक स्निग्ध C परमाणु है जो Cα से जुड़ा होता है। कार्बोनिल समूह, ओलेफिनिक खंड और ऐरोमैटिक वलय sp2 संकरित कार्बन परमाणुओं को एक स्निग्ध श्रृंखला में योगदान करते हैं। यह Cα पर 1-2 पीपीएम की डाउनफील्ड शिफ्ट का कारण बनता है।

ध्यान दें कि अस्थिर प्रोटॉन (-OH, -NH2, -SH) में कोई विशिष्ट रासायनिक परिवर्तन नहीं होती है। चूँकि, इस तरह के अनुनादों को D2O के साथ प्रतिक्रिया करने पर क्षीण होने पर पहचाना जा सकता है। क्योंकि ड्यूटेरियम प्रोटियम परमाणु को प्रतिस्थापित करेगा। इस विधि को D2O स्पन्दन कहा जाता है। अम्लीय ड्यूटेरियम आयनों (जैसे मेथनॉल-डी4) युक्त एक विलायक होने पर अम्लीय प्रोटॉन को भी संदमित किया जा सकता है, प्रोटॉन की पहचान करने के लिए एक वैकल्पिक विधि जो कार्बन से जुड़ा नहीं है, हेटेरोन्यूक्लियर सिंगल क्वांटम सुसंगतता (एचएसक्यूसी) प्रयोग है, जो प्रोटॉन और कार्बन से संबंधित है जो एक दूसरे से एक बंधन दूर हैं। हाइड्रोजन जो कार्बन से जुड़ी नहीं होती और इसकी पहचान की जा सकती है क्योंकि इसमें HSQC स्पेक्ट्रम में केंद्र शीर्षक नहीं होते है।

क्रियात्मक गुण CH3 CH2 CH
CH2R 0.8 1.3 1.6
C=C 1.6 2.0 2.6
C≡C 1.7 2.2 2.8
C6H5 2.3 2.6 2.9
F 4.3 4.4 4.8
Cl 3.0 3.4 4.0
Br 2.7 3.4 4.1
I 2.2 3.2 4.2
OH 3.3 3.5 3.8
OR 3.3 3.4 3.7
OC6H5 3.8 4.0 4.3
OCOR 3.6 4.1 5.0
OCOC6H5 3.9 4.2 5.1
OCOCF3 4.0 4.4
CHO 2.2 2.4 2.5
COR 2.1 2.2 2.6
COOH 2.1 2.3 2.6
COOR 2.0 2.3 2.5
CONR2 2.0 2.1 2.4
CN 2.1 2.5 3.0
NH2 2.5 2.7 3.0
NR2 2.2 2.4 2.8
NRC6H5 2.6 3.0 3.6
NR3+ 3.0 3.1 3.6
NHCOR 2.9 3.3 3.7
NO2 4.1 4.2 4.4
SR 2.1 2.5 3.1
SOR 2.6 3.1
=O (aliphatic aldehyde) 9.5
=O (aromatic aldehyde) 10
M-H (metal hydride) −5 to −15

सिग्नल की तीव्रता

11,4-डाइमिथाइलबेनज़ीन के लिए एच एनएमआर स्पेक्ट्रम की भविष्यवाणी की गई। आदर्श परिस्थितियों में, प्रोटॉन ए और बी के एकीकृत सिग्नल का अनुपात इस अणु की संरचना से संबंधित है।

एनएमआर संकेतों की एकीकृत तीव्रता, आदर्श रूप से, अणु के भीतर नाभिक के अनुपात के समानुपाती होती है।[4] रासायनिक परिवर्तन और युग्मन स्थिरांक के साथ, एकीकृत तीव्रता संरचनात्मक कार्य की अनुमति देती है। मिश्रण के लिए, ग्राम अणुक अनुपात निर्धारित करने के लिए संकेत तीव्रता का उपयोग किया जा सकता है।ये विचार तभी मान्य होते हैं जब प्रभावित संकेतों के पूर्ण विश्राम के लिए पर्याप्त समय दिया जाता है, जैसा कि उनके T1 मानों द्वारा निर्धारित किया जाता है। बहुत भिन्न रेखा आकृतियों के संकेतों को एकीकृत करने में जटिलता उत्पन्न होती है।

स्पिन-स्पिन कपलिंग्स

File:1H NMR Ethyl Acetate Coupling shown.png
उदाहरण 1इथाइल एसीटेट के एच एनएमआर स्पेक्ट्रम (1-आयामी) को सिग्नल तीव्रता बनाम रासायनिक परिवर्तन के रूप में प्लॉट किया गया। एनएमआर के संबंध में एथिल एसीटेट में तीन अलग-अलग प्रकार के हाइड्रोजन परमाणु होते हैं। सीएच पर हाइड्रोजन्स (एच)।3सीओओ- (एसीटेट) समूह अन्य एच परमाणुओं के साथ युग्मन नहीं कर रहे हैं और एक एकल के रूप में दिखाई देते हैं, किन्तु -सीएच2- और -सीएच3 एथिल समूह के हाइड्रोजन (-CH2चौधरी3) एक दूसरे के साथ युग्मन कर रहे हैं, जिसके परिणामस्वरूप क्रमशः चौकड़ी और त्रिक है।

रासायनिक परिवर्तन के अतिरिक्त, NMR स्पेक्ट्रा स्पिन-स्पिन कपलिंग (और एकीकृत तीव्रता) के आधार पर संरचनात्मक असाइनमेंट की अनुमति देता है। क्योंकि नाभिक में स्वयं एक छोटा चुंबकीय क्षेत्र होता है, वे एक-दूसरे को प्रभावित करते हैं, ऊर्जा को बदलते हैं और इसलिए आस-पास के नाभिक की आवृत्ति जैसे-जैसे वे प्रतिध्वनित होते हैं- इसे स्पिन-स्पिन युग्मन के रूप में जाना जाता है। मूल एनएमआर में सबसे महत्वपूर्ण प्रकार अदिश युग्मन है। दो नाभिकों के बीच यह अंतःक्रिया रासायनिक आबंध के माध्यम से होती है, और सामान्यतः तीन आबंध (3-जे युग्मन) तक दूर देखी जा सकती है, चूँकि यह कभी-कभी चार से पांच आबंध पर दिखाई दे सकती है, चूँकि ये काफी कमजोर होते हैं।

अदिश युग्मन के प्रभाव को एक प्रोटॉन के परीक्षण से समझा जा सकता है जिसका संकेत 1 पीपीएम पर होता है। यह प्रोटॉन एक काल्पनिक अणु में होता है जहां तीन आबंध दूर एक और प्रोटॉन समल्लित होता है (उदाहरण के लिए सीएच-सीएच समूह में), निकटवर्ती समूह (एक चुंबकीय क्षेत्र) 1 पीपीएम पर सिग्नल को दो में विभाजित करने का कारण बनता है, जिसमें एक स्तर होता है हर्ट्ज़ 1 पीपीएम से अधिक और दूसरी चोटी 1 पीपीएम से कम हर्ट्ज़ की समान संख्या होती है। इन शीर्ष में से प्रत्येक में पूर्व एकल शीर्ष का आधा क्षेत्र होता है। इस विभाजन के परिमाण (शीर्ष के बीच आवृत्ति में अंतर) को युग्मन स्थिरांक के रूप में जाना जाता है। स्निग्ध प्रोटॉनों के लिए विशिष्ट युग्मन स्थिरांक मान 7 हर्ट्ज होगा।

युग्मन स्थिरांक चुंबकीय क्षेत्र की ताकत से स्वतंत्र है क्योंकि यह किसी अन्य नाभिक के चुंबकीय क्षेत्र के कारण होता है, न कि स्पेक्ट्रोमीटर चुंबक के कारण होता है । इसलिए, इसे हर्ट्ज़ (आवृत्ति) में उद्धृत किया गया है न कि पीपीएम (रासायनिक पारी) में।

एक अन्य अणु में एक प्रोटॉन 2.5 पीपीएम पर प्रतिध्वनित होता है और वह प्रोटॉन भी 1 पीपीएम पर प्रोटॉन द्वारा दो भागों में विभाजित हो जाएगा। क्योंकि अंतःक्रिया का परिमाण समान होता है, विभाजन में समान युग्मन स्थिरांक 7 हर्ट्ज अलग होता है। स्पेक्ट्रम में दो सिग्नल होंगे, प्रत्येक एक द्विरावृत्ति होगा। प्रत्येक द्विक का क्षेत्रफल समान होगा क्योंकि दोनों द्विक एक-एक प्रोटॉन द्वारा निर्मित होते हैं।

काल्पनिक अणु CH-CH से 1 पीपीएम और 2.5 पीपीएम पर दो डबल अब CH2-CH में बदल दिए गए हैं:

  • 1 पीपीएम CH2 का कुल क्षेत्रफल शिखर 2.5 पीपीएम CH शिखर की दोगुनी होगी ।
  • CH2 पीक को CH पीक द्वारा एक द्विरावृत्ति में विभाजित किया जाएगा—एक पीक 1 ppm + 3.5 Hz पर और एक 1 ppm - 3.5 Hz पर (कुल विभाजन या युग्मन स्थिरांक 7 Hz होता है)।

परिणामस्वरूप 2.5 पीपीएम पर सीएच चोटी सीएच से प्रत्येक प्रोटॉन द्वारा दो बार विभाजित हो जाएगी2. पहला प्रोटॉन चोटी को दो समान तीव्रता में विभाजित करेगा और 2.5 पीपीएम पर एक शीर्ष से दो शीर्ष तक जाएगा, एक 2.5 पीपीएम + 3.5 हर्ट्ज पर और दूसरा 2.5 पीपीएम - 3.5 हर्ट्ज—प्रत्येक की समान तीव्रता होगी। हालाँकि ये दूसरे प्रोटॉन द्वारा फिर से विभाजित हो जाएंगे। आवृत्तियों तदनुसार बदल जाएगी:

  • 2.5 पीपीएम + 3.5 हर्ट्ज सिग्नल 2.5 पीपीएम + 7 हर्ट्ज और 2.5 पीपीएम में बंट जाएगा
  • 2.5 पीपीएम - 3.5 हर्ट्ज सिग्नल 2.5 पीपीएम और 2.5 पीपीएम - 7 हर्ट्ज में बंट जाएगा

शुद्ध परिणाम 4 शीर्ष से युक्त एक संकेत नहीं होता है, किन्तु तीन: 2.5 पीपीएम से ऊपर 7 हर्ट्ज पर एक संकेत, 2.5 पीपीएम पर दो संकेत और 2.5 पीपीएम से नीचे 7 हर्ट्ज पर अंतिम एक संकेत है। उनके बीच ऊंचाई का अनुपात 1:2:1 है। इसे त्रिक के रूप में जाना जाता है और यह एक संकेतक है कि प्रोटॉन एक CH2 समूह से तीन-बॉन्ड होता है।

इसे किसी भी CHn समूह तक बढ़ाया जा सकता है। जब CH2-CH समूह को CH3-CH2 में बदल दिया जाता है, रासायनिक परिवर्तन और युग्मन स्थिरांक को समान रखते हुए, निम्नलिखित परिवर्तन देखे जाते हैं:

  • CH3 और CH2 उपइकाइयों के बीच सापेक्ष क्षेत्र 3:2 होंगे।
  • सीएच3 H3 को दो प्रोटॉन के साथ 1:2:1 त्रिक में 1 पीपीएम के साथ युग्मित किया जाता है।
  • CH2 तीन प्रोटॉन से जुड़ा है।

तीन समान प्रोटॉनों द्वारा विभाजित कुछ एक आकार लेता है जिसे क्वार्टेट के रूप में जाना जाता है, प्रत्येक चोटी में 1:3:3:1 की सापेक्ष तीव्रता होती है।

एक चोटी को n समान प्रोटॉन द्वारा ऐसे घटकों में विभाजित किया जाता है जिनके आकार पास्कल के त्रिभुज की nवीं पंक्ति के अनुपात में होते हैं:

n नाम पंक्ति
0 सिंग्लेट 1
1 डोबलेट 1 1
2 triplet 1 2 1
3 क्वार्टेट 1 3 3 1
4 क्विंटेट 1 4 6 4 1
5 सेक्सटेट 1 5 10 10 5 1
6 सेप्टेट 1 6 15 20 15 6 1
7 octet 1 7 21 35 35 21 7 1
8 nonet 1 8 28 56 70 56 28 8 1

क्योंकि n वीं पंक्ति में n+1 घटक हैं, इस प्रकार के विभाजन को "n+1 नियम" का पालन करने के लिए कहा जाता है: n पड़ोसियों वाला एक प्रोटॉन n+1 शीर्ष के समूह के रूप में प्रकट होता है।

2-मिथाइलप्रोपेन के साथ, (CH3)3CH, एक अन्य उदाहरण के रूप में: सीएच प्रोटॉन तीन समान मिथाइल समूहों से जुड़ा होता है जिसमें कुल 9 समान प्रोटॉन होते हैं। बहुलता के (n + 1) नियम के अनुसार स्पेक्ट्रम में C-H सिग्नल को दस शीर्ष में विभाजित किया जाएगा। नीचे इस प्रकार के कई सरल गुणकों के अनुरूप NMR संकेत दिए गए हैं। ध्यान दें कि नॉनट की बाहरी रेखाएं (जो कि दूसरी चोटी की तुलना में केवल 1/8 ऊंची हैं) को मुश्किल से देखा जा सकता है, जो एक सेप्टेट के लिए एक सतही समानता देता है।

J-Coupling-simple-multiplets.gifजब एक प्रोटॉन को दो अलग-अलग प्रोटॉन जब एक प्रोटॉन को दो अलग-अलग प्रोटॉन से जोड़ा जाता है, तो युग्मन स्थिरांक अलग-अलग होने की संभावना होती है, और त्रिज के अतिरिक्त, द्विरावृत्ति का एक द्विरावृत्ति दिखाई देगा। इसी तरह, यदि एक प्रोटॉन एक प्रकार के दो अन्य प्रोटॉनों के साथ युग्मित होता है, और एक अन्य प्रकार का तीसरा एक अलग, छोटे युग्मन स्थिरांक के साथ होता है, तो दोहरेपन का एक त्रिक देखा जाता है। नीचे दिए गए उदाहरण में, त्रिक युग्मन स्थिरांक द्विक से बड़ा है। परंपरा के अनुसार सबसे बड़े युग्मन स्थिरांक द्वारा बनाए गए पैटर्न को पहले इंगित किया जाता है और छोटे स्थिरांकों के विभाजन पैटर्न को बारी-बारी से नाम दिया जाता है। नीचे दिए गए स्थितियों में त्रिज के चतुष्क को चतुष्क के रूप में संदर्भित करना गलत होगा। ऐसे गुणक का विश्लेषण (जो यहां दिखाए गए लोगों की तुलना में बहुत अधिक जटिल हो सकता है) अध्ययन किए जा रहे अणु की संरचना के लिए महत्वपूर्ण सुराग प्रदान करता है।

J-Coupling-complex-multiplets.gifऊपर वर्णित एनएमआर संकेतों के स्पिन-स्पिन ऊपर वर्णित एनएमआर संकेतों के स्पिन-स्पिन विभाजन के सरल नियम केवल तभी लागू होते हैं जब युग्मन भागीदारों के रासायनिक परिवर्तन उनके बीच युग्मन स्थिरांक से काफी बड़े होते हैं। अन्यथा अधिक चोटियाँ हो सकती हैं, और अलग-अलग शीर्ष की तीव्रता विकृत हो जाएगी (दूसरे क्रम के प्रभाव)।

विषम-परमाणु युग्मन

यदि अणु में अन्य एनएमआर-सक्रिय नाभिक मौजूद हैं, तो विषम-परमाणुओं और प्रोटॉन के बीच स्पिन-स्पिन युग्मन देखा जाएगा। यह अधिकांशतः उन यौगिकों में होता है जिनमें फॉस्फोरस या फ्लोरीन होता है, क्योंकि वे दोनों 100% बहुतायत के 1/2 नाभिक स्पिन करते हैं। उदाहरण के लिए, फ्लोरोमीथेन में प्रोटॉन के लिए 1H सिग्नल फ्लोरीन परमाणु द्वारा एक द्विरावृत्ति में विभाजित हो जाते हैं; इसके विपरीत इस यौगिक का फ्लोरीन-19 एनएमआर स्पेक्ट्रम तीन प्रोटॉनों द्वारा विभाजित होने के कारण चतुष्क दिखाता है। फ्लोरीन और प्रोटॉन के बीच विशिष्ट 2J युग्मन स्थिरांक 48 हर्ट्ज या इससे अधिक हैं; 4J युग्मन में युग्मन की शक्ति घटकर 2 Hz रह जाती है।[5]

फॉस्फीन में भी बड़े युग्मन स्थिरांक देखे जा सकते हैं, खासकर अगर प्रोटॉन सीधे फास्फोरस से जुड़ा हो। इन प्रोटॉनों के लिए युग्मन स्थिरांक अक्सर 200 हर्ट्ज जितना बड़ा होता है, उदाहरण के लिए डायथाइलफॉस्फीन में, जहां 1J PH युग्मन स्थिरांक 190 हर्ट्ज है। [6] ये युग्मन स्थिरांक इतने बड़े होते हैं कि वे 1ppm (स्पेक्ट्रोमीटर के आधार पर) से अधिक की दूरी तय कर सकते हैं, जिससे उन्हें अणु में अन्य प्रोटॉन संकेतों के साथ अतिव्याप्ति का खतरा होता है।

कार्बन उपग्रह और कताई साइडबैंड

कभी-कभी मुख्य 1H NMR शीर्ष को दायित्व लेते हुए देखा जा सकता है। ये शिखर प्रोटॉन-प्रोटॉन युग्मन का परिणाम नहीं हैं, बल्कि 1H परमाणुओं के निकटवर्ती कार्बन -13 (13सी) परमाणु के युग्मन का परिणाम होते हैं। इन छोटी शीर्ष को कार्बन-13 एनएमआर उपग्रह के रूप में जाना जाता है क्योंकि ये छोटी होती हैं और मुख्य 1H शिखर अर्थात उपग्रह के (चारों ओर) आसपास दिखाई देती हैं। कार्बन उपग्रह छोटे हैं, क्योंकि नमूने में बहुत कम अणुओं में कार्बन दुर्लभ एनएमआर-सक्रिय सक्रिय 13C समस्थानिक के रूप में होते है। सदैव की तरह एक एकल स्पिन-1/2 नाभिक के कारण युग्मन के लिए, एच से समाहित संकेत विभाजन 13C एक युग्मक होते है। एच अधिक प्रचुर मात्रा में जुड़ा हुआ होता है 12C से विभाजित नहीं होता है, इसलिए यह एक बड़ा एकल है। शुद्ध परिणाम मुख्य एक के चारों ओर समान रूप से दूरी वाले छोटे संकेतों की एक जोड़ी है। यदि H-H युग्मन या अन्य प्रभावों के कारण H सिग्नल पहले से ही विभाजित हो जाएगा, तो प्रत्येक उपग्रह इस युग्मन को भी प्रतिबिंबित करेगा (जैसा कि भिन्न युग्मन भागीदारों के कारण जटिल विभाजन पैटर्न के लिए सामान्य है)। अन्य एनएमआर-सक्रिय नाभिक भी इन उपग्रहों का कारण बन सकते हैं, किन्तु कार्बनिक यौगिकों के प्रोटॉन एनएमआर स्पेक्ट्रा में कार्बन सबसे सामान्य अभियुक्त होते है।

कभी-कभी अन्य शिखरों 1एच पीक्स को भी देखा जा सकता है जिन्हें स्पिनिंग साइडबैंड के रूप में जाना जाता है और एनएमआर ट्यूब के स्पिन की दर से संबंधित हैं। ये स्पेक्ट्रोस्कोपिक विश्लेषण से ही प्रायोगिक कलाकृतियां हैं, न कि रासायनिक के स्पेक्ट्रम की एक आंतरिक विशेषता और विशेष रूप से रासायनिक या इसकी संरचना से संबंधित भी नहीं होते हैं।

कार्बन उपग्रहों और स्पिनिंग साइडबैंडों को अशुद्धता की पीक्स के साथ असंगत नहीं होना चाहिए।[7]


यह भी देखें

संदर्भ

  1. R. M. Silverstein, G. C. Bassler and T. C. Morrill, Spectrometric Identification of Organic Compounds, 5th Ed., Wiley, 1991.
  2. "रासायनिक पारी". Archived from the original on 2016-03-06.
  3. US patent 4110681, Donald C. Hofer; Vincent N. Kahwaty; Carl R. Kahwaty, "NMR field frequency lock system", issued 1978-08-29 
  4. Balci, M., in "Basic 1H- and 13C-NMR Spectroscopy" (1st Edition, Elsevier), ISBN 978-0444518118.
  5. "Coupling of Protons with Fluorine Page" (PDF).
  6. Baccolini, Graziano; Boga, Carla; Mazzacurati, Marzia; Sangirardi, Federico (2006-04-01). "पुनर्चक्रण फास्फोरस दाता अभिकर्मक का उपयोग करके माध्यमिक फॉस्फीन और उनके बोरेन परिसरों का उच्च परमाणु-किफायती एक-पॉट संश्लेषण". Organic Letters. 8 (8): 1677–1680. doi:10.1021/ol060284d. ISSN 1523-7060. PMID 16597139.
  7. Gottlieb HE; Kotlyar V; Nudelman A (October 1997). "ट्रेस अशुद्धियों के रूप में सामान्य प्रयोगशाला सॉल्वैंट्स के एनएमआर रासायनिक बदलाव". J. Org. Chem. 62 (21): 7512–7515. doi:10.1021/jo971176v. PMID 11671879.


बाहरी संबंध